

March 2004 Revised April 2005

FSA1256 • FSA1256A • FSA1257 • FSA1257A FSA1258 • FSA1258A

Low Ron Low Voltage Dual SPST Analog Switch with Low I_{CCT} "A" Option

General Description

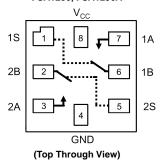
The FSA1256, FSA1256A, FSA1257, FSA1257A, FSA1258, and FSA1258A are high performance dual Single Pole/Single Throw (SPST) analog switches. All devices feature ultra low R_{ON} of 1.1 Ω maximum at 4.5V V_{CC}. The FSA1256, FSA1257, and FSA1258 operate over a wide V_{CC} range of 1.65V to 5.5V. The FSA1256A, FSA1257A, and FSA1258A operation range is 2.7V to 5.5V. These devices are fabricated with sub-micron CMOS technology to achieve fast switching speeds and are designed for break-before-make operation. The select input is TTL level compatible. The FSA1256 and FSA1256A feature two Normally Open (NO) switches. The FSA1257 and FSA1257A feature two Normally Closed (NC) switches. The FSA1258 and FSA1258A have one NO switch and one NC switch.

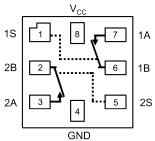
Features

- FSA1256A, FSA1257A, FSA1258A feature low I_{CCT} when S Input is lower than V_{CC}
- Maximum 1.1Ω On Resistance (R_{ON}) for 4.5V supply
- 0.4Ω max R_{ON} flatness for 4.5V supply
- Space saving Pb-Free MicroPak™ packaging
- Broad V_{CC} operating range:
 - FSA1256, FSA1257, FSA1258: 1.65V to 5.5V
- FSA1256A, FSA1257A, FSA1258A: 2.7V to 5.5V
- Fast turn-on and turn-off time
- FSA1258, FSA1258A feature break-before-make enable
- Over-voltage tolerant TTL compatible control input

Ordering Code:

		Product	1 67	The said Mr.
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
FSA1256L8X	MAC08A	EB	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
FSA1256AL8X	MAC08A	FN	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
FSA1257L8X	MAC08A	EC	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
FSA1257AL8X	MAC08A	FP	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
FSA1258L8X	MAC08A	ED	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
FSA1258AL8X	MAC08A	FS	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel


Pb-Free package per JEDEC J-STD-020B.



Analog Symbols

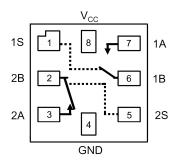
FSA1256, FSA1256A

FSA1257, FSA1257A

(Top Through View)

Truth Tables

FSA1256, FSA1256A


Control Input(s)	Function
L	Disconnect
Н	A Connected to B
H = HIGH Logic Level	

FSA1257, FSA1257A

Control Input(s)	Function
L	A Connected to B
Н	Disconnect
L = LOW Logic Level	

Analog Symbol

FSA1258, FSA1258A

(Top Through View)

Truth Table

FSA1258, FSA1258A

Control Input 1S	Function	Control Input 2S	Function		
L	1A Connected to 1B	L	Disconnect		
Н	Disconnect	Н	2A Connected to 2B		

H = HIGH Logic Level L = LOW Logic Level

Pin Descriptions

Pin Names	Function
A, B	Data Ports
S	Control Input

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +6.0V

Switch Voltage (V_S) (Note 2) -0.5V to $V_{CC} + 0.5V$

Switch Current
Peak Switch Current (Pulsed at

1 ms duration, <10% Duty Cycle) 400 mA

Power Dissipation @ 85°C

MicroPak 8L package 180 mW

Storage Temperature Range (T_{STG}) -65° C to +150 $^{\circ}$ C Maximum Junction Temperature (T_{I}) +150 $^{\circ}$ C

Lead Temperature (T_L)

Soldering, 10 seconds +260°C

ESD

Human Body Model

FSA1256, FSA1257, FSA1258

FSA1256A, FSA1257A, FSA1258A

Recommended Operating Conditions

Supply Voltage (V_{CC})

FSA1256, FSA1257, FSA1258 1.65V to 5.5V FSA1256A, FSA1257A, FSA1258A 2.7V to 5.5V

 $\begin{array}{ll} \text{Control Input Voltage (V}_{\text{IN}}) \text{ (Note 3)} & \text{0V to V}_{\text{CC}} \\ \text{Switch Input Voltage (V}_{\text{IN}}) & \text{0V to V}_{\text{CC}} \\ \end{array}$

Operating Temperature (T_A) -40°C to +85°C

Thermal Resistance (θ_{JA}) in still air

MicroPak 8L package 224°C/W

(modeled)

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics (All typical values are @ 25°C unless otherwise specified)

