
HT46R4A

Cost-Effective A/D Type 8-Bit MCU

Rev. 1.00 1 November 28, 2007

General Description

The HT46R4A is a device from the Cost-Effective A/D

Type Series of MCUs. As an 8-bit high performance

RISC architecture microcontroller, the device is de-

signed especially for applications that interface directly

to analog signals, such as those from sensors. The de-

vices include an integrated multi-channel Analog to Dig-

ital Converter in addition to two Pulse Width Modulation

outputs.

The usual Holtek MCU features such as power down

and wake-up functions, oscillator options, programma-

ble frequency divider, etc. combine to ensure user appli-

cations require a minimum of external components.

The benefits of integrated A/D and PWM functions, in

addition to low power consumption, high performance,

I/O flexibility and low-cost, provides the device with the

versatility to suit a wide range of application possibilities

such as sensor signal processing, motor driving, indus-

trial control, consumer products, subsystem controllers,

etc.

As is the case with all Holtek microcontroller devices,

the HT46R4A is fully supported by a full suite of

profesional hardware and software tools, containing

comprehensive features to ensure user applications are

designed and debugged in as short a time as possible.

Features

� Operating voltage:

fSYS=4MHz: 2.2V~5.5V

fSYS=8MHz: 3.3V~5.5V

� Max of 27 bidirectional I/O lines

� External interrupt input shared with I/O line

� Two 8-bit programmable Timer/Event Counters with

overflow interrupt

� Integrated crystal and RC oscillator

� Watchdog Timer

� 4096�15 program memory

� 192�8 data memory

� PFD for audio frequency generation

� Power down and wake-up functions to reduce power

consumption

� Up to 0.5�s instruction cycle with 8MHz system clock

at VDD=5V

� 6-level subroutine nesting

� 6 channel 9-bit resolution A/D converter

� Dual channel 8-bit PWM output shared with I/O lines

� Bit manipulation instruction

� Table read instructions

� 63 powerful instructions

� All instructions executed in one or two machine

cycles

� Low voltage reset function

� 28-pin SKDIP/SOP, 32-pin DIP, 44-QFP package

Technical Document

� Tools Information

� FAQs

� Application Note
� HA0003E Communicating between the HT48 & HT46 Series MCUs and the HT93LC46 EEPROM
� HA0049E Read and Write Control of the HT1380
� HA0051E Li Battery Charger Demo Board - Using the HT46R47
� HA0052E Microcontroller Application - Battery Charger
� HA0083E Li Battery Charger Demo Board - Using the HT46R46
� HA0075E MCU Reset and Oscillator Circuits Application Note

查询HA0003E供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/ic/sell_search.html?keyword=HA0003E
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

Block Diagram

Pin Assignment

HT46R4A

Rev. 1.00 2 November 28, 2007

� � � � � �
� � � � � 	
 � �

�
 �
 � � � � � �
� �
 	 � � � � � � � � 	
 � �

� � �
 � � �
 � � �
� � � � � � �

� � �
 � � �
 � � �
� � � � �
 � �

� � �
� � � � � � 	
 � �

� 	
 	
� � � � �

�
�
�
��
�
�
��
�
�
�
�
�
�

� � � � �

� � � �
 � �

� � � � �

! � � " # � $
� 	 % � �

� � � � �
 � �

� � � �
 � &
! ' �

� � � (� �)
� � � � �
 � �

� � � � � �
� � � �
 � �

� � � (� �)
� � � � �
 � �

� �
 � � � � $

� � � � � �

� � � (� �)
� � � � �
 � �

� � �
� � �
 �

� � * � � �
� � � � � 	 � � � � �

� � � � � �
 �

� � � (� � � � 	
 � � �
� $
 � � �

� � � � � 	 �
� � � � �

�
�
�
��
�
�
��
�
�
�
�
�
�

�
 	 � "

�
 	 � " � � � � �
 � �

� � � � � 	 �
� � � �
 � �

! � � " # � $
� 	 % � �
� � � �
 � �

� � � � � � � � 	 �
� � � � �

� !

� + � (
 � �

�

�

� � � (� �)
� � � � �
 � �

� � � � , �
� � �

� � � * � �
 � �

� � � � � � �
� � � � 	 �
 � �
 � � � �
 � � � �

� - . � � / .

� - 0 � � / 0

� � 1 � � , �

� � 2

� � 3

� � 4

� - 1 � � / 1

� - 2 � � / 2

� - 3 � � / 3

� - 4 � � / 4

' � �

� � 4

� � 3

� � 2

� - 5

� - 6

� � 0 � � � � 4

� � . � � / �

� � 5

� � 6 � � � � 3

� � � 2

� � � 3

' � �

� 7 �

� � 3 � � � � 3

� � 4 � � � � 4

� � 0

� � 1

2 8

2 6

2 5

2 .

2 0

2 1

2 2

2 3

2 4

3 9

3 8

3 6

3 5

3 .

3

2

1

0

.

5

6

8

9

3 4

3 3

3 2

3 1

3 0

� � � � � � �
� � � � � � �
 � � �

� - 5

� - 6

� � 0 � � � � 4

� � . � � / �

� � 5

� � 6 � � � � 3

� � � 2

� � � 3

' � �

� 7 �

� � 2

� � 3 � � � � 3

� � 4 � � � � 4

� � 6

� � 5

� � .

� - . � � / .

� - 0 � � / 0

� � 1 � � , �

� � 2

� � 3

� � 4

� - 1 � � / 1

� - 2 � � / 2

� - 3 � � / 3

� - 4 � � / 4

' � �

� � 4

� � 3

� � 2

� � 1

� � 0

3

2

1

0

.

5

6

8

9

3 4

3 3

3 2

3 1

3 0

3 .

3 5 3 6

3 8

3 9

2 4

1 2

1 3

1 4

2 9

2 8

2 6

2 5

2 .

2 0

2 1
2 2

2 3

� � 2

� � 3

� � 4

/ �

� - 1 � � / 1

� - 2 � � / 2

� - 3 � � / 3

� - 4 � � / 4

' � �

/ �

� � 4

/ �

� � 0 � � � � 4

� � . � � / �

� � 5

� � 6 � � � � 3

/ �

/ �

� � � 2

� � � 3

' � �

/ �

/
�

/
�

/
�

/
�

�
-
6

�
-
5

/
�

�
-
.
��
/
.

�
-
0
��
/
0

/
�

�
�
1
��
,
�

�
7
�

�
�
2

�
�
3
��
�
�
3

�
�
4
��
�
�
4

�
�
6

�
�
5

�
�
.

�
�
0

�
�
1

�
�
2

�
�
3

3

2

1

0

.

5

6

8

9

3 4

3 3
3 2 3 1 3 0 3 . 3 5 3 6 3 8 3 9 2 4 2 3 2 2

2 1

2 0

2 .

2 5

2 6

2 8

2 9

1 4

1 3

1 2

1 1
1 01 .1 51 61 81 90 40 30 20 10 0

� � � � � � �
� � � � � � � � � � � �

Pin Description

Pin Name I/O
Configuration

Option
Description

PA0~PA2

PA3/PFD

PA4/TMR0

PA5/INT

PA6

PA7/TMR1

I/O

Pull-high

Wake-up

PA3 or PFD

Bidirectional 8-bit input/output port. Each individual pin on this port can be config-

ured as a wake-up input by a configuration option. Software instructions deter-

mine if the pin is a CMOS output or Schmitt Trigger input. Configuration options

determine which pins on the port have pull-high resistors. Pins PA3, PA4, PA7

and PA5 are pin-shared with PFD, TMR0, TMR1 and INT, respectively.

PB0/AN0

PB1/AN1

PB2/AN2

PB3/AN3

PB4/AN4

PB5/AN5

PB6~PB7

I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions determine if the pin is a

CMOS output or Schmitt Trigger input. Configuration options determine which

pins on the port have pull-high resistors. PB is pin-shared with the A/D input pins.

The A/D inputs are selected via software instructions. Once selected as an A/D in-

put, the I/O function and pull-high resistor options are disabled automatically.

PC0~PC7 I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions determine if the pin is a

CMOS output or Schmitt Trigger input. Configuration options determine which

pins on the port have pull-high resistors.

PD0/PWM0

PD1/PWM1

PD2

I/O
Pull-high

I/O or PWM

Bidirectional 3-bit input/output port. Software instructions determine if the pin is a

CMOS output or Schmitt Trigger input. Configuration option determines which

pins on the port have pull-high resistors. The PWM outputs are pin-shared with

pins PD0 and PD1 selected via configuration options.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or external crystal, deter-

mined by configuration option, for the internal system clock. If the RC system

clock option is selected, pin OSC2 can be used to measure the system clock at

1/4 frequency.

RES I � Schmitt Trigger reset input. Active low.

VDD � � Positive power supply

VSS � � Negative power supply, ground

Note: 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins can be selected to have a pull-high resistor.

3. Pins PC5~PC7 and pin PD2 exist but are not bounded out on the 28-pin package.

4. Unbounded pins should be setup as outputs or as inputs with pull-high resistors to conserve power.

Absolute Maximum Ratings

Supply VoltageVSS�0.3V to VSS+6.0V Storage Temperature�50�C to 125�C

Input Voltage..............................VSS�0.3V to VDD+0.3V Operating Temperature...........................�40�C to 85�C
IOL Total ..150mA IOH Total..�100mA

Total Power Dissipation500mW

Note: These are stress ratings only. Stresses exceeding the range specified under �Absolute Maximum Ratings� may

cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed

in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

HT46R4A

Rev. 1.00 3 November 28, 2007

D.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage
� fSYS=4MHz 2.2 � 5.5 V

� fSYS=8MHz 3.3 � 5.5 V

IDD1
Operating Current

(Crystal OSC)

3V No load, fSYS=4MHz

ADC disable

� 0.6 1.5 mA

5V � 2 4 mA

IDD2
Operating Current

(RC OSC)

3V No load, fSYS=4MHz

ADC disable

� 0.8 1.5 mA

5V � 2.5 4 mA

IDD3
Operating Current

(Crystal OSC, RC OSC)
5V

No load, fSYS=8MHz

ADC disable
� 4 8 mA

ISTB1
Standby Current

(WDT Enabled)

3V No load,

system HALT

� � 5 �A

5V � � 10 �A

ISTB2
Standby Current

(WDT Disabled)

3V No load,

system HALT

� � 1 �A

5V � � 2 �A

VIL1
Input Low Voltage for I/O Ports,

TMR and INT
� � 0 � 0.3VDD V

VIH1
Input High Voltage for I/O Ports,

TMR and INT
� � 0.7VDD � VDD V

VIL2 Input Low Voltage (RES) � � 0 � 0.4VDD V

VIH2 Input High Voltage (RES) � � 0.9VDD � VDD V

VLVR Low Voltage Reset � � 2.7 3.0 3.3 V

IOL I/O Port Sink Current
3V VOL=0.1VDD 4 8 � mA

5V VOL=0.1VDD 10 20 � mA

IOH I/O Port Source Current
3V VOH=0.9VDD �2 �4 � mA

5V VOH=0.9VDD �5 �10 � mA

RPH Pull-high Resistance
3V � 20 60 100 k�

5V � 10 30 50 k�

VAD A/D Input Voltage � � 0 � VDD V

EAD A/D Conversion Error � � � 	0.5 	1 LSB

IADC
Additional Power Consumption

if A/D Converter is Used

3V
�

� 0.5 1 mA

5V � 1.5 3 mA

HT46R4A

Rev. 1.00 4 November 28, 2007

A.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock
� 2.2V~5.5V 400 � 4000 kHz

