捷多邦,专业PCB打样工厂,24小时加急出货

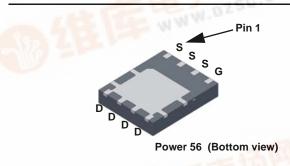
SEMICONDUCTOR®

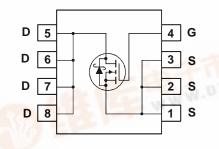
February 2008

FDMS8670S N-Channel PowerTrench[®] SyncFETTM 30V, 42A, 3.5mΩ

Features

- Max $r_{DS(on)} = 3.5 m\Omega$ at $V_{GS} = 10V$, $I_D = 20A$
- Max $r_{DS(on)} = 5.0 m\Omega$ at $V_{GS} = 4.5 V$, $I_D = 17 A$
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- SyncFET Schottky Body Diode
- MSL1 robust package design
- RoHS Compliant




General Description

The FDMS8670S has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.

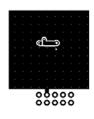
Application

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/ GPU low side switch
- Networking Point of Load low side switch
- Telecom secondary side rectification

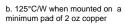
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous (Package limited)	$T_C = 25^{\circ}C$		42		
	-Continuous (Silicon limited)	$T_C = 25^{\circ}C$		116		
I _D	-Continuous (Silicon limited) T _C = 100°C		120 500	74	A	
	-Continuous	T _A = 25°C	11111	20		
	-Pulsed	1212		200		
	Power Dissipation	$T_{C} = 25^{\circ}C$		78		
P _D	Power Dissipation	T _A = 25°C	(Note 1a)	2.5	W	
	Power Dissipation	$T_A = 85^{\circ}C$	(Note 1a)	1.3		
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +150	°C	
Thermal Ch	naracteristics				·	
Reic	Thermal Resistance. Junction to Case			1.6		

R _{0JC}	Thermal Resistance, Junction to Case	1.6	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	C/vv


Package Marking and Ordering Information

t	PDevice Marking	Device	Package	Reel Size	Tape Width	Quantity
11		FDMS8670S	Power 56	13"	12mm	3000 units


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 1mA$, $V_{GS} = 0V$	30			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to 25°C		17		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V, V_{GS} = 0V$			500	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1mA$	1	1.5	3	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 50$ mA, referenced to 25°C		-2.8		mV/°C	
	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 20A$		2.8	3.5		
r _{DS(on)}		$V_{GS} = 4.5V, I_D = 17A$		3.6	5.0	mΩ	
		$V_{GS} = 10V, I_D = 20A, T_J = 125^{\circ}C$		3.9	6.0		
9 _{FS}	Forward Transconductance	$V_{DS} = 10V, I_{D} = 20A$		98		S	
Dvnamic	Characteristics						
C _{iss}	Input Capacitance			3005	4000	pF	
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V f = 1MHz		865	1150	pF	
C _{rss}	Reverse Transfer Capacitance			320	480	pF	
R _q	Gate Resistance	f = 1MHz		1.4	5.0	Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			14	26	ns	
t _r	Rise Time	$V_{DD} = 15V, I_D = 20A$		19	35	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 5\Omega$		37	60	ns	
t _f	Fall Time			10	20	ns	
Q _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V$ to 10V		52	73	nC	
Q _{g(4.5V)}	Total Gate Charge at 4.5V	$V_{GS} = 0V \text{ to } 4.5V$ $V_{DS} = 15V$		24	34	nC	
Q _{gs}	Gate to Source Gate Charge	I _D = 20A		8		nC	
Q _{gd}	Gate to Drain "Miller" Charge			10		nC	

V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 2A$
t _{rr}	Reverse Recovery Time	I _F = 20A, di/dt = 300A/μs
Q _{rr}	Reverse Recovery Charge	$F = 20A$, ui/ul = $300A/\mu s$

