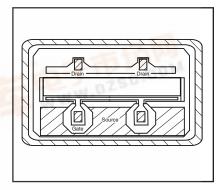
查询FLC157XP供应商

GaAs FET & HEMT Chips


FEATURES

- High Output Power: P_{1dB} = 31.5dBm (Typ.)
- High Gain: $G_{1dB} = 6.0dB(Typ.)$
- High PAE: η_{add} = 29.5%(Typ.)
- Proven Reliability

DESCRIPTION

The FLC157XP chip is a power GaAs FET that is designed for general purpose applications in the C-Band frequency range as it provides superior power, gain, and efficiency.

Fujitsu's stringent Quality Assurance Program assures the highest reliability and consistent performance.

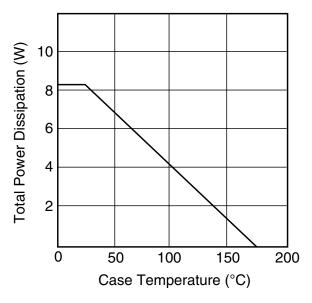
ABSOLUTE MAXIMUM RATING (Ambient Temperature Ta=25°C)

Symbol	Condition	Rating	Unit	
VDS		15	V	
VGS		-5	V	
Ptot	$T_{C} = 25^{\circ}C$	8.3	W	
T _{stg}		-65 to +175	°C	
T _{ch}		175	°C	
	VDS VGS Ptot T _{stg}	VDSVGSPtot $T_c = 25^{\circ}C$ T_{stg}	VDS 15 VGS -5 Ptot $T_c = 25^{\circ}C$ 8.3 Tstg -65 to +175	

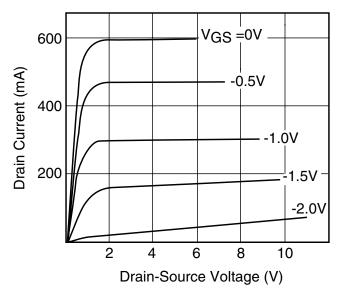
捷多邦,

ELECTRICAL CHARACTERISTICS (Ambient Temperature Ta=25°C)

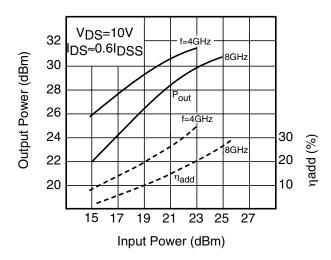
Itom	Cumhal	Test Conditions	Limit			Unit	
Item	Symbol	lest Conditions	Min.	Тур.	Max.	Unit	
Saturated Drain Current	IDSS	$V_{DS} = 5V, V_{GS} = 0V$	-	600	900	mA	
Transconductance	9m	$V_{DS} = 5V$, $I_{DS} = 400$ mA	150	300	-	mS	
Pinch-off Voltage	Vp	$V_{DS} = 5V, I_{DS} = 30mA$	-1.0	-2.0	-3.5	V	
Gate Source Breakdown Voltage	VGSO	IGS = -30μΑ	-5	33		C C V	
Output Power at 1dB Gain Compression Point	P1dB	- M18	30.5	31.5	-	dBm	
Power Gain at 1dB Gain Compression Point	G _{1dB}	$V_{DS} = 10V$ $I_{DS} \approx 0.6I_{DSS}$ f = 8GHz	5.0	6.0	-	dB	
Power-added Efficiency	nadd		-	29.5	-	%	
Thermal Resistance	R _{th}	Channel to Case	-	15	18	°C/W	


Note: RF parameter sample size 10pcs. criteria (accept/reject)=(2/3)

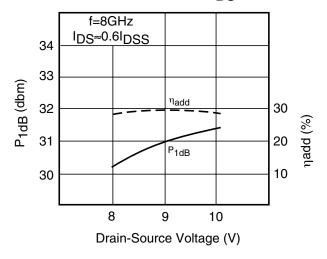
The chip must be enclosed in a hermetically sealed environment for optimum performance and reliability.