� 3.3V~5.5V 400 � 8000 kHz

fTIMER Timer I/P Frequency (TMR)
� 2.2V~5.5V 0 � 4000 kHz

� 3.3V~5.5V 0 � 8000 kHz

tWDTOSC Watchdog Oscillator Period
3V � 45 90 180 �s

5V � 32 65 130 �s

tWDT1 Watchdog Time-out Period (RC) � � 215 � 216 tWDTOSC

tWDT2
Watchdog Time-out Period

(System Clock)
� � 217 � 218 tSYS

tRES External Reset Low Pulse Width � � 1 � � �s

tSST System Start-up Timer Period � Wake-up from HALT � 1024 � *tSYS

tLVR Low Voltage Reset Time � � 0.25 1 2 ms

tINT Interrupt Pulse Width � � 1 � � �s

tAD A/D Clock Period � � 1 � � �s

tADC A/D Conversion Time � � � 76 � tAD2

tADCS A/D Sampling Time � � � 32 � tAD2

Note: *tSYS=1/fSYS

HT46R4A

Rev. 1.00 5 November 28, 2007

HT46R4A

Rev. 1.00 6 November 28, 2007

System Architecture

A key factor in the high-performance features of the

Holtek microcontrollers is attributed to the internal sys-

tem architecture. The range of devices take advantage

of the usual features found within RISC microcontrollers

providing increased speed of operation and enhanced

performance. The pipelining scheme is implemented in

such a way that instruction fetching and instruction exe-

cution are overlapped, hence instructions are effectively

executed in one cycle, with the exception of branch or

call instructions. An 8-bit wide ALU is used in practically

all operations of the instruction set. It carries out arith-

metic operations, logic operations, rotation, increment,

decrement, branch decisions, etc. The internal data

path is simplified by moving data through the Accumula-

tor and the ALU. Certain internal registers are imple-

mented in the Data Memory and can be directly or

indirectly addressed. The simple addressing methods of

these registers along with additional architectural fea-

tures ensure that a minimum of external components is

required to provide a functional I/O and A/D control sys-

tem with maximum reliability and flexibility.

Clocking and Pipelining

The main system clock, derived from either a Crys-

tal/Resonator or RC oscillator is subdivided into four in-

ternally generated non-overlapping clocks, T1~T4. The

Program Counter is incremented at the beginning of the

T1 clock during which time a new instruction is fetched.

The remaining T2~T4 clocks carry out the decoding and

execution functions. In this way, one T1~T4 clock cycle

forms one instruction cycle. Although the fetching and

execution of instructions takes place in consecutive in-

struction cycles, the pipelining structure of the

microcontroller ensures that instructions are effectively

executed in one instruction cycle. The exception to this

are instructions where the contents of the Program

Counter are changed, such as subroutine calls or

jumps, in which case the instruction will take one more

instruction cycle to execute.

When the RC oscillator is used, OSC2 is freed for use as

a T1 phase clock synchronizing pin. This T1 phase clock

has a frequency of fSYS/4 with a 1:3 high/low duty cycle.

For instructions involving branches, such as jump or call

instructions, two machine cycles are required to com-

plete instruction execution. An extra cycle is required as

the program takes one cycle to first obtain the actual

jump or call address and then another cycle to actually

execute the branch. The requirement for this extra cycle

should be taken into account by programmers in timing

sensitive applications

Program Counter

During program execution, the Program Counter is used

to keep track of the address of the next instruction to be

executed. It is automatically incremented by one each

time an instruction is executed except for instructions,

such as �JMP� or �CALL� that demand a jump to a

non-consecutive Program Memory address. However, it

must be noted that only the lower 8 bits, known as the

Program Counter Low Register, are directly address-

able by user.

, �
 � + � � � �
) � : � � ;

7 < � � �
 � � � � �
) � : � � # 3 ; , �
 � + � � � �
) � : � � = 3 ;

7 < � � �
 � � � � �
) � : � � ; , �
 � + � � � �
) � : � � = 2 ;

7 < � � �
 � � � � �
) � : � � = 3 ;

� � � � = 3 � � = 2

� � � � � � 	
 � � � � � � � "
: �
 �
 � � � � � � � " ;

� + 	 � � � � � � � " � � 3

� � � � � 	 � � � � � �
 � �

� + 	 � � � � � � � " � � 2

� + 	 � � � � � � � " � � 1

� + 	 � � � � � � � " � � 0

� � $ � � � � � � �

System Clocking and Pipelining

, �
 � + � � � �
) � 3 7 < � � �
 � � � � �
) � 3

, �
 � + � � � �
) � 2

, � � � + � � � $ � � � � �

3

2

1

0

.

5 � 7 ! � > ?

� � ' � � @ A 3 2 B C

� � ! ! � � 7 ! � >

� � ! � A 3 2 B C

?

?

/ � �

7 < � � �
 � � � � �
) � 2

, �
 � + � � � �
) � 1

, �
 � + � � � �
) � 5 7 < � � �
 � � � � �
) � 5

, �
 � + � � � �
) � 6

Instruction Fetching

HT46R4A

Rev. 1.00 7 November 28, 2007

When executing instructions requiring jumps to

non-consecutive addresses such as a jump instruction,

a subroutine call, interrupt or reset, etc., the

microcontroller manages program control by loading the

required address into the Program Counter. For condi-

tional skip instructions, once the condition has been

met, the next instruction, which has already been

fetched during the present instruction execution, is dis-

carded and a dummy cycle takes its place while the cor-

rect instruction is obtained.

The lower byte of the Program Counter, known as the

Program Counter Low register or PCL, is available for

program control and can be read nor written to. By trans-

ferring data directly into this register, a short program

jump can be executed directly, however, as only this low

byte is available for manipulation, the jumps are limited

to the present page of memory, that is 256 locations.

When such program jumps are executed it should also

be noted that a dummy cycle will be inserted.

The lower byte of the Program Counter is fully accessi-

ble under program control. Manipulating the PCL might

cause program branching, so an extra cycle is needed

to pre-fetch. Further information on the PCL register can

be found in the Special Function Register section.

Stack

This is a special part of the memory which is used to

save the contents of the Program Counter only. The

stack is organised into 6 levels and is neither part of the

data nor part of the program space, and is neither be

read nor written to. The activated level is indexed by the

Stack Pointer, SP, and can neither be read nor written

to. At a subroutine call or interrupt acknowledge signal,

the contents of the Program Counter are pushed onto

the stack. At the end of a subroutine or an interrupt rou-

tine, signaled by a return instruction, RET or RETI, the

Program Counter is restored to its previous value from

the stack. After a device reset, the Stack Pointer will

point to the top of the stack.

If the stack is full and an enabled interrupt takes place,

the interrupt request flag will be recorded but the ac-

knowledge signal will be inhibited. When the Stack

Pointer is decremented, by RET or RETI, the interrupt

will be serviced. This feature prevents stack overflow al-

lowing the programmer to use the structure more easily.

However, when the stack is full, a CALL subroutine in-

struction can still be executed which will result in a stack

overflow. Precautions should be taken to avoid such

cases which might cause unpredictable program

branching.

Mode
Program Counter Bits

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0

External Interrupt 0 0 0 0 0 0 0 0 0 1 0 0

Timer/Event Counter 0

Overflow
0 0 0 0 0 0 0 0 1 0 0 0

Timer/Event Counter 1

Overflow
0 0 0 0 0 0 0 0 1 1 0 0

A/D Converter Interrupt 0 0 0 0 0 0 0 1 0 0 0 0

Skip Program Counter + 2

Loading PCL PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: PC11~PC8: Current Program Counter bits

@7~@0: PCL bits

#11~#0: Instruction code address bits

S11~S0: Stack register bits

The Program Counter is 12 bits wide, i.e. from b11~b0.

� � � � � 	 � � � � � �
 � �

�
 	 � " � ! � * � � � 3

�
 	 � " � ! � * � � � 2

�
 	 � " � ! � * � � � 1

�
 	 � " � ! � * � � � /

� � � � � 	 �
� � � � �

� � $ � � (� �
 	 � "

�
 	 � "
� � � �
 � �

- �

 � � � � (� �
 	 � "

HT46R4A

Rev. 1.00 8 November 28, 2007

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the

microcontroller that carries out arithmetic and logic op-

erations of the instruction set. Connected to the main

microcontroller data bus, the ALU receives related in-

struction codes and performs the required arithmetic or

logical operations after which the result will be placed in

the specified register. As these ALU calculation or oper-

ations may result in carry, borrow or other status

changes, the status register will be correspondingly up-

dated to reflect these changes. The ALU supports the

following functions:

� Arithmetic operations: ADD, ADDM, ADC, ADCM,

SUB, SUBM, SBC, SBCM, DAA

� Logic operations: AND, OR, XOR, ANDM, ORM,

XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,

RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ,

SIZA, SDZA, CALL, RET, RETI

Program Memory

The Program Memory is the location where the user code

or program is stored. For this device, the type of memory

is One-Time Programmable, OTP, memory where users

can program their application code into the device. By us-

ing the appropriate programming tools, OTP devices of-

fer users the flexibility to freely develop their applications

which may be useful during debug or for products requir-

ing frequent upgrades or program changes. OTP devices

are also applicable for use in applications that require low

or medium volume production runs.

Structure

The Program Memory has a capacity of 4K by 15 bits.

The Program Memory is addressed by the Program

Counter and also contains data, table information and

interrupt entries. Table data, which can be setup in any

location within the Program Memory, is addressed by

separate table pointer registers.

Special Vectors

Within the Program Memory, certain locations are re-

served for special usage such as reset and interrupts.

� Location 000H

This vector is reserved for use by the device reset for

program initialisation. After a device reset is initiated, the

program will jump to this location and begin execution.

� Location 004H

This vector is used by the external interrupt. If the ex-

ternal interrupt pin on the device goes low, the pro-

gram will jump to this location and begin execution if

the external interrupt is enabled and the stack is not

full.

� Location 008H

This internal vector is used by the Timer/Event Coun-

ter 0. If a counter overflow occurs, the program will

jump to this location and begin execution if the

timer/event counter interrupt is enabled and the stack

is not full.

� Location 00CH

This internal vector is used by the Timer/Event Coun-

ter 1. If a counter overflow occurs, the program will

jump to this location and begin execution if the

timer/event counter interrupt is enabled and the stack

is not full.

� Location 010H

This internal vector is used by the A/D converter.

When an A/D conversion cycle is complete, the pro-

gram will jump to this location and begin execution if

the A/D interrupt is enabled and the stack is not full.

Look-up Table

Any location within the Program Memory can be defined

as a look-up table where programmers can store fixed

data. To use the look-up table, the table pointer must

first be setup by placing the lower order address of the

look up data to be retrieved in the table pointer register,

TBLP. This register defines the lower 8-bit address of

the look-up table.

After setting up the table pointer, the table data can be

retrieved from the current Program Memory page or last

Program Memory page using the �TABRDC[m]� or

�TABRDL [m]� instructions, respectively. When these in-

structions are executed, the lower order table byte from

the Program Memory will be transferred to the user de-

fined Data Memory register [m] as specified in the in-

struction. The higher order table data byte from the

Program Memory will be transferred to the TBLH special

register. Any unused bits in this transferred higher order

byte will be read as �0�.