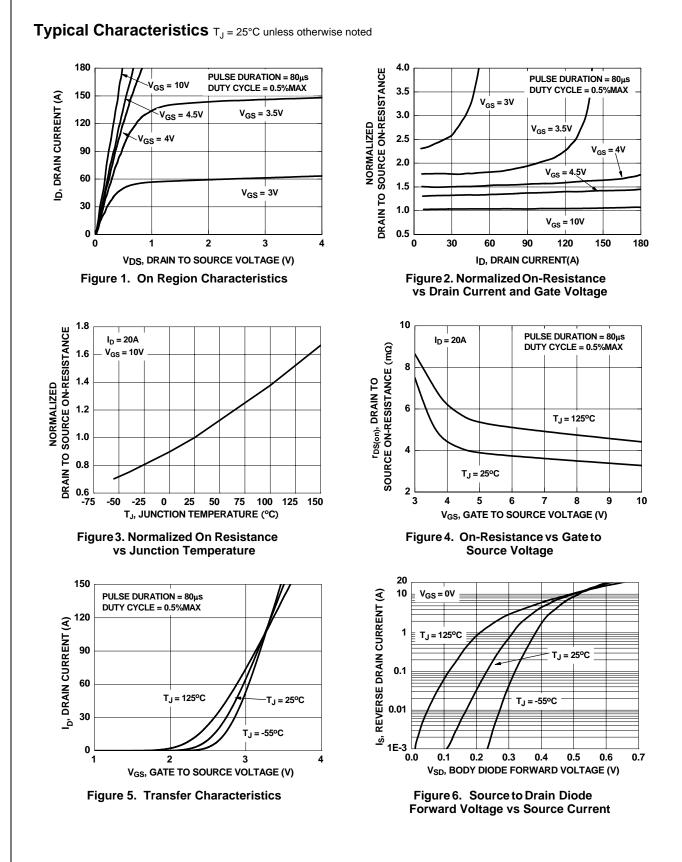
Notes:
 1: R_{θJA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

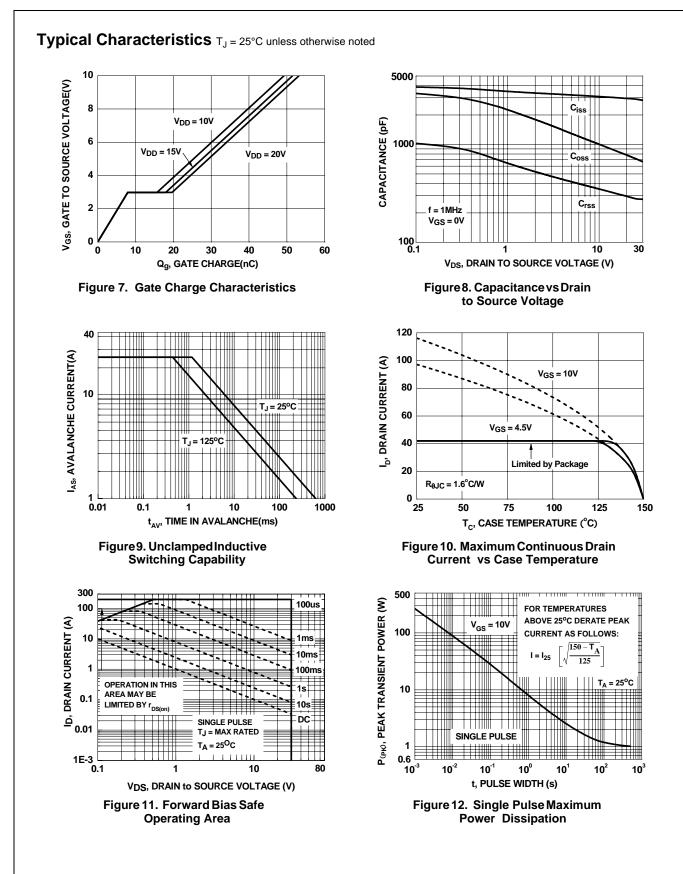
a. 50°C/W when mounted on a 1 in² pad of 2 oz copper