5.5kV

4.5kV

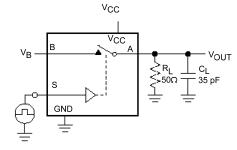
200 mA

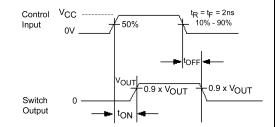
Symbol	Parameter	v _{cc}	T	A = +25	С	T _A = -40°C to +85°C		Units	Conditions	
Symbol	Faranietei	(V)	Min	Тур	Max	Min	Max	Ullits	Conditions	
V _{IH}	Input Voltage High	2.7 to 3.6				2.0		V		
		4.5 to 5.5				2.4		v		
V _{IL}	Input Voltage Low	2.7 to 3.6					0.4		FSA1256A, FSA1257A, FSA1258A Only	
		2.7 to 3.6					0.6	V		
		4.5 to 5.5					0.8			
I _{IN}	Control Input Leakage	2.7 to 3.6				-1.0	1.0	цΑ	V _{IN} = 0V to V _{CC}	
		4.5 to 5.5				-1.0	1.0	μΛ	AIN - AA 10 ACC	
I _{NO(OFF)} ,	OFF-Leakage Current	5.5	-2.0		2.0	-20.0	20.0	nA	A = 1V, 4.5V	
I _{NC(OFF)}		3.3	-2.0		2.0	-20.0	20.0	ш	1B or 2B = 1V, 4.5V	
R _{ON}	Switch On Resistance	2.7		2.6	4.0		4.3	Ω	I _{OUT} = 100 mA, 1B or 2B = 1.5V	
	(Note 4)	4.5		0.95	1.15		1.3	52	I _{OUT} = 100 mA, 1B or 2B = 3.5V	
ΔR_{ON}	On Resistance Matching									
	Between Channels	4.5		0.06	0.12		0.15	Ω	$I_{OUT} = 100 \text{ mA}, 1B \text{ or } 2B = 3.5V$	
	(Note 5)									
R _{FLAT(ON)}	On Resistance Flatness	2.7		1.4				Ω	$I_{OUT} = 100 \text{ mA}, 1B \text{ or } 2B = 0V, 0.75V, 1.5V$	
	(Note 6)	4.5		0.2	0.3		0.4	3.5	I _{OUT} = 100 mA, 1B or 2B = 0V, 1V, 2V	
I _{CC}	Quiescent Supply Current	3.6		0.1	0.5		1.0	цΑ	V _{IN} = 0V or V _{CC} , I _{OUT} = 0V	
		5.5		0.1	0.5		1.0	μΛ		
I _{CCT}	Increase in I _{CC} per Input	4.3		0.2			10.0	μА	One Input at 2.6V, Others at V _{CC} or GND	
									(FSA1256A, FSA1257A, FSA1258A Only)	

Note 4: On Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.

Note 5: $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC} , temperature, and voltage.

Note 6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

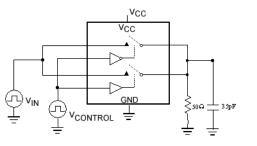

AC Electrical Characteristics (All typical value are @ 25°C unless otherwise specified)


Symbol Parameter		V _{CC}	TA	+25	C	T _A = -40°	C to +85°C	Units	Conditions	Figure
Cymbol	i didilictor	(V)	Min	Тур	Max	Min	Max	Omico	Conditions	Number
t _{ON}	Turn ON Time	2.7 to 3.6		15.0	50.0		60.0	ns	1B or 2B = 1.5V, $R_L = 50\Omega$, $C_L = 35 \text{ pF}$	Figure 1
		4.5 to 5.5		10.0	35.0		40.0	115	1B or 2B = 3.0V, $R_L = 50\Omega$, $C_L = 35 \text{ pF}$	i iguie i
t _{OFF}	Turn OFF Time	2.7 to 3.6		8.0	20.0		30.0	ns	1B or 2B = 1.5V, $R_L = 50\Omega$, $C_L = 35 \text{ pF}$	Figure 1
		4.5 to 5.5		4.0	15.0		20.0	115	1B or 2B = 3.0V, $R_L = 50\Omega$, $C_L = 35 \text{ pF}$	i iguie i
t _{B-M}	Break-Before-Make	2.7 to 3.6		12.0				ns	1B or 2B = 1.5V, $R_L = 50\Omega$, $C_L = 35 \text{ pF}$	Figure 2
	Time	4.5 to 5.5		7.0				113	1B or 2B = 3.0V, $R_L = 50\Omega$, $C_L = 35 pF$	i iguic z
Q	Charge Injection	2.7 to 3.6		10.0				рС	C _L = 1.0 nF, V _{GEN} = 0V,	Figure 4
		4.5 to 5.5		20.0				рС	$R_{GEN} = 0\Omega$	
OIRR	OFF-Isolation	2.7 to 3.6		-70.0				dB	$f = 1MHz$, $R_1 = 50\Omega$	Figure 3
		4.5 to 5.5		-70.0				uБ	-	rigule 3
Xtalk	Crosstalk	2.7 to 3.6		-100				dB	$f = 1MHz$, $R_1 = 50\Omega$	Figure 6
		4.5 to 5.5		-100				ub	-	i iguie o
BW	-3db Bandwidth	2.7 to 3.6		300				MHz	$R_1 = 50\Omega$	Figure 7
		4.5 to 5.5		300				IVII IZ	11(3012	rigule /
THD	Total Harmonic	2.7 to 3.6		0.002				%	$R_L = 600\Omega$, $V_{IN} = 0.5V$ P.P,	Figure 8
	Distortion	4.5 to 5.5		0.002				/0	f = 20Hz to 20kHz	rigure 8

