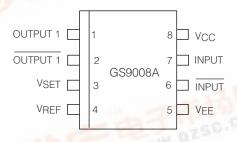


# GENLINX™ GS9008A Cable Driver with Two Adjustable Outputs

DATA SHEET


## **KEY FEATURES**

- two output pairs, adjustable from 0 to 1100mVp-p into 75  $\Omega$  loads
- nominal 600 ps rise and fall times
- accepts SMPTE and standard ECL input levels
- operates from a single +5 or -5 volt supply
- on-chip DC restoration for low jitter
- 170mW power dissipation
- interfaces with GENLINX™ GS9002, GS9004A, GS9005A and GS9015A
- Pb-free and Green

#### **APPLICATIONS**

- SMPTE 259M Serial Digital Systems (4:2:2 & 4fsc)
- Other Serial Digital Video Interfaces 360Mb/s
- General purpose high speed driver applications

#### **PIN CONNECTIONS**

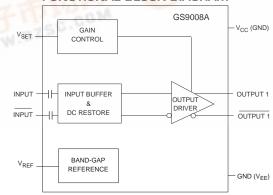


#### DESCRIPTION

The GENLINX<sup>TM</sup> GS9008A is a bipolar integrated circuit designed to drive two 75  $\Omega$  co-axial cables at data rates exceeding 400Mb/s. It directly interfaces with other GENLINX<sup>TM</sup> devices and can also be used as a general purpose high speed cable driver.

While there are no plans to discontinue the GS9008A, Gennum has developed a successor product with improved features and performance called the GS9028. The GS9028 is recommended for new designs.

The differential inputs are AC-coupled and internally DC-restored which allows correct passage of pathological check codes associated with the serial digital standards. Even though the inputs are AC coupled, static protection diodes at each input restrict the DC differential so that if the driving source uses the opposite polarity power supply, external DC blocking capacitors must be used.


Correctly terminated output signal levels are adjustable from as low as 0mV to as high as 1100mV with little change in other performance parameters. Performance is guaranteed for output levels between 600mV and 1000mV. The gain of the output stages is varied by adjusting the  $V_{\text{SET}}$  voltage with respect to an internal band gap reference voltage  $V_{\text{REF}}$ 

The GS9008A is packaged in an 8 pin SOIC, and operates from a single +5 or -5 volt supply consuming typically only 170mW of power.

#### ORDERING INFORMATION

| PART NUMBER  | PACKAGE TYPE | TEMPERATURE RANGE | Pb-FREE AND GREEN |  |
|--------------|--------------|-------------------|-------------------|--|
| GS9008ACKA   | 8 Pin SOIC   | 0° to 70°C        | No                |  |
| GS9008ACKAE3 | 8 Pin SOIC   | 0° to 70°C        | Yes               |  |

#### FUNCTIONAL BLOCK DIAGRAM





## **ABSOLUTE MAXIMUM RATINGS**

| PARAMETER                            | VALUE                                    |
|--------------------------------------|------------------------------------------|
| 0 1 1/4 1/2                          |                                          |
| Supply Voltage (VS)                  | 5.5V                                     |
| Input Voltage Range (any input)      | V <sub>S</sub> -0.5V                     |
| Power Dissipation                    | 300mW                                    |
| Operating Temperature Range          | $0^{\circ}C \leq T_{A} \leq 70^{\circ}C$ |
| Storage Temperature Range            | -65°C ≤ T <sub>S</sub> ≤ 150°C           |
| Lead Temperature (soldering, 10 sec) | 260°C                                    |

## GS9008A CABLE DRIVER — DC ELECTRICAL CHARACTERISTICS

Conditions:  $V_S$  = 5V,  $T_A$  = 0°C to 70°C,  $R_L$ = 150  $\Omega$  to GND and 144  $\Omega$  AC coupled unless otherwise shown

| PARAMETER         | SYMBOL           | CONDITIONS                                                 | MIN | TYP | MAX | UNITS | NOTES |
|-------------------|------------------|------------------------------------------------------------|-----|-----|-----|-------|-------|
| Supply Voltage    | Vs               |                                                            | 4.5 | 5.0 | 5.5 | volts |       |
| Power Consumption | P <sub>D</sub>   | 4 x150Ω Loads DC                                           | -   | 170 | 190 | mW    |       |
| Supply Current    | I <sub>S1</sub>  | 1% Accuracy, $T_A$ = 25°C<br>$V_{SET}$ = (0.667) $V_{REF}$ | -   | 62  | 67  | mA    |       |
| Supply Current    | I <sub>S2</sub>  | DC No Loads, T <sub>A</sub> = 25°C                         | -   | 16  | 20  | mA    |       |
| Reference Voltage | V <sub>REF</sub> | 10 k $\Omega$ to ground                                    | -   | 1.2 | -   | volts |       |