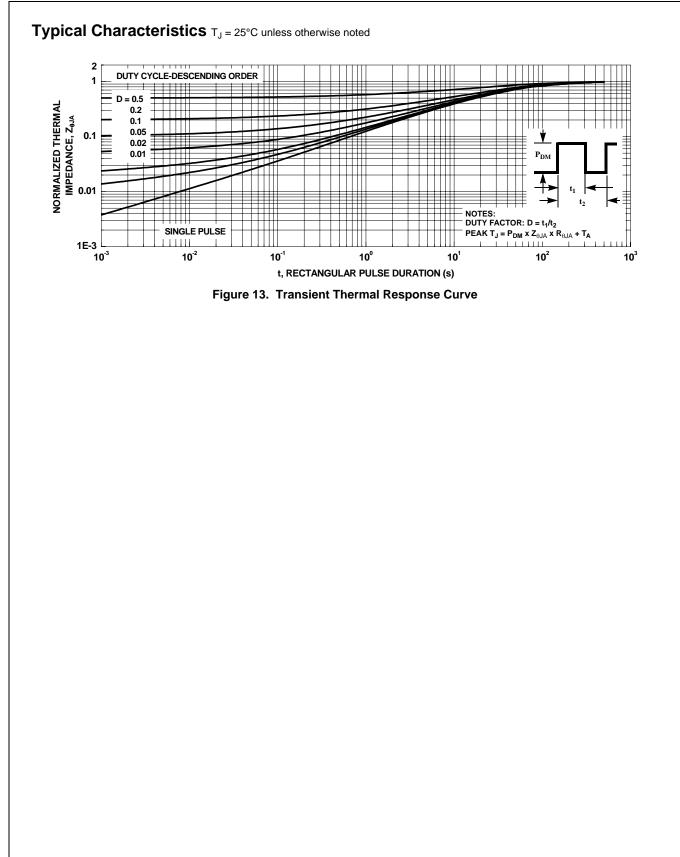
26

24

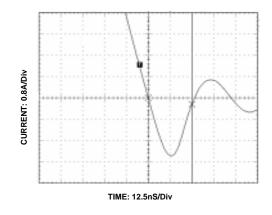
42

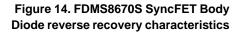

39


ns


nC

2: Pulse time < 300μ s, Duty cycle < 2%.





Typical Characteristics (continued)

SyncFET Schottky body diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverses recovery characteristic of the FDMS8670S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

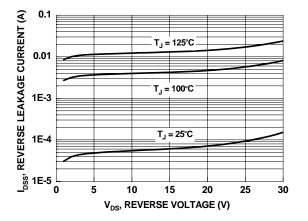


Figure 15. SyncFET Body Diode reverse leakage vs drain to source voltage

A 5.00 3.91 -1.27 PKG ¢ В 7 8 6 5 8 5 0.77 4.52 РКGĘ 6.00 6.61 \mathcal{Q} 1.27 PIN #1 INDICATOR 4 1 1 TOP VIEW 2 3 1 4 1.27 -0.61 -1.05 // 0.10 C 3.81 0.06 ⊇|0.08|C LAND PATTERN C RECOMMENDATION SIDE VIEW 3.81-1.27 0.46 0.36 (0.39)⊕ 0.10M C A B 3 2 4 0.64 (0.35)PIN #1 IDENT 4.01±0.30 (OPTIONAL) 1.81 €^{0.64} 5 8 7 6 3.86 3.66 BOTTOM VIEW NOTES: UNLESS OTHERWISE SPECIFIED A) ALL DIMENSIONS ARE IN MILLIMETERS. NO JEDEC REFERENCE AS OF FEBRUARY 2006 B) DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994 C) PQFN08AREVA

FAIRCHILD

SEMICONDUCTOR®

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] * **FRFET**® Global Power ResourceSM Green FPS™ Green FPS[™] e-Series[™] GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR**[™] MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM[™] **OPTOLOGIC[®] OPTOPLANAR[®]** R

FPS™

PDP-SPM™ Power220[®] **POWEREDGE[®]** Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET**® QS™ QT Optoelectronics[™] Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT™-8

SupreMOS™ SyncFET™ The Power Franchise[®] franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™

* EZSWITCH[™] and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.
	Formative or In Design First Production Full Production

www.fairchildsemi.com