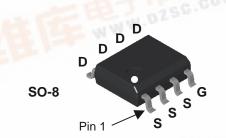
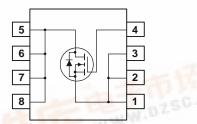
查询FDS6670A_03供应商

捷多邦,专业PCB打样工厂,24小时加急出货

SEMICONDUCTOE

FDS6670A Single N-Channel, Logic Level, PowerTrench^o MOSFET


General Description


This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- 13 A, 30 V. $R_{DS(ON)} = 8 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 10 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Fast switching speed
- Low gate charge
- High performance trench technology for extremely low R_{DS(ON)}
- High power and current handling capability

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source Voltage			30	V	
V _{GSS}	Gate-Source Voltage			±20	V	
D	Drain Current – Continuous (Note 1a)			13	А	
		 Pulsed 		50	- A	
<mark>о</mark> р	Power Diss	ipation for Single Opera	tion (Note 1a)	2.5	W	
			(Note 1b)	1.0	OZSC.	
T _J , T _{stg}	Operating and Storage Junction Temperature Range			<u>-55 to +150</u>	°C	
Therma	l Charac	teristics 🔄 🚽				
R _{eja}	Thermal Resistance, Junction-to-Ambient (Note 1a)			50	°C/W	
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1b)			125		
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)			25		
Packag	e Markin	g and Ordering	Information			
Device Marking		Device	Reel Size	Tape width	Quantity	
FDS6670A		FDS6670A	13"	12mm	2500 units	

FDS6670A Rev F (W)

FDS6670A

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{D} = 250 \mu A$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		26		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.8	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-5.3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			6 7.2 8.5	8 10 14	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	50			Α
g fs	Forward Transconductance	$V_{DS} = 15 V$, $I_{D} = 13 A$		55		S
Dvnamic	Characteristics					
Ciss	Input Capacitance $V_{DS} = 15 V$, $V_{GS} = 0 V$,			2220		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		535		pF
C _{rss}	Reverse Transfer Capacitance	7		200		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		1.7		Ω
Switchin	g Characteristics (Note 2)	·				•
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 10 V, I_D = 1 A,$		11	19	ns
tr	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		13	24	ns
t _{d(off)}	Turn–Off Delay Time	7		40	64	ns
t _f	Turn–Off Fall Time	7		13	24	ns
Qg	Total Gate Charge	$V_{DS} = 15 V$, $I_D = 13 A$,		21	30	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		6		nC
Q _{gd}	Gate-Drain Charge			7		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				•
Is	Maximum Continuous Drain–Source Diode Forward Current 2.1		Α			
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2.1 A$ (Note 2)		0.7	1.2	V
1	Diada Davaraa Daaayary Tima		1	24		~ ~ ~

FDS6670A

Q_{rr} Notes:

t_{rr}

1. $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

 $I_{F} = 13 \text{ A},$

Diode Reverse Recovery Time

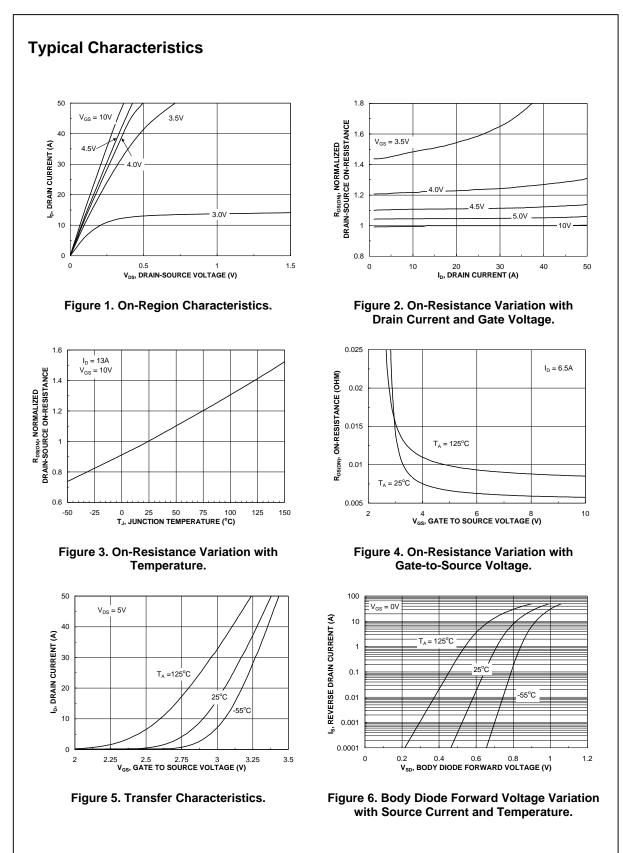
Diode Reverse Recovery Charge

a) 50°C/W when mounted on a 1in² pad of 2 oz copper

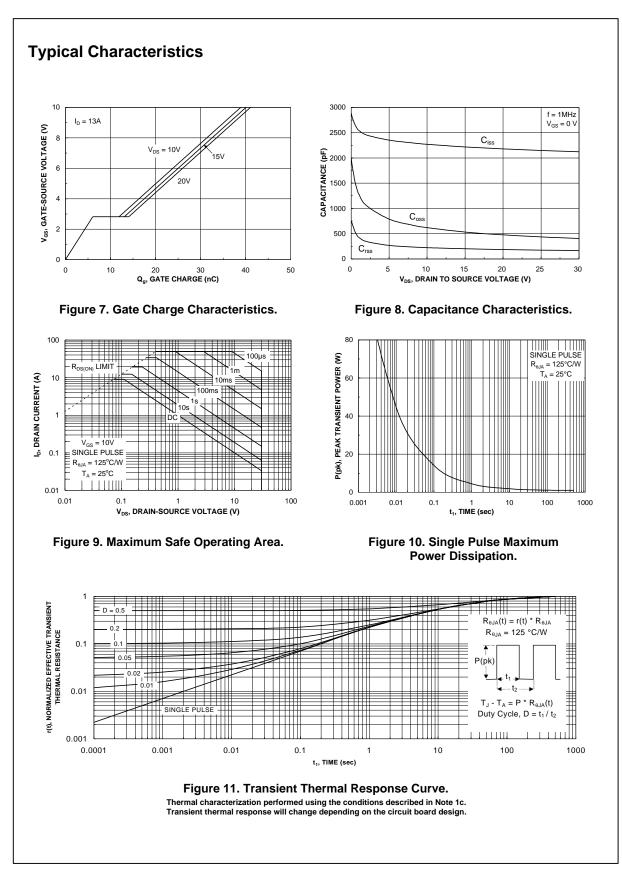
 $d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$

b) 125°C/W when mounted on a minimum pad.

31


21

Scale 1 : 1 on letter size paper


2 Test: Pulse Width < 300µs, Duty Cycle < 2.0%

nS

nC

FDS6670A

FDS6670A

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247 [™]	SuperSOT™-6
ActiveArray™	FAST®	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FASTr™	MicroFET™	QFET [®]	SyncFET™
CoolFET™	FRFET™	MicroPak™	QS™	TinyLogic®
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
DOME™	GTO™	MSX™	Quiet Series [™]	TruTranslation™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	UHC™
E ² CMOS [™]	l²C™	OCX™	RapidConnect™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER [®]	VCX™
FACT™	ISOPLANAR™	OPTOLOGIC [®]	SMART START™	
Across the board	d. Around the world.™	OPTOPLANAR™	SPM™	
The Power Fran		PACMAN™	Stealth™	
Programmable Active Droop™		POP™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.