� � �
 � 	 � � � 	
 � � � � ' � �
 � �

7 <
 � � � 	 � � � �
 � � � � $
 � ' � �
 � �

� � � � � � 7 * � �
 � � � � �
 � � � 4 � � �
 � � � � $
 � ' � �
 � �

, , , B

� , , B

, 4 4 B

� � � � � 	 �
� � � � �

! � � " # � $ � � 	 % � � � : 2 . 5 � D � � � � ;

! � � " # � $ � � 	 % � � � : 2 . 5 � D � � � � ;

/ �
 � ? � � � � 	 � � � � � (� � � � 4 �
 � � ,

� � � � � � � * � �
 � � � � �
 � � � � $
 � � � % � � �
 � � �

3 . � % �
 �

4 4 4 B

4 4 0 B

4 4 8 B

4 4 � B

4 3 4 B

� 4 4 B

� � � � � � 7 * � �
 � � � � �
 � � � 3 � � �
 � � � � $
 � ' � �
 � �

Program Memory Structure

HT46R4A

Rev. 1.00 9 November 28, 2007

The diagram illustrates the addressing/data flow of the

look-up table:

Table Program Example

The following example shows how the table pointer and

table data is defined and retr ieved from the

microcontroller. This example uses raw table data lo-

cated in the last page which is stored there using the

ORG statement. The value at this ORG statement is

�F00H� which refers to the start address of the last page

within the 4K Program Memory. The table pointer is

setup here to have an initial value of �06H�. This will en-

sure that the first data read from the data table will be at

the Program Memory address �F06H� or 6 locations af-

ter the start of the last page. Note that the value for the

table pointer is referenced to the first address of the

present page if the �TABRDC [m]� instruction is being

used. The high byte of the table data which in this case

is equal to zero will be transferred to the TBLH register

automatically when the �TABRDL [m]� instruction is ex-

ecuted.

� � � � � 	 � �
� � � � �

� � � � � � 	 � � � � � �
 � �
� � � � � � � B � � + � -

 �

� - ! �

� - ! B � $ � � � (� � � � %
 � A � C

� 	 % � � � � � �
 � �
 � � B � � + � -

 � � 	 % � � � � � �
 � �
 � � ! � D � -

 �

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialise table pointer - note that this address
; is referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl
; data at prog. memory address �F06H� transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2
; data at prog.memory address �F05H� transferred to
; tempreg2 and TBLH
; in this example the data �1AH� is transferred to
; tempreg1 and data �0FH� to register tempreg2
; the value �00H� will be transferred to the high byte
; register TBLH

:
:

org F00h ; sets initial address of last page

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

Because the TBLH register is a read-only register and cannot be restored, care should be taken to ensure its protection

if both the main routine and Interrupt Service Routine use table read instructions. If using the table read instructions, the

Interrupt Service Routines may change the value of the TBLH and subsequently cause errors if used again by the main

routine. As a rule it is recommended that simultaneous use of the table read instructions should be avoided. However,

in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any

main routine table-read instructions. Note that all table related instructions require two instruction cycles to complete

their operation.

Instruction
Table Location Bits

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

TABRDC [m] PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: PC11~PC8: Current Program Counter bits

@7~@0: Table Pointer TBLP bits

The Table address location is 12 bits, i.e. from b11~b0.

HT46R4A

Rev. 1.00 10 November 28, 2007

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM

internal memory and is the location where temporary in-

formation is stored. Divided into two sections, the first of

these is an area of RAM where special function registers

are located. These registers have fixed locations and

are necessary for correct operation of the device. Many

of these registers can be read from and written to di-

rectly under program control, however, some remain

protected from user manipulation. The second area of

Data Memory is reserved for general purpose use. All

locations within this area are read and write accessible

under program control.

Structure

The two sections of Data Memory, the Special Purpose

and General Purpose Data Memory are located at con-

secutive locations. All are implemented in RAM and are

8 bits wide but the length of each memory section is dic-

tated by the type of microcontroller chosen. The start

address of the Data Memory for all devices is the ad-

dress �00H�. Registers which are common to all

microcontrollers, such as ACC, PCL, etc., have the

same Data Memory address.

General Purpose Data Memory

All microcontroller programs require an area of

read/write memory where temporary data can be stored

and retrieved for use later. It is this area of RAM memory

that is known as General Purpose Data Memory. This

area of Data Memory is fully accessible by the user pro-

gram for both read and write operations. By using the

�SET [m].i� and �CLR [m].i� instructions individual bits

can be set or reset under program control giving the

user a large range of flexibility for bit manipulation in the

Data Memory.

Special Purpose Data Memory

This area of Data Memory is where registers, necessary

for the correct operation of the microcontroller, are

stored. Most of the registers are both readable and

writable but some are protected and are readable only,

the details of which are located under the relevant Spe-

cial Function Register section. Note that for locations

that are unused, any read instruction to these addresses

will return the value �00H�.

� � � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

� $ � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

4 4 B

0 4 B

, , B

1 , B

� � � � � � �

Data Memory Structure

Note: Most of the Data Memory bits can be directly

manipulated using the �SET [m].i� and �CLR

[m].i� with the exception of a few dedicated bits.

The Data Memory can also be accessed

through the memory pointer register MP.

? � � � � � � @ � � � 	 � � 	 � � E 4 4 E

� � �

� �

� � �

� � !

� - ! �

� - ! B

� � � � �

� / � � 4

� � � 4

� � � 4 �

� � � 3

� � � 3 �

� �

� � �

� -

� - �

� �

� � �

� �

� � �

� � � 4

� � � 3

� / � � 3

� � � !

� � � B

� � � �

� � � �

4 4 B

4 3 B

4 2 B

4 1 B

4 0 B

4 . B

4 5 B

4 6 B

4 8 B

4 9 B

4 � B

4 - B

4 � B

4 � B

4 7 B

4 , B

3 4 B

3 3 B

3 2 B

3 1 B

3 0 B

3 . B

3 5 B

3 6 B

3 8 B

3 9 B

3 � B

3 - B

3 � B

3 � B

3 7 B

3 , B

2 4 B

2 3 B

2 2 B

2 1 B

Special Purpose Data Memory

HT46R4A

Rev. 1.00 11 November 28, 2007

Special Function Registers

To ensure successful operation of the microcontroller,

certain internal registers are implemented in the Data

Memory area. These registers ensure correct operation

of internal functions such as timers, interrupts, etc., as

well as external functions such as I/O data control and

A/D converter operation. The location of these registers

within the Data Memory begins at the address 00H. Any

unused Data Memory locations between these special

function registers and the point where the General Pur-

pose Memory begins is reserved for future expansion

purposes, attempting to read data from these locations

will return a value of 00H.

Indirect Addressing Register � IAR

The IAR register, located at Data Memory address

�00H�, is not physically implemented. This special regis-

ter allows what is known as indirect addressing, which

permits data manipulation using Memory Pointers in-

stead of the usual direct memory addressing method

where the actual memory address is defined.

Any actions on the IAR register will result in correspond-

ing read/write operations to the memory location speci-

fied by the Memory Pointer MP. Reading the IAR

register indirectly will return a result of �00H� and writing

to the register indirectly will result in no operation.

Memory Pointer � MP

One Memory Pointer, known as MP, is physically imple-

mented in the Data Memory. The Memory Pointer can

be written to and manipulated in the same way as nor-

mal registers providing an easy way of addressing and

tracking data. When using any operation on the indirect

addressing register IAR, it is actually the address speci-

fied by the Memory Pointer that the microcontroller will

be directed to.

The following example shows how to clear a section of four RAM locations already defined as locations adres1 to

adres4.

data .section
data

adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0
code

org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp,a ; setup memory pointer with first RAM address

loop:
clr IAR ; clear the data at address defined by MP
inc mp ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to specific RAM addresses.

HT46R4A

Rev. 1.00 12 November 28, 2007

Accumulator � ACC

The Accumulator is central to the operation of any

microcontroller and is closely related with operations

carried out by the ALU. The Accumulator is the place

where all intermediate results from the ALU are stored.

Without the Accumulator it would be necessary to write

the result of each calculation or logical operation such

as addition, subtraction, shift, etc., to the Data Memory

resulting in higher programming and timing overheads.

Data transfer operations usually involve the temporary

storage function of the Accumulator; for example, when

transferring data between one user defined register and

another, it is necessary to do this by passing the data

through the Accumulator as no direct transfer between

two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low

byte of the Program Counter is made accessible to pro-

grammers by locating it within the Special Purpose area

of the Data Memory. By manipulating this register, direct

jumps to other program locations are easily imple-

mented. Loading a value directly into this PCL register

will cause a jump to the specified Program Memory lo-

cation, however, as the register is only 8-bit wide, only

jumps within the current Program Memory page are per-

mitted. When such operations are used, note that a

dummy cycle will be inserted.

Look-up Table Registers � TBLP, TBLH

These two special function registers are used to control

operation of the look-up table which is stored in the Pro-

gram Memory. TBLP is the table pointer and indicates

the location where the table data is located. Its value

must be setup before any table read commands are ex-

ecuted. Its value can be changed, for example using the

�INC� or �DEC� instructions, allowing for easy table data

pointing and reading. TBLH is the location where the

high order byte of the table data is stored after a table

read data instruction has been executed. Note that the

lower order table data byte is transferred to a user de-

fined location.

Status Register � STATUS

This 8-bit register contains the zero flag (Z), carry flag

(C), auxiliary carry flag (AC), overflow flag (OV), power

down flag (PDF), and watchdog time-out flag (TO).

These arithmetic/logical operation and system manage-

ment flags are used to record the status and operation of

the microcontroller.

With the exception of the TO and PDF flags, bits in the

status register can be altered by instructions like most

other registers. Any data written into the status register

will not change the TO or PDF flag. In addition, opera-

tions related to the status register may give different re-

sults due to the different instruction operations. The TO

flag can be affected only by a system power-up, a WDT

time-out or by executing the �CLR WDT� or �HALT� in-

struction. The PDF flag is affected only by executing the

�HALT� or �CLR WDT� instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of

the latest operations.

� C is set if an operation results in a carry during an ad-

dition operation or if a borrow does not take place dur-

ing a subtraction operation; otherwise C is cleared. C

is also affected by a rotate through carry instruction.

� AC is set if an operation results in a carry out of the

low nibbles in addition, or no borrow from the high nib-

ble into the low nibble in subtraction; otherwise AC is

cleared.

� Z is set if the result of an arithmetic or logical operation

is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the high-

est-order bit but not a carry out of the highest-order bit,

or vice versa; otherwise OV is cleared.

� PDF is cleared by a system power-up or executing the

�CLR WDT� instruction. PDF is set by executing the

�HALT� instruction.

� TO is cleared by a system power-up or executing the

�CLR WDT� or �HALT� instruction. TO is set by a

WDT time-out.

