September 2001

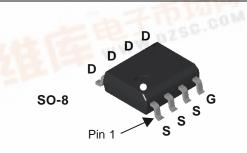
FAIRCHILE

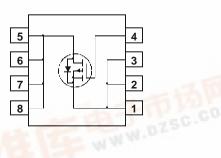
SEMICONDUCTOR IM

FDS6375

P-Channel 2.5V Specified PowerTrench[®] MOSFET

General Description


This PChannel 2.5V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 8V).

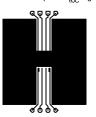

Applications

- Power management
- Load switch
- Battery protection

- -8 A, -20 V. $R_{DS(ON)} = 24 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 32 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$
- Low gate charge (26 nC typical)
- High performance trench technology for extremely
 low R_{DS(ON)}
- High current and power handling capability

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source	Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage			±8	V
Ь	Drain Current	t – Continuous	(Note 1a)	-8	A
		– Pulsed		-50	
P₀	Power Dissip	ation for Single Operation	(Note 1a)	2.5	W
			(Note 1b)	1.2	TV
			(Note 1c)	1.0	0750
T _J , T _{STG}	Operating an	d Storage Junction Tempe	erature Range	-55 to +175	°C
Therma	I Characte	eristics	-18		·
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		ent (Note 1a)	50	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1c)		nt (Note 1c)	125	°C/W
R _{ejc}	Thermal Res	istance, Junction-to-Case	(Note 1)	25	°C/W
			formation		•
Packag	e Marking	and Ordering In	ionnation		
Packag		and Ordering In Device	Reel Size	Tape width	Quantity


