

June 2007

## FDZ2554P

# Monolithic Common Drain P-Channel 2.5V Specified Power Trench® BGA MOSFET -20V, -6.5A, $28m\Omega$

#### **Features**

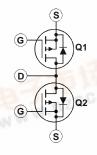
- Max  $r_{DS(on)} = 28m\Omega$  at  $V_{GS} = -4.5V$ ,  $I_D = -6.5A$
- Max  $r_{DS(on)} = 45m\Omega$  at  $V_{GS} = -2.5V$ ,  $I_D = -5A$
- Occupies only 0.10 cm<sup>2</sup> of PCB area: 1/3 the area of SO-8
- Ultra-thin package: less than 0.80 mm height when mounted to PCB
- Outstanding thermal transfer characteristics: significantly better than SO-8
- Ultra-low Qg x r<sub>DS(on)</sub> figure-of-merit
- High power and current handling capability
- RoHS Compliant



#### **General Description**

Combining Fairchild's advanced 2.5V specified PowerTrench process with state-of-the-art BGA packaging, the FDZ2554P minimizes both PCB space and r<sub>DS(on)</sub>. This monolithic common drain BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultra-low profile packaging, low gate charge, and low r<sub>DS(on)</sub>.

#### **Applications**


- Battery management
- Load Switch
- Battery protection







Top



## MOSFET Maximum Ratings T<sub>A</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                        |           | Ratings     | Units |
|-----------------------------------|--------------------------------------------------|-----------|-------------|-------|
| V <sub>DS</sub>                   | Drain to Source Voltage                          |           | -20         | V     |
| V <sub>GS</sub>                   | Gate to Source Voltage                           |           | ±12         | V     |
| 1012                              | Drain Current -Continuous                        | (Note 1a) | -6.5        |       |
| <sup>I</sup> D                    | -Pulsed                                          |           | -20         | A     |
| $P_{D}$                           | Power Dissipation (Steady State)                 | (Note 1a) | 2.1         | W     |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range |           | -55 to +150 | °C    |

#### **Thermal Characteristics**

| $R_{\theta JC}$ | Thermal Resistance, Junction to Case    | (Note 1)  | 0.6 |       |
|-----------------|-----------------------------------------|-----------|-----|-------|
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 60  | °C/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1b) | 108 | *C/VV |
| $R_{\theta JB}$ | Thermal Resistance, Junction to Ball    | (Note 1)  | 6.3 |       |

#### Package Marking and Ordering Information

| Device Marking | Device   | Package     | Reel Size | Tape Width | Quantity   |
|----------------|----------|-------------|-----------|------------|------------|
| 2554P          | FDZ2554P | BGA 2.5X4.0 | 7"        | 12 mm      | 3000 units |

## **Electrical Characteristics** T<sub>J</sub>= 25°C unless otherwise noted

| Symbol                                 | Parameter                                    | Test Conditions                              | Min | Тур | Max  | Units |
|----------------------------------------|----------------------------------------------|----------------------------------------------|-----|-----|------|-------|
| Off Chara                              | cteristics                                   |                                              |     |     |      |       |
| $BV_{DSS}$                             | Drain to Source Breakdown Voltage            | $I_D = -250 \mu A, V_{GS} = 0 V$             | -20 |     |      | V     |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature<br>Coefficient | $I_D = -250\mu\text{A}$ , referenced to 25°C |     | -13 |      | mV/°C |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current              | $V_{DS} = -16V, V_{GS} = 0V$                 |     |     | -1   | μΑ    |
| I <sub>GSS</sub>                       | Gate to Source Leakage Current               | $V_{GS} = \pm 12V, V_{DS} = 0V$              |     |     | ±100 | nA    |

