General Description
The Fairchild Switch FSTD3125 provides four high－speed
CMOS TTL－compatible bus switches．The low On Resis－
tance of the switch allows inputs to be connected to out－
puts without adding propagation delay or generating
additional ground bounce noise．A diode to V_{CC} has been
integrated into the circuit to allow for level shifting between
5V inputs and 3.3 V outputs．
The device is organized as four 1－bit switches with sepa－
rate OE inputs．When OE is LOW，the switch is ON and
Port A is connected to Port B．When $\overline{\mathrm{OE}}$ is HIGH，the
switch is OPEN and a high－impedance state exists
between the two ports．

Features

－ 4Ω switch connection between two ports
－Minimal propagation delay through the switch
－Low $I_{\text {CC }}$
－Zero bounce in flow－through mode
■ Control inputs compatible with TTL level
－TruTranslation ${ }^{\mathrm{TM}}$ voltage translation from 5．0V inputs to 3．3V outputs

Ordering Code：

Order Number	Package Number	Package Description
FSTD3125M	M14A	14－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－012，0．150＂Narrow
FSTD3125QSC	MQA16	16－Lead Quarter Size Outline Package（QSOP），JEDEC MO－137，0．150＂Wide
FSTD3125MTC	MTC14	14－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide

Devices also available in Tape and Reel．Specify by appending the suffix letter＂ X ＂to the ordering code．

Connection Diagrams

Pin Assignment for SOIC and TSSOP

Pin Assignment for QSOP

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \overline{\mathrm{OE}}_{3}, \overline{\mathrm{OE}}_{4}$	Bus Switch Enables
$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}$	Bus A
$1 \mathrm{~B}, 2 \mathrm{~B}, 3 \mathrm{~B}, 4 \mathrm{~B}$	Bus B
NC	Not Connected

Truth Table

Inputs	Inputs／Outputs
$\overline{\mathrm{OE}}$	A, B
L	$\mathrm{A}=\mathrm{B}$
H	Z

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions (Note 3)
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V	Power Supply Operating (V_{CC}) 4.5 V to 5.5 V
	-0.5 V to +7.0 V	
DC Input Diode Current ($\mathrm{I}_{\text {\| }}$) $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$	Output Voltage (V $\mathrm{V}_{\text {OUT }}$) 0 V to 5.5 V
DC Output (lout) Sink Current	128 mA	Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{l}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$)	+/- 100 mA	Switch Control Input $0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Storage Temperature Range (${ }_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Switch I/O $0 \mathrm{~ns} / \mathrm{V}$ to DC
		Free Air Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
		Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
		Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 4) \end{gathered}$	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.5-5.5	2.0			V	
V_{OH}	HIGH Level	4.0-5.5	Figure 3			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.5-5.5			0.8	V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
$\overline{\mathrm{I}} \mathrm{OZ}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		35	50	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			1.5	mA	$\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$
					10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$
$\overline{\Delta \mathrm{l}_{\mathrm{CC}}}$	Increase in I_{CC} per Input	5.5			2.5	mA	One Input at 3.4 V . Other Inputs at V_{CC} or GND

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{array}{\|c\|} \hline \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \\ \hline \mathrm{~V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V} \end{array}$		Units	Conditions	Figure Number
		Min	Max			
$\overline{t_{\text {PHL }}, t_{\text {PLH }}}$	Propagation Delay Bus to Bus (Note 6)		0.25	ns	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
$\overline{t_{\text {PZH }}}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.0	6.1	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figures $1,2$
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	Output Disable Time	1.5	6.4	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } t_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\text {PHZ }} \end{aligned}$	Figures $1,2$

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONS AND TOLERANCES PER ANS \mid Y $14.5 \mathrm{M}, 1982$ MTC14RevC3

DETAIL A

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

 Package Number MTC14
Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