� � � � , � ' F � � �
 � � � �
 � � � � � � � � �

� � � � � � � � � � � � � � � � � ! � � " � � # � � $ " � �
� 	 � �
 � (� 	 �
� � < � � � 	 �
 � � 	 � �
 � (� 	 �
F � � � � (� 	 �
� * � � (� � D � (� 	 �

 % � � � � � & " # " � � � � # � � � $ " � �
� � D � � � � � D � � (� 	 �
� 	
 � + � � � �
 � � � # � �
 � (� 	 �
/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

% 6 % 4

Status Register

HT46R4A

Rev. 1.00 13 November 28, 2007

In addition, on entering an interrupt sequence or execut-

ing a subroutine call, the status register will not be

pushed onto the stack automatically. If the contents of

the status registers are important and if the subroutine

can corrupt the status register, precautions must be

taken to correctly save it.

Interrupt Control Register � INTC0, INTC1

These 8-bit registers, known as INTC0 and INTC1, con-

trol the operation of both the external and internal inter-

rupts. By setting various bits within these registers using

standard bit manipulation instructions, the enable/dis-

able function of the external interrupts and each of the

internal interrupts can be independently controlled. A

master interrupt bit within these registers, the EMI bit,

acts like a global enable/disable and is used to set all of

the interrupt enable bits on or off. This bit is cleared

when an interrupt routine is entered to disable further in-

terrupt and is set by executing the RETI� instruction.

Note In situations where other interrupts may require

servicing within present interrupt service rou-

tines, the EMI bit can be manually set by the

program after the present interrupt service rou-

tine has been entered.

Timer/Event Counter Registers � TMR0, TMR0C,

TMR1, TMR1C

The device contains two integrated 8-bit size Timer/

Event Counters. These have associated registers

known as TMR0 and TMR1, where the timer
s values

are located. Two associated control registers, known as

TMR0C and TMR1C contain the setup information for

these two timers. Note that all timer registers can be di-

rectly written to in order to preload their contents with

fixed data to allow different time intervals to be setup.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O

registers and their associated control registers play a

prominent role. All I/O ports have a designated register

correspondingly labeled as PA, PB, PC and PD. These

labeled I/O registers are mapped to specific addresses

within the Data Memory as shown in the Data Memory

table, which are used to transfer the appropriate output

or input data on that port. With each I/O port there is an

associated control register labeled PAC, PBC, PCC and

PDC, also mapped to specific addresses with the Data

Memory. The control register specifies which pins of that

port are set as inputs and which are set as outputs. To

setup a pin as an input, the corresponding bit of the con-

trol register must be set high, for an output it must be set

low. During program initialisation, it is important to first

setup the control registers to specify which pins are out-

puts and which are inputs before reading data from or

writing data to the I/O ports. One flexible feature of these

registers is the ability to directly program single bits us-

ing the �SET [m].i� and �CLR [m].i� instructions. The

ability to change I/O pins from output to input and vice

versa by manipulating specific bits of the I/O control reg-

isters during normal program operation is a useful fea-

ture of these devices.

Pulse Width Modulator Registers � PWM0, PWM1

The device contains two Pulse Width Modulators. Each

one has its own related independent control register. For

devices with two PWM functions, their control register

names are PWM0 and PWM1. The 8-bit contents of

these registers, defines the duty cycle value for the

modulation cycle of the corresponding Pulse Width

Modulator.

A/D Converter Registers � ADRL, ADRH,

ADCR, ACSR

The device contains a 6-channel 9-bit A/D converter.

The correct operation of the A/D requires the use of two

data registers, a control register and a clock source reg-

ister. A high byte data register known as ADRH, and a

low byte data register known as ADRL. These are the

register locations where the digital value is placed after

the completion of an analog to digital conversion cycle.

The channel selection and configuration of the A/D con-

verter is setup via the control register ADCR while the

A/D clock frequency is defined by the clock source reg-

ister, ACSR.

HT46R4A

Rev. 1.00 14 November 28, 2007

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on

their I/O ports. With the input or output designation of ev-

ery pin fully under user program control, pull-high op-

tions for all ports and wake-up options on certain pins,

the user is provided with an I/O structure to meet the

needs of a wide range of application possibilities.

The device offers up to 27 bidirectional input/output

lines labeled with port names PA, PB, PC and PD.

These I/O ports are mapped to the Data Memory with

specific addresses as shown in the Special Purpose

Data Memory table. All of these I/O ports can be used

for input and output operations. For input operation,

these ports are non-latching, which means the inputs

must be ready at the T2 rising edge of instruction �MOV

A,[m]�, where m denotes the port address. For output

operation, all the data is latched and remains un-

changed until the output latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for

their switch inputs usually requiring the use of an exter-

nal resistor. To eliminate the need for these external re-

sistors, all I/O pins, when configured as an input have

the capability of being connected to an internal pull-high

resistor. These pull-high resistors are selectable via

configuration options and are implemented using a

weak PMOS transistor.

Port A Wake-up

Each device has a HALT instruction enabling the

microcontroller to enter a Power Down Mode and pre-

serve power, a feature that is important for battery and

other low-power applications. Various methods exist to

wake-up the microcontroller, one of which is to change

the logic condition on one of the Port A pins from high to

low. After a HALT instruction forces the microcontroller

into entering a Power Down condition, the device will re-

main in a low-power state until a Port A pin receives a

high to low going edge. This function is especially suit-

able for applications that can be woken up via external

switches. Note that each pin on Port A can be selected

individually to have this wake-up feature.

I/O Port Control Registers

Each I/O port has its own control register PAC, PBC,

PCC and PDC, to control the input/output configuration.

With this control register, each CMOS output or input

with or without pull-high resistor structures can be re-

configured dynamically under software control. Each pin

of the I/O ports is directly mapped to a bit in its associ-

ated port control register. For the I/O pin to function as

an input, the corresponding bit of the control register

must be written as a �1�. This will then allow the logic

state of the input pin to be directly read by instructions.

When the corresponding bit of the control register is

written as a �0�, the I/O pin will be setup as a CMOS out-

put. If the pin is currently setup as an output, instructions

can still be used to read the output register. However, it

should be noted that the program will in fact only read

the status of the output data latch and not the actual

logic status of the output pin.

Pin-shared Functions

The flexibility of the microcontroller range is greatly en-

hanced by the use of pins that have more than one func-

tion. Limited numbers of pins can force serious design

constraints on designers but by supplying pins with

multi-functions, many of these difficulties can be over-

come. For some pins, the chosen function of the

multi-function I/O pins is set by configuration options

while for others the function is set by application pro-

gram control.

� External Interrupt Input

The external interrupt pin INT is pin-shared with the

I/O pin PA5. For applications not requiring an external

interrupt input, the pin-shared external interrupt pin

can be used as a normal I/O pin, however to do this,

the external interrupt enable bits in the INTC register

must be disabled.

� External Timer Clock Input

The external timer pins TMR0 and TMR1 are

pin-shared with the I/O pins PA4 and PA7, respec-

tively. To configure these pins to operate as timer in-

puts, the corresponding control bits in the timer

control register must be correctly set. For applications

that do not require an external timer input, these pin

can be used as normal I/O pins. Note that if used as

normal I/O pins the timer mode control bits in the timer

control register must select the timer mode, which has

an internal clock source, to prevent the input pin from

interfering with the timer operation.

� PFD Output

Each device contains a PFD function whose single

output is pin-shared with PA3. The output function of

this pin is chosen via a configuration option and re-

mains fixed after the device is programmed. Note that

the corresponding bit of the port control register,

PAC.3, must setup the pin as an output to enable the

PFD output. If the PAC port control register has setup

the pin as an input, then the pin will function as a nor-

mal logic input with the usual pull-high option, even if

the PFD configuration option has been selected.

� PWM Outputs

The devices contain two PWM outputs PWM0 and

PWM1 are pin shared with pins PD0 and PD1,

respectively. The PWM output functions are chosen

via configuration options and remain fixed after the

device is programmed. Note that the corresponding

bit or bits of the port control register, PDC, must setup

the pin as an output to enable the PWM output. If the

PDC port control register has setup the pin as an in-

put, then the pin will function as a normal logic input

HT46R4A

Rev. 1.00 15 November 28, 2007

with the usual pull-high option, even if the PWM con-

figuration option has been selected.

� A/D Inputs

The device has six A/D converter inputs. All of these

analog inputs are pin-shared with I/O pins on Port B. If

these pins are to be used as A/D inputs and not as

normal I/O pins then the corresponding bits in the A/D

Converter Control Register, ADCR, must be properly

set. There are no configuration options associated

with the A/D function. If used as I/O pins, then full

pull-high resistor configuration options remain, how-

ever if used as A/D inputs then any pull-high resistor

options associated with these pins will be automati-

cally disconnected.

I/O Pin Structures

The following diagrams illustrate the I/O pin internal

structures. As the exact logical construction of the I/O

pin may differ from these drawings, they are supplied as

a guide only to assist with the functional understanding

of the I/O pins.

' � �

�

�

� 	 " � # � $ � � $
 � � ��
 �
 � � � � 	 " � # � $

� � 	 � � � 	
 	 � � � � � �
 � �

� � �
 � � � � - �

� � � � # B � � +
� $
 � � �

� 	
 	 � - � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� + � $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � - �

� � � � � � �

� � 	 "
� � � � # � $� G

� H
�

G

� G

� H
�

G

� � � � � �

Non-pin-shared Function Input/Output Ports

' � �

�

�� � 	 � � � 	
 	 � � � � � �
 � �

� � �
 � � � � - �

� � � � # B � � +
� $
 � � �

� 	
 	 � - � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� + � $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � - �

� � � / � � (� � � � � . � � � �

� � � 4 � (� � � � � 0 � � � �

� � � 3 � (� � � � � 6 � � � �

� � 0 � � � � 4 �

� � . � � / �

� � 6 � � � � 3

� 	 " � # � $ � � $
 � � �
�
 �
 � � � � 	 " � # � $

� � 	 "
� � � � # � $� G

� H
�

G

� G

� H
�

G

PA4/PA5 Input/Output Ports

HT46R4A

Rev. 1.00 16 November 28, 2007

' � �

�

�

� � 	 � � � 	
 	 � � � � � �
 � �

� � �
 � � � � - �

� � � � # B � � +
� $
 � � �

� 	
 	 � - � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� + � $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � - �

� - 4 � � / 4 I � - . � � / .

� � � 2 I � � � 4

� � � � � � � � � � * � �
 � �

� � � 2
� � � 3
� � � 4

� � 	 "
� � � � # � $

� � 	 � � �
� � $ �

� � � � �
 � �

� G

� H
�

G

� G

� H
�

G

PB Input/Output Ports

' � �

� , � � � � � � � � � � 	 * � (� � �

�

�

� � 	 � � � 	
 	 � � � � � �
 � �

� � �
 � � � � - �

� � � � # B � � +
� $
 � � �

� 	
 	 � - � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� + � $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � - �

� , � � � � � � � $
 � � �

�

�

� � 	 "
� � � � # � $� G

� H
�

G

� G

� H
�

G

� � 1 � � , �
� � 4 � � � � 4
� � 3 � � � � 3

PA3/PFD and PD/PWM Input/Output Ports

HT46R4A

Rev. 1.00 17 November 28, 2007

Programming Considerations

Within the user program, one of the first things to con-

sider is port initialisation. After a reset, all of the I/O data

and port control registers will be set high. This means

that all I/O pins will default to an input state, the level of

which depends on the other connected circuitry and

whether pull-high options have been selected. If the port

control registers, PAC, PBC, PCC and PDC, are then

programmed to setup some pins as outputs, these out-

put pins will have an initial high output value unless the

associated port data registers, PA, PB, PC and PD, are

first programmed. Selecting which pins are inputs and

which are outputs can be achieved byte-wide by loading

the correct values into the appropriate port control regis-

ter or by programming individual bits in the port control

register using the �SET [m].i� and �CLR [m].i� instruc-

tions. Note that when using these bit control instruc-

tions, a read-modify-write operation takes place. The

microcontroller must first read in the data on the entire

port, modify it to the required new bit values and then re-

write this data back to the output ports.