#### **On Characteristics**

| $V_{GS(th)}$                           | Gate to Source Threshold Voltage                         | $V_{GS} = V_{DS}, I_{D} = -250 \mu A$                  | -0.6 | -0.8 | -1.5 | V     |
|----------------------------------------|----------------------------------------------------------|--------------------------------------------------------|------|------|------|-------|
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage Temperature Coefficient | I <sub>D</sub> = -250μA, referenced to 25°C            |      | 3    |      | mV/°C |
|                                        |                                                          | $V_{GS} = -4.5V, I_D = -6.5A$                          |      | 21   | 28   |       |
| r Static Dr                            | Static Drain to Source On Resistance                     | $V_{GS} = -2.5V$ , $I_D = -5A$                         |      | 36   | 45   | mΩ    |
| r <sub>DS(on)</sub>                    | on) Static Drain to Source On Resistance                 | $V_{GS} = -4.5V, I_D = -6.5A,$<br>$T_J = 125^{\circ}C$ |      | 30   | 43   | 11122 |
| 9 <sub>FS</sub>                        | Forward Transconductance                                 | $V_{DD} = -5V, I_{D} = -6.5A$                          |      | 24   |      | S     |

#### **Dynamic Characteristics**

| C <sub>iss</sub> | Input Capacitance            | V 40V V 0V                                | 1430 | 1900 | pF |
|------------------|------------------------------|-------------------------------------------|------|------|----|
| Coss             | Output Capacitance           | $V_{DS} = -10V, V_{GS} = 0V,$<br>f = 1MHz | 319  | 425  | pF |
| C <sub>rss</sub> | Reverse Transfer Capacitance | 1 - 11/11/2                               | 164  | 245  | pF |
| $R_g$            | Gate Resistance              | V <sub>GS</sub> = 15mV, f = 1MHz          | 9.2  |      | Ω  |

#### **Switching Characteristics**

| t <sub>d(on)</sub>  | Turn-On Delay Time            |                                                                      | 12 | 22  | ns |
|---------------------|-------------------------------|----------------------------------------------------------------------|----|-----|----|
| t <sub>r</sub>      | Rise Time                     | $V_{DD} = -10V, I_{D} = -1A,$<br>$V_{GS} = -4.5V, R_{GEN} = 6\Omega$ | 9  | 18  | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time           | $V_{GS} = -4.5V, R_{GEN} = 6.22$                                     | 62 | 100 | ns |
| t <sub>f</sub>      | Fall Time                     |                                                                      | 37 | 60  | ns |
| $Q_g$               | Total Gate Charge             | V <sub>GS</sub> = -4.5V , V <sub>DD</sub> =-10V                      | 14 | 20  | nC |
| $Q_{gs}$            | Gate to Source Charge         | I <sub>D</sub> = -6.5A                                               | 3  |     | nC |
| $Q_{gd}$            | Gate to Drain "Miller" Charge |                                                                      | 4  |     | nC |

#### **Drain-Source Diode Characteristics**

| I <sub>S</sub>  | Maximum Continuous Drain-Source Diode Forward Current |                                          |  |      | -1.75 | Α  |
|-----------------|-------------------------------------------------------|------------------------------------------|--|------|-------|----|
| $V_{SD}$        | Source to Drain Diode Forward Voltage                 | $V_{GS} = 0V, I_S = -1.75A$ (Note 2)     |  | -0.7 | -1.2  | V  |
| t <sub>rr</sub> | Reverse Recovery Time                                 | L _ 6 EA di/dt _ 1004/                   |  | 25   | 40    | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge                               | $I_F = -6.5A$ , di/dt = 100A/ $\mu$ s 20 |  | 32   | nC    |    |

NOTES

<sup>1.</sup>  $R_{\theta JA}$  is determined with the device mounted on a 1 in<sup>2</sup> oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. The thermal resistance from the junction to the circuit board side of the solder ball,  $R_{\theta JB}$ , is defined for reference. For  $R_{\theta JC}$ , the thermal reference point for the case is defined as the top surface of the copper chip carrier.  $R_{\theta JC}$  and  $R_{\theta JB}$  are guaranteed by design while  $R_{\theta JA}$  is determined by the user's board design.



a. 60°C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper.



b. 108 °C/W when mounted on a minimum pad of 2 oz copper.

