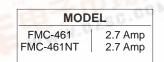
查询FMC-461NTF/883供应商

捷多邦,专业PCB打样工厂,24小时加急出货


FEATURES

- –55°C to +125°C operation
- Up to 50 dB attenuation
- 400 kHz to 50 MHz
- Transient suppression
- Compliant to MIL-STD-461C, CE03
- Compatible with MIL-STD-704E DC power bus

EMI INPUT FILTER 28 VOLT INPUT

FMC EMI FILTER 2.7 AMP

Size (max): Non-flanged, case H1 2.125 x 1.125 x 0.400 (53.98 x 28.58 x 10.16 mm) Flanged, case K2 2.910 x 1.125 x 0.400 inches (73.91 x 28.58 x 10.16 mm) See Section B8, cases H1 and K2, for dimensions. Weight: 48 grams maximum Screening: Standard, ES, or 883 (Class H). See Section C2 for screening options, see Section A5 for ordering information.

DESCRIPTION

CRANE

The FMC-461[™] EMI filter has been specifically designed to reduce the input line reflected ripple current of Interpoint's MHF, MTR, MTO, MHV, MHF+, MHD, MTW, MHE, and MLP series of DC/DC converters. It is intended for use in applications which have high frequency switch-mode DC/DC converters and which must meet MIL-STD-461C levels of conducted and radiated noise.

The FMC filter is built using thick-film hybrid technology and is hermetically sealed in metal packages for military, aerospace, and other high-reliability applications. The filter uses only ceramic capacitors for reliable high temperature operation.

MIL-STD NOISE MANAGEMENT

When used in conjunction with Interpoint converters, the FMC-461 filter reduces input ripple current by 40 dB within the frequency band of 200 kHz to 50 MHz. This gives the filter/converter combination a performance which exceeds the CEO3 test of MIL-STD-461C. Typical FMC-461 filter frequency response and output impedance behavior are shown in Figures 4 and 5. CEO3 performance of a typical converter with the FMC-461 filter connected is shown in Figure 3.

interpoint

TRANSIENT SUPPRESSION

The FMC-461 filter also features a fast-reacting (1 pico second) transient suppressor which begins clamping the input voltage at approximately 47 VDC, protecting the DC/DC converter from damage from induced line transients.

OPERATING TEMPERATURE

The filter is rated to operate with no degradation of performance over the temperature range of -55°C to +125°C (as measured at the baseplate). Above +125°C, current must be derated as specified on the following page.

INSERTION LOSS

The maximum DC insertion loss for the FMC-461 filter (at a load of 22 watts) represents a power loss of less than 2% at typical input voltage.

LAYOUT REQUIREMENT

The case pin, and ideally the case, should be tied to the case of the converter through a low-inductance connection.

FMC EMI FILTER 2.7 AMP

ABSOLUTE MAXIMUM RATINGS

Input Voltage • 0 to 40 VDC continuous Lead Soldering Temperature (10 sec per lead) • 300°C

Storage Temperature Range (Case)

• -65°C to +150°C

EMI INPUT FILTERS

RECOMMENDED OPERATING CONDITIONS Input Voltage Range

• 16 to 40 VDC continuous for 40 W load Case Operating Temperature (Tc)

–55°C to +125°C full power

DeratingDC input and output current Derate linearly from 100% at 125°C to 0% at 135°C case

TYPICAL CHARACTERISTICS

Capacitance

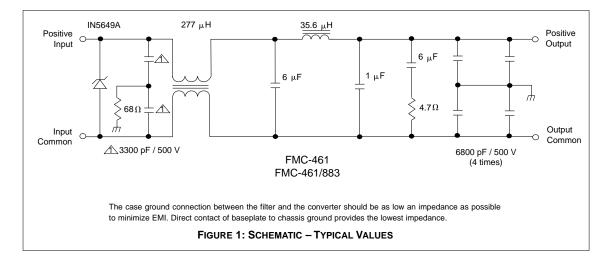
 0.038 µF max, any pin to case Isolation

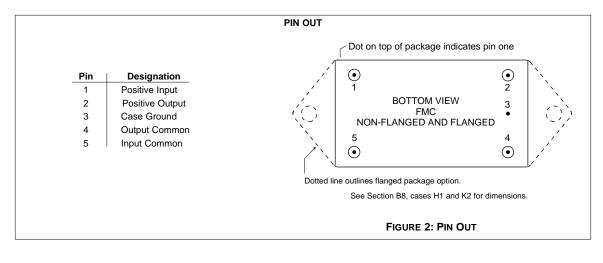
100 megohm minimum at 500 V
Any pin to case, except case pin

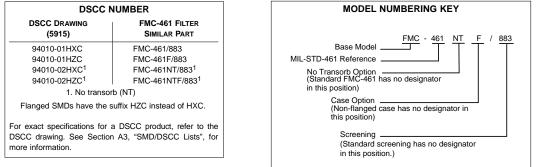
Electrical Characteristics: 25°C Tc, nominal Vin, unless otherwise specified.