Port A has the additional capability of providing wake-up

functions. When the device is in the Power Down Mode,

various methods are available to wake the device up.

One of these is a high to low transition of any of the Port

A pins. Single or multiple pins on Port A can be setup to

have this function.

Timer/Event Counters

The provision of timers form an important part of any

microcontroller, giving the designer a means of carrying

out time related functions. The device contains two 8-bit

count up timers. With three different operating modes,

the timers can be configured to operate as a general

timer, an external event counter or as a Pulse Width

Measurement device. The provision of an internal 8-

stage prescaler to the one clock circuitry of the timer/

event counters gives added range to the timer.

There are two types of registers related to the

Timer/Event Counters. The first is the register that con-

tains the actual value of the timer and into which an ini-

tial value can be preloaded. Reading from this register

retrieves the contents of the Timer/Event Counter. The

second type of associated register is the timer control

register which defines the timer options and determines

how the timer is to be used. The devices can have the

timer clock configured to come from the internal clock

source. In addition, the timer clock source can also be

configured to come from an external timer pin.

An external clock source is used when the timer is in the

event counting mode, the clock source being provided

on pin-shared pin PA4/TMR0 or PA7/TMR1. Depending

upon the condition of the T0E or T1E bit in the corre-

sponding timer control register, each high to low, or low

to high transition on the external timer input pin will in-

crement the counter by one.

Configuring the Timer/Event Counter Input Clock

Source

The internal timer
s clock can originate from various

sources, depending upon which timer is chosen. The in-

ternal clock input timer source is used when the timer is

in the timer mode or in the Pulse Width Measurement

mode. Depending upon which timer is chosen this sys-

tem clock timer source may be first divided by a

prescaler, the division ratio of which is conditioned by

the timer control register bits PSC2~PSC0.

An external clock source is used when the timer is in the

event counting mode, the clock source being provided

on an external timer pin, TMR0 or TMR1 depending

upon which timer is used. Depending upon the condition

of the T0E or T1E bit, each high to low, or low to high

transition on the external timer pin will increment the

counter by one.

Timer Register � TMR0, TMR1

The timer register are special function register location

within the special purpose Data Memory where the ac-

tual timer value is stored. The value in the timer registers

increases by one each time an internal clock pulse is re-

ceived or an external transition occurs on the

PA4/TMR0 or PA7/TMR1 pin. The timer will count from

the initial value loaded by the preload register to the full

count value of FFH at which point the timer overflows

and an internal interrupt signal generated. The timer

value will then be reset with the initial preload register

value and continue counting. For a maximum full range

count of 00H to FFH the preload register must first be

cleared to 00H. It should be noted that after power-on

the preload register will be in an unknown condition.

Note that if the Timer/Event Counter is not running and

data is written to its preload register, this data will be im-

mediately written into the actual counter. However, if the

counter is enabled and counting, any new data written

into the preload register during this period will remain in

the preload register and will only be written into the ac-

tual counter the next time an overflow occurs.

� 3 � 2 � 1 � 0 � 3 � 2 � 1 � 0

� � �
 � �
 � � � � �
 � � 	 � � (� � � � � � �

�
 �
 � � � � � � � "

� � �
 � � 	
 	

Read/Write Timing

HT46R4A

Rev. 1.00 18 November 28, 2007

Timer Control Register � TMR0C, TMR1C

The flexible features of the Holtek microcontroller Timer/

Event Counters enable them to operate in three different

modes, the options of which are determined by the con-

tents of their respective control register. The device con-

tains two timer control registers known as TMR0C and

TMR1C. It is the timer control register together with its

corresponding timer registers that control the full opera-

tion of the Timer/Event Counters. Before the timers can

be used, it is essential that the appropriate timer control

register is fully programmed with the right data to ensure

its correct operation, a process that is normally carried

out during program initialisation.

To choose which of the three modes the timer is to oper-

ate in, either in the timer mode, the event counting mode

or the Pulse Width Measurement mode, bits 7 and 6 of

the Timer Control Register, which are known as the bit

pair T0M1/T0M0 or T1M1/T1M0 respectively, depend-

ing upon which timer is used, must be set to the required

logic levels. The timer-on bit, which is bit 4 of the Timer

Control Register and known as T0ON or T1ON, depend-

ing upon which timer is used, provides the basic on/off

control of the respective timer. Setting the bit high allows

the counter to run, clearing the bit stops the counter.

Timer/Event Counter 0 also contains a prescaler func-

tion, with bits 0~2 of the Timer Control Register deter-

mining the division ratio of the input clock. The prescaler

bit settings have no effect if an external clock source is

used. If the timer is in the Event Count or Pulse Width

Measurement mode, the active transition edge level

type is selected by the logic level of bit 3 of the Timer

Control Register which is known as T0E or T1E, de-

pending upon which timer is used.

Configuring the Timer Mode

In this mode, the timer can be utilized to measure fixed

time intervals, providing an internal interrupt signal each

time the counter overflows. To operate in this mode, the

bit pair, T0M1/T0M0 or T1M1/T1M0, depending upon

which timer is used, must be set to 1 and 0 respectively.

In this mode the internal clock is used as the timer clock.

Note that for the Timer/Event Counter 0, the timer input

clock frequency is further divided by a prescaler, the

value of which is determined by the bits PSC2~PSC0 in

the Timer Control Register. The timer-on bit, T0ON or

T1ON depending upon which timer is used, must be set

high to enable the timer to run. Each time an internal

clock high to low transition occurs, the timer increments

by one; when the timer is full and overflows, an interrupt

signal is generated and the timer will preload the value

already loaded into the preload register and continue

counting. A timer overflow condition and corresponding

internal interrupt is one of the wake-up sources, how-

ever, the internal interrupts can be disabled by ensuring

that the ET0I and ET1I bits of the respective interrupt

register are reset to zero. It should be noted that a timer

overflow is one of the interrupt and wake-up sources.

� � 0 � � � � 4

� 4 7

� � � � � � 7 * � �
 � � � � �
 � �
� � � � � � � �
 � � �

� 4 � /

� � � � � 	 � � � � � � �
 � �

� � � � � � 7 * � �

� � � �
 � �

� 	
 	 � - � �

� � � � 	 �

� * � � (� � D

 � � � �
 � � � � $

� � � 2

8 # �
 	 � � � � � � � � 	 � � �

� � � 2 I � � � 4
: 3 � 3 I 3 � 3 2 8 ;

8 # - �
 � � � � � � � 7 * � �
 � � � � �
 � �

� 4 � 3 � 4 � 4

� � (� > �

� , ��

8-bit Timer/Event Counter 0 Structure

� � 6 � � � � 3

� 3 7

� � � � � � 7 * � �
 � � � � �
 � �
� � � � � � � �
 � � �

� 3 � /

� � � � � 	 � � � � � � �
 � �

� � � � � � 7 * � �

� � � �
 � �

� 	
 	 � - � �

� � � � 	 �

� * � � (� � D

 � � � �
 � � � � $

8 # - �
 � � � � � � � 7 * � �
 � � � � �
 � �

� 3 � 3 � 3 � 4

� � (� > � � 0

8-bit Timer/Event Counter 1 Structure

HT46R4A

Rev. 1.00 19 November 28, 2007

� & � ' (� � � � � � � � �

/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

% 6

7 * � �
 � � � � �
 � � � � �
 � * � � 7 � � � � � � � � �

3 ? � � � � �
 � � � � (� � � � � � � � � �
4 ? � � � � �
 � � � � � � � � � � � � � � � �

� 4 7� 4 � /� 4 � 4� 4 � 3

� � � � � � � � � � � 	 � � � � � 	
 � � � � � � �

% 4

� � � 2 � � � 3 � � � 4

� � � 3
4
4
3
3
4
4
3
3

� � � 2
4
4
4
4
3
3
3
3

� � � 4
4
3
4
3
4
3
4
3

� � � � � � � 	
 �
� � � � � 3 ? 3
� � � � � 3 ? 2
� � � � � 3 ? 0
� � � � � 3 ? 8
� � � � � 3 ? 3 5
� � � � � 3 ? 1 2
� � � � � 3 ? 5 0
� � � � � 3 ? 3 2 8

� � � � � � 7 * � �
 � � � � �
 � � � 4 � � � � �
 � � � � 7 � 	 % � �
3 ? � � � 	 % � �
4 ? � � � � 	 % � �

� $ � � 	
 � � � � � � � � � � � � � �

� 4 � 3
4
4
3
3

� 4 � 4
4
3
4
3

� � � � � � � � 	 * 	 � � 	 % � �
� * � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
$ � � � � � D � �
 + � � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 + � � � 	 � � � � � � �
 � � �
 � * � � 7 � � � � � � � � �

3 ? � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � @ � �
 � $ � � � � (� � � � � � � � � �
4 ? � �
 	 �
 � � � � �
 � � � � � � � (� � � � � � � � � � @ � �
 � $ � � � � � � � � � � � � � � � �

Timer/Event Counter 0 Control Register

� & �) (� � � � � � � � �

/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

% 6

7 * � �
 � � � � �
 � � � � �
 � * � � 7 � � � � � � � � �

3 ? � � � � �
 � � � � (� � � � � � � � � �
4 ? � � � � �
 � � � � � � � � � � � � � � � �

� 3 7� 3 � /� 3 � 4� 3 � 3

% 4

� � � � � � 7 * � �
 � � � � �
 � � � 3 � � � � �
 � � � � 7 � 	 % � �
3 ? � � � 	 % � �
4 ? � � � � 	 % � �

� $ � � 	
 � � � � � � � � � � � � � �

� 3 � 3
4
4
3
3

� 3 � 4
4
3
4
3

� � � � � � � � 	 * 	 � � 	 % � �
� * � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
$ � � � � � D � �
 + � � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 + � � � 	 � � � � � � �
 � � �
 � * � � 7 � � � � � � � � �

3 ? � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � @ � �
 � $ � � � � (� � � � � � � � � �
4 ? � �
 	 �
 � � � � �
 � � � � � � � (� � � � � � � � � � @ � �
 � $ � � � � � � � � � � � � � � � �

/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

Timer/Event Counter 1 Control Register

HT46R4A

Rev. 1.00 20 November 28, 2007

Configuring the Event Counter Mode

In this mode, a number of externally changing logic

events, occurring on the external timer pin, can be re-

corded by the internal timer. For the timer to operate in

the event counting mode, the bit pair T0M1/T0M0 or

T1M1/T1M0, depending upon which timer is used, must

be set to 0 and 1 respectively. The timer-on bit T0ON or

T1ON, depending upon which timer is used, must be set

high to enable the timer to count. Depending upon which

counter is used, if T0E or T1E is low, the counter will in-

crement each time the external timer pin receives a low

to high transition. If T0E or T1E is high, the counter will

increment each time the external timer pin receives a

high to low transition. As in the case of the other two

modes, when the counter is full, the timer will overflow

and generate an internal interrupt signal. The counter

will then preload the value already loaded into the

preload register. As the external timer pins are

pin-shared with other I/O pins, to ensure that the pin is

configured to operate as an event counter input pin, two

things have to happen. The first is to ensure that the

T0M1/T0M0 or T1M1/T1M0 bits place the Timer/Event

Counter in the event counting mode, the second is to en-

sure that the port control register configures the pin as

an input. It should be noted that a timer overflow is one

of the interrupt and wake-up sources. Also in the Event

Counting mode, the Timer/Event Counter will continue

to record externally changing logic events on the timer

input pin, even if the microcontroller is in the Power

Down Mode. As a result when the timer overflows it will

generate a wake-up and if the interrupts are enabled

also generate a timer interrupt signal.