 FLC157XP

 GaAs FET & HEMT Chips



POWER DERATING CURVE


DRAIN CURRENT vs. DRAIN-SOURCE VOLTAGE

OUTPUT POWER vs. INPUT POWER

P1dB & nadd vs. VDS

FLC157XP

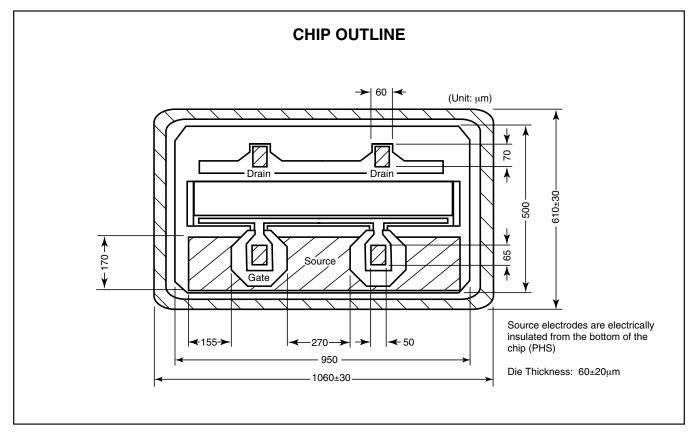
GaAs FET & HEMT Chips

S-PARAMETERS V _{DS} = 10V, I _{DS} = 400mA									
FREQUENCY	S11		20	S21		S12		S22	
(MHZ)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
100	.993	-25.9	15.864	165.0	.013	76.4	.185	-39.7	
500	.918	-98.4	10.322	123.1	.041	40.2	.293	-115.6	
1000	.881	-134.6	6.162	100.0	.049	24.2	.337	-139.9	
2000	.868	-159.5	3.250	77.3	.051	15.8	.375	-150.6	
3000	.868	-169.8	2.178	61.7	.051	14.8	.413	-152.6	
4000	.871	-176.3	1.625	48.3	.050	16.3	.456	-153.5	
5000	.875	178.9	1.284	36.0	.050	19.3	.503	-154.9	
6000	.881	174.8	1.051	24.6	.050	23.3	.550	-156.8	
7000	.886	171.2	.878	13.8	.052	27.9	.597	-159.3	
8000	.892	167.8	.743	3.7	.054	32.5	.641	-162.2	
9000	.897	164.6	.633	-5.8	.057	36.7	.682	-165.4	
10000	.903	161.5	.541	-14.6	.061	40.2	.720	-168.7	
11000	.907	158.4	.462	-22.9	.067	42.8	.753	-172.1	
12000	.912	155.5	.393	-30.5	.072	44.6	.783	-175.6	

NOTE:* The data includes bonding wires.

n: number of wires

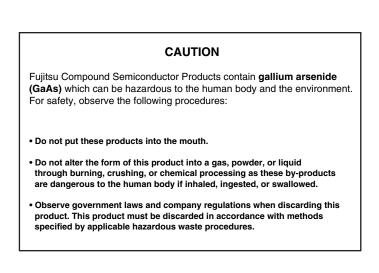
 Gate
 n=2 (0.3mm length, 25µm Dia Au wire)


 Drain
 n=2 (0.3mm length, 25µm Dia Au wire)

 Source
 n=4 (0.3mm length, 25µm Dia Au wire)

FLC157XP

GaAs FET & HEMT Chips


For further information please contact:

FUJITSU COMPOUND SEMICONDUCTOR, INC.

2355 Zanker Rd. San Jose, CA 95131-1138, U.S.A. Phone: (408) 232-9500 FAX: (408) 428-9111 www.fcsi.fujitsu.com

FUJITSU MICROELECTRONICS, LTD.

Compound Semiconductor Division Network House Norreys Drive Maidenhead, Berkshire SL6 4FJ Phone:+44 (0)1628 504800 FAX:+44 (0)1628 504888

Fujitsu Limited reserves the right to change products and specifications without notice. The information does not convey any license under rights of Fujitsu Limited or others.

© 1998 FUJITSU COMPOUND SEMICONDUCTOR, INC. Printed in U.S.A. FCSI0598M200