2001 Fairchild Semiconductor Corporation

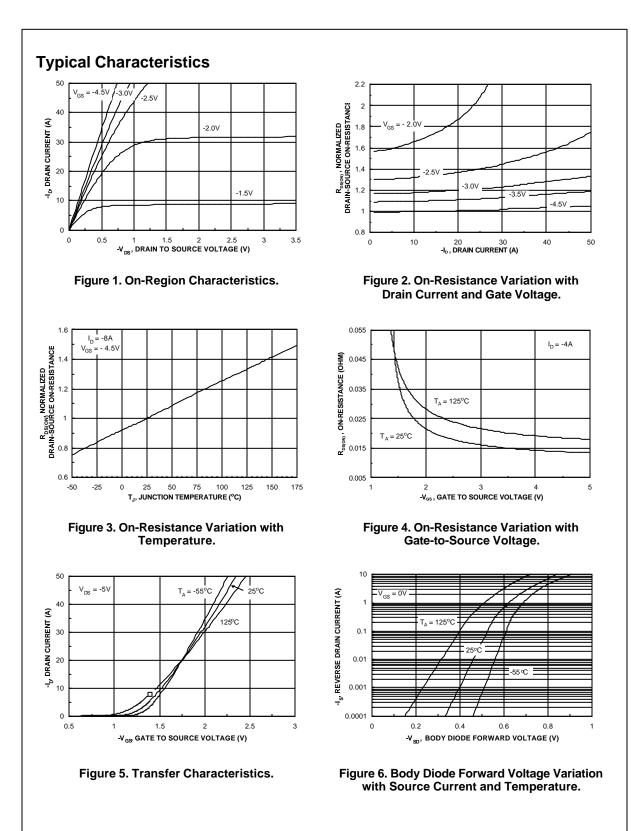
f.dzsc.com

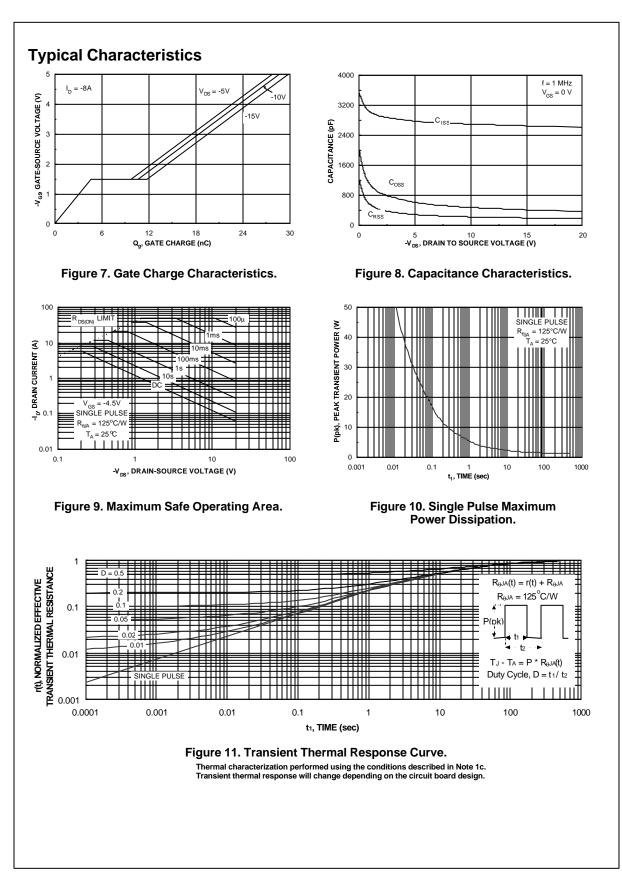
FDS6375 Rev E(W)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	I				
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-13		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μΑ
GSSF	Gate–Body Leakage, Forward	$V_{GS} = 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate–Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.4	-0.7	-1.5	V
<u>ΔVgs(th)</u> ΔTj	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		3		mV/º0
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = -4.5 \ V, & l_D = -8 \ A \\ V_{GS} = -2.5 \ V, & l_D = -7 \ A \\ V_{GS} = -4.5 \ V, \ l_D = -8A, \ T_J = 125^\circ C \end{array} $		14 19 18	24 32 39	mΩ
D(on)	On–State Drain Current	$V_{GS} = -4.5 V$, $V_{DS} = -5 V$	-50			Α
g fs	Forward Transconductance	$V_{DS} = -5 V$, $I_{D} = -8 A$		35		S
Dvnamic	Characteristics	I				
Ciss	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		2694		pF
Coss	Output Capacitance	f = 1.0 MHz		480		pF
Crss	Reverse Transfer Capacitance			229		pF
Switchir	g Characteristics (Note 2)	I				
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10V,$ $I_D = -1 A,$ $V_{GS} = -4.5 V,$ $R_{GEN} = 6 \Omega$		12	22	ns
tr	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		9	17	ns
t _{d(off)}	Turn–Off Delay Time			124	197	ns
t _f	Turn–Off Fall Time			57	92	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -8 A$,		26	36	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		5		nC
Q _{gd}	Gate–Drain Charge			6		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain–Source				-2.1	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -2.1 A$ (Note 2)		-0.7	-1.2	V

the drain pins. $R_{\theta,C}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

Scale 1 : 1 on letter size paper


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%


a) 50 °C/W when mounted on a 1ir² pad of 2 oz copper

***** ~~~~~

c) 125 °C/W when mounted on a minimum pad.

TRADEMARKS				
8 8	ed and unregistered tradema austive list of all such trader	arks Fairchild Semiconductor on marks.	owns or is authorized to us	se and is
ACEx [™] Bottomless [™] CoolFET [™] <i>CROSSVOLT</i> [™] DenseTrench [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Series [™]	FAST [®] FASTr [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] ISOPLANAR [™] LittleFET [™] MicroFET [™] MicroPak [™] MICROWIRE [™]	OPTOLOGIC [™] OPTOPLANAR [™] PACMAN [™] POP [™] Power247 [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SILENT SWITCHER [®]	SMART START [™] STAR*POWER [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] TruTranslation [™] UHC [™] UltraFET [®]	VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.