Configuring the Pulse Width Measurement Mode

In this mode, the width of external pulses applied to the

pin-shared external pin PA4/TMR0 or PA7/TMR1 can be

measured. In the Pulse Width Measurement Mode the

timer clock source is supplied by the internal clock. For

the timer to operate in this mode, the bit pair

T0M1/T0M0 or T1M1/T1M0, depending upon which

timer is used, must both be set high. Depending upon

which counter is used, if T0E or T1E is low, once a high

to low transition has been received on the PA4/TMR0 or

PA7/TMR1 pin, the timer will start counting until the

PA4/TMR0 or PA7/TMR1 pin returns to its original high

level. At this point the T0ON or T1ON bit, depending

upon which counter is used, will be automatically reset

to zero and the timer will stop counting. If the T0E or T1E

bit is high, the timer will begin counting once a low to

high transition has been received on the PA4/TMR0 or

PA7/TMR1 pin and stop counting when the PA4/TMR0

or PA7/TMR1 pin returns to its original low level. As be-

fore, the T0ON or T1ON bit will be automatically reset to

zero and the timer will stop counting. It is important to

note that in the Pulse Width Measurement Mode, the

T0ON or T1ON bit is automatically reset to zero when

the external control signal on the external timer pin re-

turns to its original level, whereas in the other two

modes the T0ON or T1ON bit can only be reset to zero

under program control. The residual value in the timer,

which can now be read by the program, therefore repre-

sents the length of the pulse received on the PA4/TMR0

or PA7/TMR1 pin. As the T0ON or T1ON bit has now

been reset, any further transitions on the external timer

pin, will be ignored. Not until the T0ON or T1ON bit is

again set high by the program can the timer begin fur-

ther Pulse Width Measurements. In this way, single shot

pulse measurements can be easily made. It should be

noted that in this mode the counter is controlled by logi-

cal transitions on the PA4/TMR0 or PA7/TMR1 pin and

not by the logic level.

As in the case of the other two modes, when the counter

is full, the timer will overflow and generate an internal in-

terrupt signal. The counter will also be reset to the value

already loaded into the preload register. As the external

timer pins are pin-shared with other I/O pins, to ensure

that the pins are configured to operate as pulse width

measuring input pins, two things have to happen. The

first is to ensure that the T0M1/T0M0 or T1M1/T1M0 bits

place the Timer/Event Counter in the pulse width mea-

suring mode, the second is to ensure that the port con-

trol register configures the pin as an input. It should be

noted that a timer overflow is one of the interrupt and

wake-up sources.

� � � � � � � �

� � � � � � � � �
 � � � � � �

� � � � � 	 � � � � � �
 $ �

� � � � � � = � 3 � � � � � � = � 2 � � � � � � = � / � � � � � � = � / � = � 3

Timer Mode Timing Chart

� � � � � = 2

7 <
 � � � 	 � � 7 * � �

� � � � � � � �

� � � � � � � � � �
 � � � � � � � = 1� � � � � = 3

Event Counter Mode Timing Chart

HT46R4A

Rev. 1.00 21 November 28, 2007

= 3 = 2 = 1 = 0� � � � �

7 <
 � � � 	 � � � � � � �
� � � � � � $ �

� 4 � / � � � � � 3 � /
: D �
 + � � 4 7 � � � � � 3 7 J 4 ;

� � � � � 	 � � � � � �
 $ �

� � � � � � � �

� � � � � � � � � �
 � �

� � � � � 	 � � � � � �
 $ �
 � � � � � 	 � $ � � � � 	
 � � * � �
 � (� � � � � � � � � � � � (� � 3)

Pulse Width Measure Mode Timing Chart

� � � � � � � * � � (� � D

� , � � � � � � "

� � 1 � � 	
 	

� , � � � �
 $ �
 � 	
 � � � 1

PFD Output Control

Programmable Frequency Divider � PFD

The PFD output is pin-shared with the I/O pin PA3. The

PFD function is selected via configuration option, how-

ever, if not selected, the pin can operate as a normal I/O

pin. The timer overflow signal from Timer/Event Counter

0 is the clock source for the PFD circuit. The output fre-

quency is controlled by loading the required values into

the timer registers and programming the prescaler bits

to give the required division ratio. The counter, driven by

the system clock which is divided by the prescaler value,

will begin to count-up from this preload register value

until full, at which point an overflow signal is generated,

causing the PFD output to change state. The counter

will then be automatically reloaded with the preload reg-

ister value and continue counting-up.

For the PFD output to function, it is essential that the

corresponding bit of the Port A control register PAC bit 3

is setup as an output. If setup as an input the PFD output

will not function, however, the pin can still be used as a

normal input pin. The PFD output will only be activated if

bit PA3 is set to �1�. This output data bit is used as the

on/off control bit for the PFD output. Note that the PFD

output will be low if the PA3 output data bit is cleared to

�0�.

Using this method of frequency generation, and if a

crystal oscillator is used for the system clock, very pre-

cise values of frequency can be generated.

Prescaler

Bits PSC0~PSC2 of the TMR0C register can be used to

define the pre-scaling stages of the internal clock source

of Timer/Event Counter 0. The Timer/Event Counter 0

overflow signal can be used to generate signals for the

PFD and Timer 0 interrupt.

I/O Interfacing

The Timer/Event Counter, when configured to run in the

event counter or pulse width measurement mode, re-

quire the use of the external PA4/TMR0 or PA7/TMR1

pin for correct operation. As these pins are shared pins

they must be configured correctly to ensure they are

setup for use as Timer/Event Counter inputs and not as

normal I/O pins. This is implemented by ensuring that

the mode select bits in the Timer/Event Counter control

register, select either the event counter or pulse width

measurement mode. Additionally the Port Control Reg-

ister PAC bit 4 or bit 7 must be set high to ensure that the

pin is setup as an input. Any pull-high resistor configura-

tion option on this pin will remain valid even if the pin is

used as a Timer/Event Counter input.

Programming Considerations

When configured to run in the timer mode, the internal

system clock is used as the timer clock source and is

therefore synchronised with the overall operation of the

microcontroller. In this mode when the appropriate timer

register is full, the microcontroller will generate an inter-

nal interrupt signal directing the program flow to the re-

spective internal interrupt vector. For the pulse width

measurement mode, the internal system clock is also

used as the timer clock source but the timer will only run

when the correct logic condition appears on the external

HT46R4A

Rev. 1.00 22 November 28, 2007

timer input pin. As this is an external event and not syn-

chronised with the internal t imer clock, the

microcontroller will only see this external event when the

next timer clock pulse arrives. As a result, there may be

small differences in measured values requiring pro-

grammers to take this into account during programming.

The same applies if the timer is configured to be in the

event counting mode, which again is an external event

and not synchronised with the internal system or timer

clock.

When the Timer/Event Counter is read, or if data is writ-

ten to the preload register, the clock is inhibited to avoid

errors, however as this may result in a counting error, this

should be taken into account by the programmer. Care

must be taken to ensure that the timers are properly in-

itialised before using them for the first time. The associ-

ated timer enable bits in the interrupt control register must

be properly set otherwise the internal interrupt associated

with the timer will remain inactive. The edge select, timer

mode and clock source control bits in timer control regis-

ter must also be correctly set to ensure the timer is prop-

erly configured for the required application. It is also

important to ensure that an initial value is first loaded into

the timer registers before the timer is switched on; this is

because after power-on the initial values of the timer reg-

isters are unknown. After the timer has been initialised

the timer can be turned on and off by controlling the en-

able bit in the timer control register. Note that setting the

timer enable bit high to turn the timer on, should only be

executed after the timer mode bits have been properly

setup. Setting the timer enable bit high together with a

mode bit modification, may lead to improper timer oper-

ation if executed as a single timer control register byte

write instruction.

When the Timer/Event counter overflows, its corre-

sponding interrupt request flag in the interrupt control

register will be set. If the timer interrupt is enabled this

will in turn generate an interrupt signal. However irre-

spective of whether the interrupts are enabled or not, a

Timer/Event counter overflow will also generate a

wake-up signal if the device is in a Power-down condi-

tion. This situation may occur if the Timer/Event Counter

is in the Event Counting Mode and if the external signal

continues to change state. In such a case, the

Timer/Event Counter will continue to count these exter-

nal events and if an overflow occurs the device will be

woken up from its Power-down condition. To prevent

such a wake-up from occurring, the timer interrupt re-

quest flag should first be set high before issuing the

HALT instruction to enter the Power Down Mode.

Timer Program Example

This program example shows how the Timer/Event

Counter registers are setup, along with how the inter-

rupts are enabled and managed. Note how the

Timer/Event Counter 0 is turned on, by setting bit 4 of

the TMR0C as an independent instruction. The Timer/

Event Counter 0 can be turned off in a similar way by

clearing the same bit. This example program sets the

Timer/Event Counter 0 to be in the timer mode, which

uses the internal system clock as the clock source.

org 04h ; external interrupt vector
reti
org 08h ; Timer/Event Counter interrupt vector
jmp tmrint0 ; jump here when Timer/Event Counter 0 overflows
:
org 20h ; main program
;internal Timer/Event Counter 0 interrupt routine
tmrint0:
:
; Timer/Event Counter 0 main program placed here
:
reti
:
:
begin:
;setup Timer registers
mov a,09bh ; setup Timer preload value
mov tmr0,a;
mov a,081h ; setup Timer control register
mov tmrc0,a ; timer mode and prescaler set to /2
; setup interrupt register
mov a,005h ; enable Master and Timer/Event Counter 0 interrupt
mov intc0,a
set tmr0c.4 ; start Timer/Event Counter 0 - note mode bits must be previously setup

HT46R4A

Rev. 1.00 23 November 28, 2007

Pulse Width Modulator

The device contains two Pulse Width Modulation, PWM,

outputs. Useful for such applications such as motor

speed control, the PWM function provides outputs with a

fixed frequency but with a duty cycle that can be varied

by setting particular values into the corresponding PWM

register.

Channels
PWM

Mode

Output

Pins

Register

Name

2 6+2
PD0/

PD1

PWM0/

PWM1

Two registers are provided and are known as PWM0

and PWM1. It is in these registers, that the 8-bit value,

which represents the overall duty cycle of one modula-

tion cycle of the output waveform, should be placed. To

increase the PWM modulation frequency, each modula-

tion cycle is modulated into four individual modulation

sub-sections, known as the 6+2 mode. Note that it is

only necessary to write the required modulation value

into the corresponding PWM register as the subdivision

of the waveform into its sub-modulation cycles is imple-

mented automatically within the microcontroller hard-

ware. For all devices, the PWM clock source is the

system clock fSYS.