				,		•		
		FMC-461			FMC-461NT ¹			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT VOLTAGE	CONTINUOUS	0	28	40	0	28	40	VDC
INPUT CLAMPING	–55°C	40.8	45.1	49.4	_	_	_	
VOLTAGE	25°C	44.7	47.0	49.4	—	_	_	VDC
	125°C	44.7	49.5	54.2	_	_	_	
INPUT CURRENT		_	_	2.7	_	-	2.7	A
DIFFERENTIAL MODE	200 kHz	40	—	—	40	_	_	- dB
NOISE REJECTION	400 kHz - 50 MHz	50	—	—	50	_	_	
COMMON MODE								
NOISE REJECTION	2 MHz - 50 MHz	40	_	_	40	_	-	dB
DC RESISTANCE (R _{DC})	TC = 25°C	-	-	0.20	-	-	0.20	Ω
OUTPUT VOLTAGE ²	STEADY STATE	$V_{OUT} = V_{IN} - I_{IN} (R_{DC})$			$V_{OUT} = V_{IN} - I_{IN} (R_{DC})$			VDC
OUTPUT CURRENT	RIPPLE	_	_	1.0	_	_	1.0	A rms
	STEADY STATE	_	_	2.7	_	_	2.7	A
INTERNAL POWER								
DISSIPATION	MAXIMUM CURRENT	_	_	1.6	-	_	1.6	w

Notes

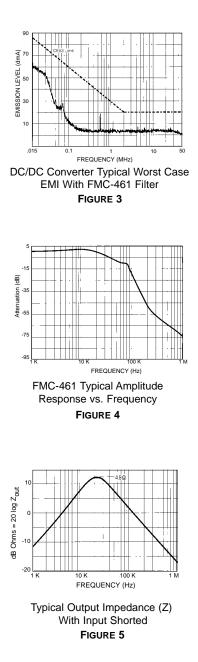

1. The FMC-461NT does not have a transorb and does not clamp the input voltage


2. Typical applications result in Vout within 2% of Vin.



EMI INPUT FILTERS

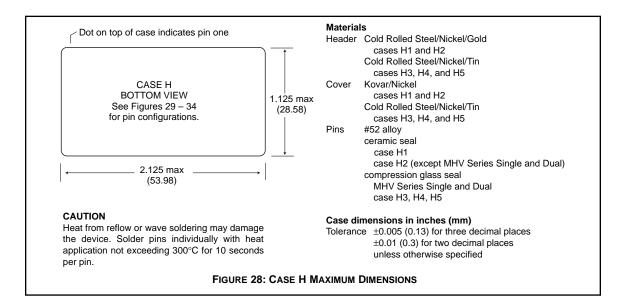
FMC EMI FILTER 2.7 AMP

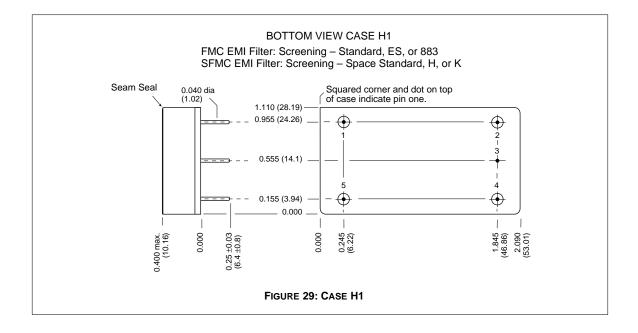


FMC EMI FILTER 2.7 AMP

EMI INPUT FILTERS

Typical Performance Curves: 25°C Tc , nominal Vin, unless otherwise specified.