<sup>2.</sup> Pulse Test: Pulse Width <  $300\mu s$ , Duty cycle < 2.0%.

### Typical Characteristics T<sub>J</sub> = 25°C unless otherwise noted

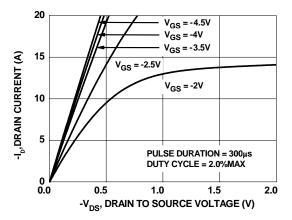



Figure 1. On-Region Characteristics

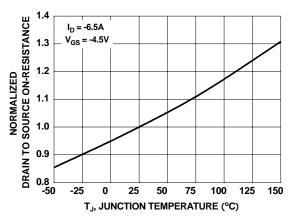



Figure 3. Normalized On-Resistance vs Junction Temperature

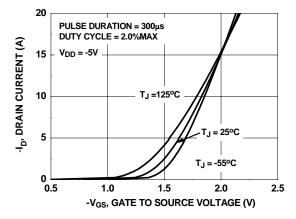



Figure 5. Transfer Characteristics

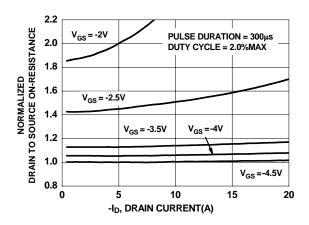



Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

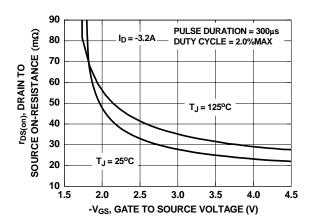



Figure 4. On-Resistance vs Gate to Source Voltage

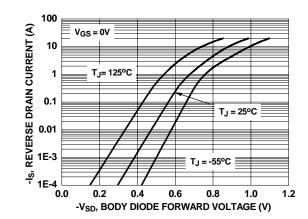



Figure 6. Source to Drain Diode Forward Voltage vs Source Current

## Typical Characteristics $T_J = 25$ °C unless otherwise noted

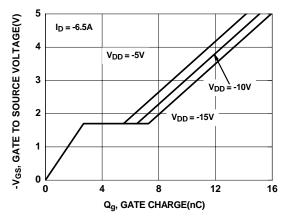



Figure 7. Gate Charge Characteristics

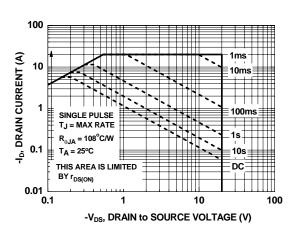



Figure 9. Forward Bias Safe Operating Area

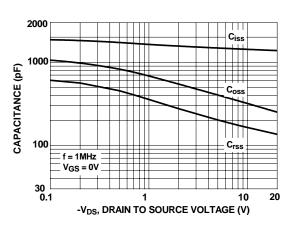



Figure 8. Capacitance vs Drain to Source Voltage

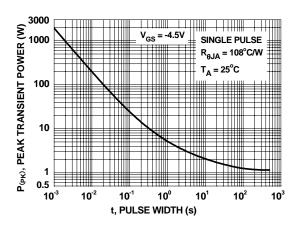



Figure 10. Single Pulse Maximum Power Dissipation

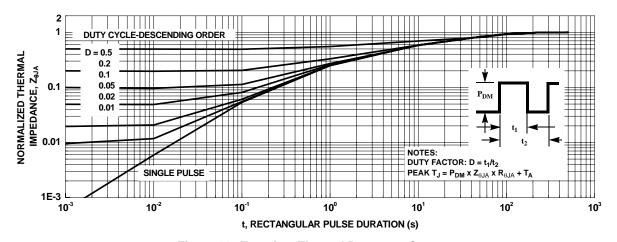
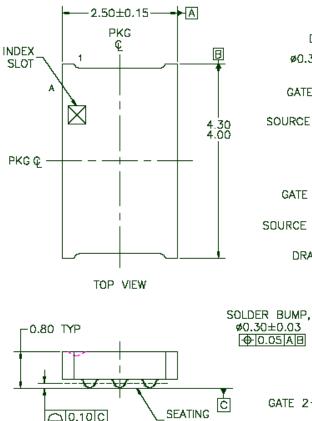
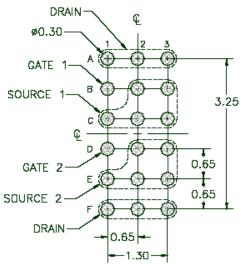