This method of dividing the original modulation cycle

into a further 4 sub-cycles enables the generation of

higher PWM frequencies, which allow a wider range of

applications to be served. As long as the periods of the

generated PWM pulses are less than the time constants

of the load, the PWM output will be suitable as such long

time constant loads will average out the pulses of the

PWM output. The difference between what is known as

the PWM cycle frequency and the PWM modulation fre-

quency should be understood. As the PWM clock is the

system clock, fSYS, and as the PWM value is 8-bits wide,

the overall PWM cycle frequency is fSYS/256, while the

PWM modulation frequency for the 6+2 mode of opera-

tion will be fSYS/64.

PWM

Modulation

Frequency

PWM Cycle

Frequency

PWM Cycle

Duty

fSYS/64 fSYS/256
(PWM register

value)/256

6+2 PWM Mode

Each full PWM cycle, as it is controlled by an 8-bit PWM,

PWM0 or PWM1 register, has 256 clock periods. How-

ever, in the 6+2 PWM Mode, each PWM cycle is subdi-

vided into four individual sub-cycles known as

modulation cycle 0~modulation cycle 3, denoted as �i�
in the table. Each one of these four sub-cycles contains

64 clock cycles. In this mode, a modulation frequency

increase by a factor of four is achieved. The 8-bit PWM,

PWM0 or PWM1 register value, which represents the

overall duty cycle of the PWM waveform, is divided into

two groups. The first group which consists of bit2~bit7 is

denoted here as the DC value. The second group which

consists of bit0~bit1 is known as the AC value. In the

6+2 PWM mode, the duty cycle value of each of the four

modulation sub-cycles is shown in the following table.

Parameter AC (0~3)
DC

(Duty Cycle)

Modulation cycle i

(i=0~3)

i<AC
DC 1

64

+

i�AC
DC

64

6+2 Mode Modulation Cycle Values

The diagram illustrates the waveforms associated with

the 6+2 mode of PWM operation. It is important to note

how the single PWM cycle is subdivided into 4 individual

modulation cycles, numbered from 0~3 and how the AC

value is related to the PWM value.

PWM Output Control

The PWM outputs are pin-shared with pins PD0 and

PD1. To operate as PWM outputs and not as I/O pins,

the correct PWM configuration options must be se-

lected. A �0� must also be written to the corresponding

bit in the I/O port control register, PDC, to ensure that

the required PWM output pin is setup as an output. After

these two initial steps have been carried out, and of

course after the required PWM value has been written

into the PWM register, writing a �1� to the corresponding

bit in the PD output data register will enable the PWM

data to appear on the pin. Writing a �0� to the corre-

sponding bit in the PD output data register will disable

the PWM output function and force the output low. In this

way, the Port D data output register can be used as an

on/off control for the PWM function. Note that if the con-

figuration options have selected the PWM function, but

a �1� has been written to its corresponding bit in the

PDC control register to configure the pin as an input,

then the pin can still function as a normal input line, with

pull-high resistor options.

HT46R4A

Rev. 1.00 24 November 28, 2007

PWM Programming Example

The following sample program shows how the PWM outputs are setup and controlled. Before use the corresponding

PWM output configuration options must first be selected.

mov a,64h ; setup PWM0 value of 100 decimal which is 64H
mov pwm0,a
clr pdc.0 ; setup pin PD0 as an output
set pd.0 ; PD.0=1; enable the PWM0 output
: :
: :

clr pd.0 ; disable the PWM0 output - PD0 will remain low

(� > � � 2

� � �

A � � � C � J 3 4 4

A � � � C � J 3 4 3

� � �

A � � � C � J 3 4 2

� � �

A � � � C � J 3 4 1

� � �

� � � � �
 � � � � ? � 2 . 5 � (� > �

2 . � 5 0

2 5 � 5 0

2 5 � 5 0

2 5 � 5 0

2 . � 5 0 2 . � 5 0 2 . � 5 0

2 . � 5 0

2 . � 5 0

2 . � 5 0

2 . � 5 0

2 5 � 5 0

2 5 � 5 0

2 . � 5 0

2 . � 5 0

2 5 � 5 0 2 . � 5 0

2 5 � 5 0

2 5 � 5 0

2 5 � 5 0

� � � � � 	
 � � � � �
 � � � � 4

� � � � � � � � � 	
 � � � � $ � � � � � � ? � 5 0 � (� > �

� � � � � 	
 � � � � �
 � � � � 3 � � � � � 	
 � � � � �
 � � � � 2 � � � � � 	
 � � � � �
 � � � � 1 � � � � � 	
 � � � � �
 � � � � 4

6+2 PWM Mode

� * & ' + � � * &) � � � � � � � � �

% 6 % 4

� � � � * 	 � � �

� � � * 	 � � �

Pulse Width Modulation Registers

HT46R4A

Rev. 1.00 25 November 28, 2007

Analog to Digital Converter

The need to interface to real world analog signals is a

common requirement for many electronic systems.

However, to properly process these signals using a

microcontroller, they must first be converted into digital

signals by A/D converters. By integrating the A/D con-

version electronic circuitry into the microcontroller, the

need for external components is reduced significantly

with the corresponding follow-on benefits of lower costs

and reduced component space requirements.

A/D Overview

The device contains a 6-channel analog to digital con-

verter which can directly interface to external analog sig-

nals, such as that from sensors or other control signals

and convert these signals directly into an 9-bit digital

value.

Input Channels Conversion Bits Input Pins

6 9 PB0~PB5

The diagram shows the overall internal structure of the

A/D converter, together with its associated registers.

A/D Converter Data Registers � ADRL, ADRH

The device, has a 9-bit A/D converter, two registers are

required, a high byte register, known as ADRH, and a

low byte register, known as ADRL. After the conversion

process takes place, these registers can be directly read

by the microcontroller to obtain the digitised conversion

value. For devices which use two A/D Converter Data

Registers, note that only the high byte register ADRH

utilises its full 8-bit contents. The low byte register uti-

lises only 1 bit of its 8-bit contents as it contains only the

lowest bit of the 9-bit converted value.

In the following table, D0~D8 is the A/D conversion data

result bits.

Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADRL D0 � � � � � � �

ADRH D8 D7 D6 D5 D4 D3 D2 D1

A/D Data Register

A/D Converter Control Register � ADCR

To control the function and operation of the A/D con-

verter, a control register known as ADCR is provided.

This 8-bit register defines functions such as the selec-

tion of which analog channel is connected to the internal

A/D converter, which pins are used as analog inputs and

which are used as normal I/Os as well as controlling the

start function and monitoring the A/D converter end of

conversion status.

One section of this register contains the bits

ACS2~ACS0 which define the channel number. As each

of the devices contains only one actual analog to digital

converter circuit, each of the individual 6 analog inputs

must be routed to the converter. It is the function of the

ACS2~ACS0 bits in the ADCR register to determine

which analog channel is actually connected to the inter-

nal A/D converter.

The ADCR control register also contains the

PCR2~PCR0 bits which determine which pins on Port B

are used as analog inputs for the A/D converter and

which pins are to be used as normal I/O pins. If the 3-bit

address on PCR2~PCR0 has a value of �110�, then all

six pins, namely AN0, AN1, AN2, AN3, AN4 and AN5 will

all be set as analog inputs. Note that if the PCR2~PCR0

bits are all set to zero, then all the Port B pins will be setup

as normal I/Os and the internal A/D converter circuitry will

be powered off to reduce the power consumption.

� � � � " � � � � � � �
(� > � � 2

� / � � � � � � � � � �
 � �

� � �

' � �

� - 4 � � / 4

� - . � � / .

� � � � � � (� � � � � � � * � �
 	 � �

� � � !

� � � B

� � � 4 I � � � 2 � � � � 4 I � � � � 2 � � � � � 7 � � -
� � � �
� � � � �
 � �

� � � � � � � (� � � � 	
 � � �
- �
 �

� + 	 � � � � � � � � � �

- �
 �

�
 	 �
 � 	 � � � 7 � � � � (
� � � * � � � � � � � - �
 �

� � � � " � � � * � � � � � 	
 � �

A/D Converter Structure

HT46R4A

Rev. 1.00 26 November 28, 2007

The START bit in the ADCR register is used to start and

reset the A/D converter. When the microcontroller sets

this bit from low to high and then low again, an analog to

digital conversion cycle will be initiated. When the

START bit is brought from low to high but not low again,

the EOCB bit in the ADCR register will be set to a �1�
and the analog to digital converter will be reset. It is the

START bit that is used to control the overall on/off opera-

tion of the internal analog to digital converter.

The EOCB bit in the ADCR register is used to indicate

when the analog to digital conversion process is com-

plete. This bit will be automatically set to �0� by the

microcontroller after a conversion cycle has ended. In

addition, the corresponding A/D interrupt request flag

will be set in the interrupt control register, and if the inter-

rupts are enabled, an appropriate internal interrupt sig-

nal will be generated. This A/D internal interrupt signal

will direct the program flow to the associated A/D inter-

nal interrupt address for processing. If the A/D internal

interrupt is disabled, the microcontroller can be used to

poll the EOCB bit in the ADCR register to check whether

it has been cleared as an alternative method of detect-

ing the end of an A/D conversion cycle.

A/D Converter Clock Source Register � ACSR

The clock source for the A/D converter, which originates

from the system clock fSYS, is first divided by a division

ratio, the value of which is determined by the ADCS1

and ADCS0 bits in the ACSR register.

Although the A/D clock source is determined by the sys-

tem clock fSYS, and by bits ADCS1 and ADCS0, there are

some limitations on the maximum A/D clock source speed

that can be selected. As the minimum value of permissible

A/D clock period, tAD is 1�s, care must be taken for system

clock speeds in excess of 2MHz. For system clock speeds

in excess of 2MHz, the ADCS1 and ADCS0 bits should not

be set to �00�. Doing so will give A/D clock periods that are

less than the minimum A/D clock period which may result

in inaccurate A/D conversion values. Refer to the following

table for examples, where values marked with an asterisk

* show where, depending upon the device, special care

must be taken, as the values may be less than the speci-

fied minimum A/D Clock Period.

� � (� � � � � � � � � �

� � � � �
 � � � � � � + 	 � � � �

% 6 % 4

� � � � � � � � 2 � � � 3 � � � 4 � � � 2 � � � 3 � � � 4

� � � 3
4
4
3
3
4
4
3

� � � 2
4
4
4
4
3
3
3

� � � 4
4
3
4
3
4
3
�

? � � / 4
? � � / 3
? � � / 2
? � � / 1
? � � / 0
? � � / .
? � � � � � (� � � � @ � � � �
 � � �
 � % � � � � � � �

� � �
 � - � � � � � � + 	 � � � � � � � � (� � � � 	
 � � � �

� � � 2
4
4
4
4
3
3
3

� � � 3
4
4
3
3
4
4
3

� � � 4
4
3
4
3
4
3
4

? � � � � �
 � - � � � � � � + 	 � � � � � � # � 	 � � � � ((
? � � � - 4 � � � 	 % � � � � 	 � � � / 4
? � � � - 4 I � - 3 � � � 	 % � � � � 	 � � � / 4 I � / 3
? � � � - 4 I � - 2 � � � 	 % � � � � 	 � � � / 4 I � / 2 �
? � � � - 4 I � - 1 � � � 	 % � � � � 	 � � � / 4 I � / 1
? � � � - 4 I � - 0 � � � 	 % � � � � 	 � � � / 4 I � / 0
? � � � - 4 I � - . � � � 	 % � � � � 	 � � � / 4 I � / .