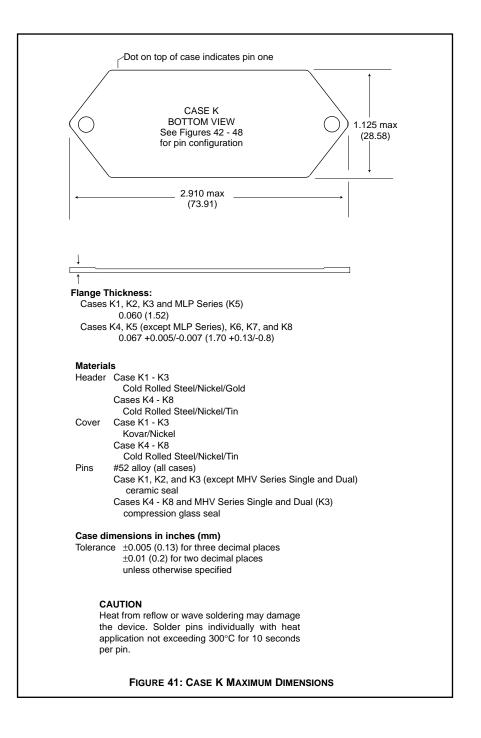

25621-001-DTS Rev A DQ# 4003 All technical information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. FMC-461 is a trademark of Interpoint. Copyright © 1991 - 1999 Interpoint. All rights reserved.



B3-16

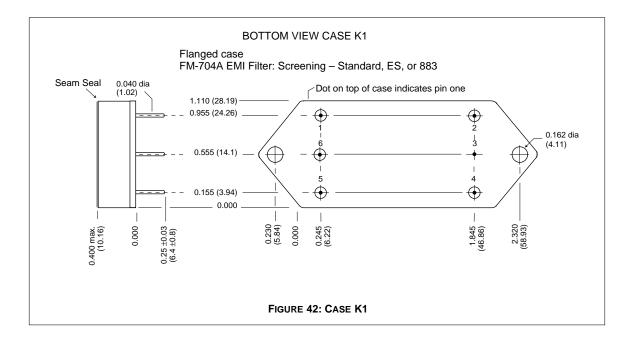
CASES

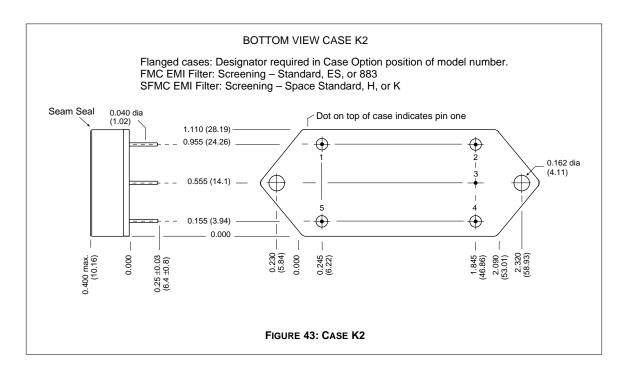
CASE H



Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

CASES





CASES

CASE K

B8-27

QA SCREENING 125°C PRODUCTS

125°C PRODUCTS

TEST (125°C Products)	STANDARD	/ES	/883 (Class H)*
PRE-CAP INSPECTION			
Method 2017, 2032	yes	yes	yes
TEMPERATURE CYCLE (10 times)			
Method 1010, Cond. C, -65°C to 150°C	no	no	yes
Method 1010, Cond. B, -55°C to 125°C	no	yes	no
CONSTANT ACCELERATION			
Method 2001, 3000 g	no	no	yes
Method 2001, 500 g	no	yes	no
BURN-IN			
Method 1015, 160 hours at 125°C	no	no	yes
96 hours at 125°C case (typical)	no	yes	no
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
HERMETICITY TESTING			
Fine Leak, Method 1014, Cond. A	no	yes	yes
Gross Leak, Method 1014, Cond. C	no	ves	ves
Gross Leak, Dip (1×10^{-3})		no	no
01033 Leak, Dip (1 x 10 -)	yes	110	
FINAL VISUAL INSPECTION			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

*883 products are built with element evaluated components and are 100% tested and guaranteed over the full military temperature range of –55°C to +125°C.

Applies to the following products

N
N
N
N
N
N

 MHD Series
 M

 MHV Series
 M

 MHF Series**
 F

 MGA Series
 F

 MSA Series
 F

MGH Series MCH Series FM-704A EMI Filter FMD**/FME EMI Filter FMC EMI Filter FMH EMI Filter FMGA EMI Filter FMSA EMI Filter HUM Modules** LCM Modules** LIM Modules

**MFLHP Series, MQO Series, MHF Series, FMD EMI Filters, Hum Modules, and LCM Modules do not offer '883" screening.

C2-10