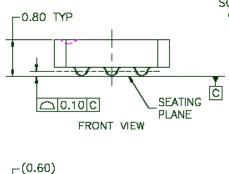

Figure 11. Transient Thermal Response Curve

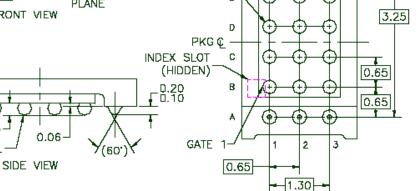
## **Dimensional Outline and Pad Layout**





LAND PATTERN


RECOMMENDATION


PKG

BOTTOM VIEW

Cu STUD,

Ø0.32±0.03 ⊕ 0.05 C A B





NOTES: UNLESS OTHERWISE SPECIFIED

 $0.25 \pm 0.03$ 

SOLDER BALL

- A) B) ALL DIMENSIONS ARE IN MILLIMETERS.
- NO JEDEC REGISTRATION REFERENCE AS OF JULY 1999.
- BALL CONFIGURATION TABLE

| TERMINAL          | DESIGNATION |
|-------------------|-------------|
| A1,A2,A3,F1,F2,F3 | DRAIN       |
| 81                | GATE 1      |
| B2.B3.C1.C2.C3    | SOURCE 1    |
| 01                | GATE 2      |
| D2,D3,E1,E2,E3    | SOURCE 2    |





#### **TRADEMARKS**

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx <sup>®</sup>                   | Green FPS™ e-Series™    | POEWEREDGE <sup>®</sup>    | SuperSOT™-8                      |
|-------------------------------------|-------------------------|----------------------------|----------------------------------|
| Build it Now™                       | GOT™                    | Power-SPM™                 | SyncFET™                         |
| CorePLUS™                           | i-Lo™                   | PowerTrench <sup>®</sup>   | The Power Franchise <sup>®</sup> |
| $CROSSVOLT^{TM}$                    | IntelliMAX™             | Programmable Active Droop™ | U ™                              |
| CTL™                                | ISOPLANAR™              | QFĔT <sup>®</sup>          | TinyBoost™                       |
| Current Transfer Logic™             | MegaBuck™               | QS™                        | TinyBuck™                        |
| EcoSPARK <sup>®</sup>               | MICROCOUPLER™           | QT Optoelectronics™        | TinyLogic <sup>®</sup>           |
| FACT Quiet Series™                  | MicroFEET™              | Quiet Series™              | TINYOPTO™                        |
| FACT <sup>®</sup>                   | MicroPak™               | RapidConfigure™            | TinyPower™                       |
| FAST <sup>®</sup>                   | Motion-SPM™             | SMART START™               | TinyPWM™                         |
| FastvCore™                          | OPTOLOGIC <sup>®</sup>  | SPM <sup>®</sup>           | TinyWire™                        |
| FPS™                                | OPTOPLANAR <sup>®</sup> | STEALTH™                   | µSerDes™                         |
| FRFET <sup>®</sup>                  | PDP-SPM™                | SuperFET™                  | UHC <sup>®</sup>                 |
| Global Power Resourse <sup>SM</sup> | Power220®               | SuperSOT™-3                | UniFET™                          |
| Green FPS™                          | Power247 <sup>®</sup>   | SuperSOT™-6                | $VCX^{TM}$                       |

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a circuit in a circuit princy of the user. result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS

#### **Definition of Terms**

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                               |
|--------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production       | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.                                                   |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.                                      |

Rev. 129