# GS9008A CABLE DRIVER — AC ELECTRICAL CHARACTERISTICS

Conditions:  $V_S$  = 5V,  $T_A$  = 0°C to 70°C,  $R_L$ = 150  $\Omega$  to GND and 144  $\Omega$  AC coupled unless otherwise shown

| PARAMETER                                                   | SYMBOL                                        | CONDITIONS                                  | MIN | TYP  | MAX  | UNITS  | NOTES        |
|-------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-----|------|------|--------|--------------|
| Input Signal Amplitude                                      | V <sub>IN</sub>                               |                                             | 700 | 800  | 1000 | mVp-p  |              |
| Input Signal Rise/Fall Times                                | t <sub>R</sub> ,t <sub>F</sub>                |                                             | -   | -    | 750  | ps     |              |
| Output Amplitudes across                                    | V <sub>OUT</sub>                              | $V_{SET} = (0.5) V_{REF}$                   | 540 | 600  | 660  | mVp-p  | Note 1 & 2   |
| 75 Ω Load (See Note 1)                                      |                                               | V <sub>SET</sub> = (0.667) V <sub>REF</sub> | 720 | 800  | 880  | mVp-p  | Note 1 & 2   |
|                                                             |                                               | $V_{SET} = (0.833) V_{REF}$                 | 900 | 1000 | 1100 | mVp-p  | Note 1 & 2   |
| Output Amplitude<br>Temperature Coefficient<br>(See Note 2) | T <sub>C</sub>                                | $V_{SET} = (0.5) V_{REF}$                   | -   | 25   | 100  | ppm/°C |              |
|                                                             |                                               | V <sub>SET</sub> = (0.667) V <sub>REF</sub> | -   | -12  | 80   | ppm/°C |              |
|                                                             |                                               | V <sub>SET</sub> = (0.833) V <sub>REF</sub> | -   | -45  | 80   | ppm/°C |              |
| Output                                                      | t <sub>R</sub> ,t <sub>F</sub>                | $V_{SET} = (0.5) V_{REF}$                   | 400 | 630  | 800  | ps     |              |
| Rise/Fall Times<br>(20% to 80%)                             |                                               | V <sub>SET</sub> = (0.667) V <sub>REF</sub> | 400 | 575  | 800  | ps     |              |
|                                                             |                                               | $V_{SET} = (0.833) V_{REF}$                 | 400 | 530  | 800  | ps     |              |
| Output Overshoot                                            | Output Overshoot $t_R = t_F = 600 \text{ ps}$ |                                             | -   | 0    | -    | %      | See Figure 3 |
| Jitter                                                      | t <sub>J</sub>                                | at 270Mb/s                                  | -   | -    | ±25  | ps     |              |
| Propagation Delay                                           | Propagation Delay t <sub>P</sub>              |                                             | -   | 1    | -    | ns     |              |

<sup>1.</sup>  $V_{OUT}$  is measured across a correctly terminated load, back matched to the device. The peak to peak voltage of the device itself is 2 x  $V_{OUT}$ .

<sup>2.</sup>  $V_{OUT}$  is proportional to  $V_{SET}$  and  $V_{SET}$  may be an external low impedance, high stability supply. In this case the amplitude temperature coefficient will not be guaranteed.

# INPUT/OUTPUT CIRCUITS

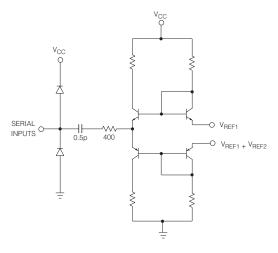



Figure 1 Input Circuit (Pins 6 and 7)

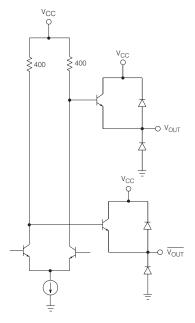
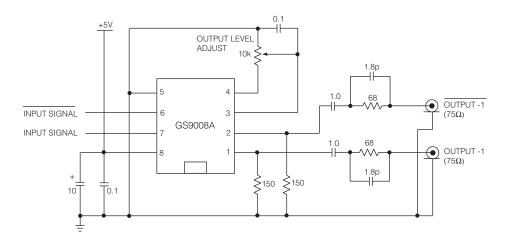
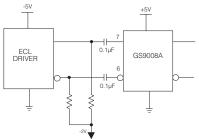





Figure 2 Output Circuit (Pins 1 and 2)



All resistors in ohms, all capacitors in microfarads unless otherwise stated.

Figure 3 Typical Application Circuit



All resistors in ohms, all capacitors in microfarads unless otherwise stated.

Figure 4 Split Supply Interfacing

# **REVISION HISTORY**

| VERSION | ECR    | DATE         | CHANGES AND/OR MODIFICATIONS           |
|---------|--------|--------------|----------------------------------------|
| 0       | 132427 | October 2003 | New Document                           |
| 1       | 134030 | June 2004    | Added lead-free and green information. |

# DOCUMENT IDENTIFICATION

PRELIMINARY DATA SHEET

The product is in a preproduction phase and specifications are subject to change without notice.

# GENNUM CORPORATION

MAILING ADDRESS: P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 Tel. +1 (905) 632-2996 Fax. +1 (905) 632-5946

SHIPPING ADDRESS:

970 Fraser Drive, Burlington, Ontario, Canada L7L 5P5

## CAUTION

ELECTROSTATIC SENSITIVE DEVICES

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION



GENNUM JAPAN CORPORATION Shinjuku Green Tower Building 27F, 6-14-1, Nishi Shinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan Tel. +81 (03) 3349-5501, Fax. +81 (03) 3349-5505

GENNUM UK LIMITED

25 Long Garden Walk, Farnham, Surrey, England GU9 7HX Tel. +44 (0)1252 747 000 Fax +44 (0)1252 726 523

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

© Copyright October 2003 Gennum Corporation. All rights reserved. Printed in Canada.

4 of 4 29781