Capacitance

Symbol	Parameter	v _{cc}	V_{CC} $T_A = +25^{\circ}C$		$T_A = 40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Cymbol	i alamoto.	(V)	Min	Тур	Max	Min	Max	• • • • • • • • • • • • • • • • • • • •		
C _{IN}	Control Pin Input Capacitance	0.0		3.0				pF	f = 1MHz (see Figure 6)	
C _{OFF}	B Port OFF Capacitance			11.5				pF	f = 1MHz (see Figure 6)	
C _{ON}	A Port ON Capacitance	4.5		27.0				pF	f = 1MHz (see Figure 6)	

AC Loading and Waveforms



C_L includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

FIGURE 1. Turn-On/Turn-Off Timing

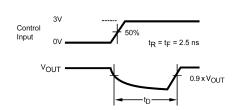


FIGURE 2. Break-Before-Make Timing

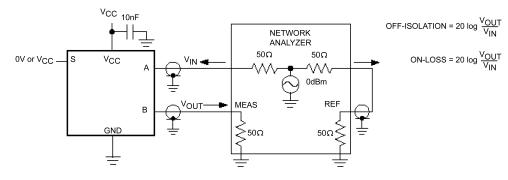


FIGURE 3. OFF Isolation

AC Loading and Waveforms (Continued)

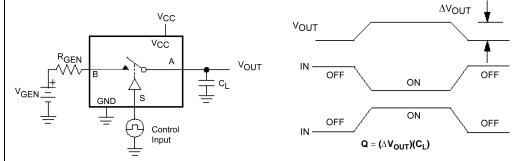


FIGURE 4. Charge Injection

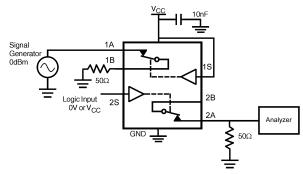


FIGURE 5. Crosstalk

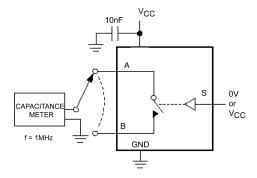


FIGURE 6. ON/OFF Capacitance Measurement Setup

AC Loading and Waveforms (Continued)

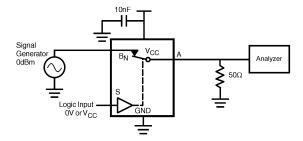


FIGURE 7. Bandwidth

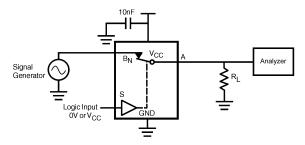
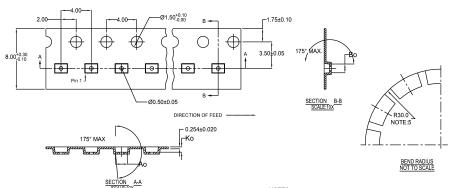
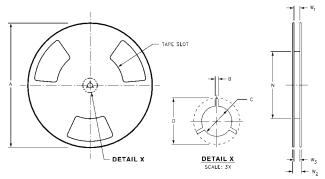



FIGURE 8. Harmonic Distortion

Tape and Reel Specification

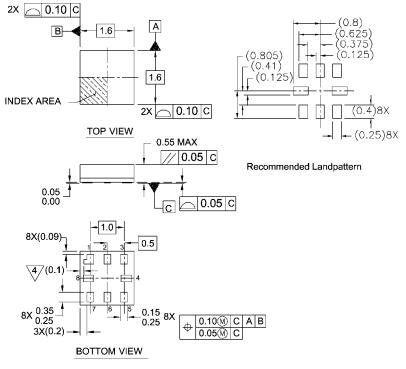
Tape Format For Micropak

rape i ormat i or wiit	o opak				
Package	Tape	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
L8X	Carrier	5000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	


10	300056	2.30±0.05	1.78±0.05	0.68 ± 0.05
8	300038	1.78±0.05	1.78±0.05	0.68 ± 0.05
6	200022	1 60 + 0 06	1 15+0 05	0.70 + 0.05

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. ACCUMULATED 50 SPROCKETS, SPROCKET HOLE PITCH IS 200.00 ±0.30MM
- 2. NO INDICATED CORNER RADIUS IS 0.127MM
- CAMBER NOT TO EXCEED 1MM IN 100MM
 SMALLEST ALLOWABLE BENDING RADIUS
- 5. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE


\$ \times \times

REEL DIMENSIONS inches (millimeters)

Tape Size	А	В	С	D	N	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)
								•

Physical Dimensions inches (millimeters) unless otherwise noted

Notes:

- 1. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y.14M-1994

4/PIN 1 FLAG, END OF PACKAGE OFFSET.

MAC08AREVC

Pb-Free 8-Lead MicroPak, 1.6 mm Wide Package Number MAC08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com