7 � � � � (� � � � � � � � * � � � � � � � (� 	 �
3 ? � � �
 � � � � � � (� � � � � � � � * � � � � � � � # � � � � � � � � * � � � � � � � D 	 �
 � � � � � � � � � � $ � � � � � � �
4 ? � � � � � � (� � � � � � � � * � � � � � � � # � � � � � � � � * � � � � � � � � � � � �

�
 	 �
 �
 + � � � � � � � � � * � � � � � �

4 � � � 3 � � � 4 � ? � �
 	 �

4 � � � 3 � ? � � � � �
 � � � � � � � � * � �
 � � � 	 � � � � �
 � 7 � � - �
 � � E 3 E

7 � � -

A/D Converter Control Register

� (
 � � � � � � � � � �

� � � � �
 � � � � � � � � * � �
 � � � � � � � " � � � � � � �

% 6 % 4

� 7 � � � � � � 3 � � � � 4

� � � � 3
4
4
3
3

� � � � 4
4
3
4
3

? � �
 �
 � � � � � � � " � 2
? � �
 �
 � � � � � � � " � 8
? � �
 �
 � � � � � � � " � 1 2
? � � � � � (� � � �

/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

, � � �
 � �
 � � � � � � � � � � � � �

A/D Converter Clock Source Register

HT46R4A

Rev. 1.00 27 November 28, 2007

fSYS

A/D Clock Period (tAD)

ADCS1, ADCS0=00

(fSYS/2)

ADCS1, ADCS0=01

(fSYS/8)

ADCS1, ADCS0=10

(fSYS/32)

ADCS1, ADCS0=11

1MHz 2�s 8�s 32�s Undefined

2MHz 1�s 4�s 16�s Undefined

4MHz 500ns* 2�s 8�s Undefined

8MHz 250ns* 1�s 4�s Undefined

A/D Clock Period Examples

A/D Input Pins

All of the A/D analog input pins are pin-shared with the

I/O pins on Port B. Bits PCR2~PCR0 in the ADCR regis-

ter, not configuration options, determine whether the in-

put pins are setup as normal Port B input/output pins or

whether they are setup as analog inputs. In this way, pins

can be changed under program control to change their

function from normal I/O operation to analog inputs and

vice versa. Pull-high resistors, which are setup through

configuration options, apply to the input pins only when

they are used as normal I/O pins, if setup as A/D inputs

the pull-high resistors will be automatically disconnected.

Note that it is not necessary to first setup the A/D pin as

an input in the PBC port control register to enable the A/D

input, when the PCR2~PCR0 bits enable an A/D input,

the status of the port control register will be overridden.

The VDD power supply pin is used as the A/D converter

reference voltage, and as such analog inputs must not be

allowed to exceed this value. Appropriate measures

should also be taken to ensure that the VDD pin remains

as stable and noise free as possible.

Initialising the A/D Converter

The internal A/D converter must be initialised in a spe-

cial way. Each time the Port B A/D channel selection bits

are modified by the program, the A/D converter must be

re-initialised. If the A/D converter is not initialised after

the channel selection bits are changed, the EOCB flag

may have an undefined value, which may produce a

false end of conversion signal. To initialise the A/D con-

verter after the channel selection bits have changed,

then, within a time frame of one to ten instruction cycles,

the START bit in the ADCR register must first be set high

and then immediately cleared to zero. This will ensure

that the EOCB flag is correctly set to a high condition.

Summary of A/D Conversion Steps

The following summarizes the individual steps that

should be executed in order to implement an A/D con-

version process.

� Step 1

Select the required A/D conversion clock by correctly

programming bits ADCS1 and ADCS0 in the ACSR

register.

� Step 2

Select which channel is to be connected to the internal

A/D converter by correctly programming the

ACS2~ACS0 bits which are also contained in the

ADCR register.

� Step 3

Select which pins on Port B are to be used as A/D in-

puts and configure them as A/D input pins by correctly

programming the PCR2~PCR0 bits in the ADCR reg-

ister. Note that this step can be combined with Step 2

into a single ADCR register programming operation.

� Step 4

If the interrupts are to be used, the interrupt control

registers must be correctly configured to ensure the

A/D converter interrupt function is active. The master

interrupt control bit, EMI, in the INTC0 interrupt control

register must be set to �1� and the A/D converter inter-

rupt bit, EADI, in the INTC1 register must also be set

to �1�.

� Step 5

The analog to digital conversion process can now be

initialised by setting the START bit in the ADCR regis-

ter from �0� to �1� and then to �0� again. Note that this

bit should have been originally set to �0�.

� Step 6

To check when the analog to digital conversion pro-

cess is complete, the EOCB bit in the ADCR register

can be polled. The conversion process is complete

when this bit goes low. When this occurs the A/D data

registers ADRL and ADRH can be read to obtain the

conversion value. As an alternative method if the in-

terrupts are enabled and the stack is not full, the pro-

gram can wait for an A/D interrupt to occur.

Note: When checking for the end of the conversion

process, if the method of polling the EOCB bit in

the ADCR register is used, the interrupt enable

step above can be omitted.

HT46R4A

Rev. 1.00 28 November 28, 2007

The following timing diagram shows graphically the various stages involved in an analog to digital conversion process

and its associated timing.

The setting up and operation of the A/D converter func-

tion is fully under the control of the application program as

there are no configuration options associated with the

A/D converter. After an A/D conversion process has been

initiated by the application program, the microcontroller

internal hardware will begin to carry out the conversion,

during which time the program can continue with other

functions. The time taken for the A/D conversion is equal

to 76tAD where tAD is the A/D clock period tAD.

Programming Considerations

When programming, special attention must be given to

the A/D channel selection bits in the ADCR register. If

these bits are all cleared to zero no external pins will be

selected for use as A/D input pins allowing the pins to be

used as normal I/O pins. When this happens the power

supplied to the internal A/D circuitry will be reduced re-

sulting in a reduction of supply current. This ability to re-

duce power by turning off the internal A/D function by

clearing the A/D channel selection bits may be an impor-

tant consideration in battery powered applications.

Another important programming consideration is that

when the A/D channel selection bits change value the

A/D converter must be re-initialised. This is achieved by

pulsing the START bit in the ADCR register immediately

after the channel selection bits have changed state. The

exception to this is where the channel selection bits are

all cleared, in which case the A/D converter is not re-

quired to be re-initialised.

A/D Programming Example

The following two programming examples illustrate how

to setup and implement an A/D conversion. In the first

example, the method of polling the bit in the ADCR reg-

ister is used to detect when the conversion cycle is com-

plete, whereas in the second example, the A/D interrupt

is used to determine when the conversion is complete.

4 4 4 -

4 4 4 -

4 3 3 -

4 3 4 -

� � � � �

7 � � -

� � � 2 I
� � � 4

� � � 2 I
� � � 4

� � D � � # � �
� � � �

7 � � � � (� � � �
� � � * � � � � � �3 ? � � � (� � � � � - � � � � (� � � � 	
 � � �

2 ? � � � � � �
 � 	 � 	 � � � � � + 	 � � � �

�
 	 �
 � � (� � � �
� � � * � � � � � �

� � � �
 � � � �
� � � * � �
 � �

4 4 4 -

�
 	 �
 � � (� � � �
� � � * � � � � � �

� � � �
 � � � �
� � � * � �
 � �

4 4 4 -

3) � � - � $ � �
 � � �
 � $ � 	 � � � � � �
2) � � � � � � � � * � �
 � � � � � � $ � D � � � � � � ((
� � � �
 � � � � � � � � � $ � D � � � � � � � � � $
 � � �

3 4 4 -

4 4 3 -

�
 	 �
 � � (� � � �
� � � * � � � � � �

� � � �
 � � � �
� � � * � �
 � �

� � � �
 � � 	 � �

7 � � � � (� � � �
� � � * � � � � � �

7 � � � � (� � � �
� � � * � � � � � �

� � � � � � % �
 � � �
 � + � � + � D �
 + � � � � � � �
 � �
 � � � � � �
 � � �
 � � � � �
 � � � � � 	 (
 � � �
 + � � � � � 4 I � � � 2 � % �
 � � � + 	 � � � � �
 	
 �

� � � � � � � � " � � � �
 � % � � (� > � � 2 @ � (� > � � 8 � � � � (� > � � 1 2/ �
 � ? �

� � � � � 	 � $ � � � � �
 � � � � � � � � 	 � $ � � � � �
 � � �� � � � � 	 � $ � � � � �
 � � �

� � 1 2
 � � � � 1 2
 � � � � 1 2
 � �

 � � �

� � � � � � � * � � � � � � �
 � � � � � � � � � � * � � � � � � �
 � � � � � � � � � � * � � � � � � �
 � � �

 � � �
 � � �

A/D Conversion Timing

Example: using an EOCB polling method to detect the end of conversion

clr EADI ; disable ADC interrupt
mov a,00000001B
mov ACSR,a ; setup the ACSR register to select fSYS/8 as

; the A/D clock
mov a,00100000B ; setup ADCR register to configure Port PB0~PB3

; as A/D inputs
mov ADCR,a ; and select AN0 to be connected to the A/D

; converter
:
: ; As the Port B channel bits have changed the

; following START
; signal (0-1-0) must be issued within 10
; instruction cycles

:

HT46R4A

Rev. 1.00 29 November 28, 2007

Start_conversion:
clr START
set START ; reset A/D
clr START ; start A/D

Polling_EOC:
sz EOCB ; poll the ADCR register EOCB bit to detect end

; of A/D conversion
jmp polling_EOC ; continue polling
mov a,ADRL ; read low byte conversion value
mov adr_low_buffer,a ; save result to user defined memory
mov a,ADRH ; read high byte conversion value
mov adr_high_buffer,a ; save result to user defined memory

:
jmp start_conversion ; start next A/D conversion

Example: using an interrupt method to detect the end of conversion

clr EADI ; disable ADC interrupt
a,00000001B

mov ACSR,a ; setup the ACSR register to select fSYS/8 as
; the A/D clock

mov a,00100000B ; setup ADCR register to configure Port PB0~PB3
; as A/D inputs

mov ADCR,a ; and select AN0 to be connected to the A/D
; converter

:
; As the Port B channel bits have changed the
; following START
; signal (0-1-0) must be issued within 10
; instruction cycles

:
Start_conversion:

clr START
set START ; reset A/D
clr START ; start A/D
clr ADF ; clear ADC interrupt request flag
set EADI ; enable ADC interrupt
set EMI ; enable global interrupt

:
:
:

; ADC interrupt service routine
ADC_ISR:

mov acc_stack,a ; save ACC to user defined memory
mov a,STATUS
mov status_stack,a ; save STATUS to user defined memory

:
:

mov a,ADRL ; read low byte conversion value
mov adr_low_buffer,a ; save result to user defined register
mov a,ADRH ; read high byte conversion value
mov adr_high_buffer,a ; save result to user defined memory

:
EXIT_INT_ISR:

mov a,status_stack
mov STATUS,a ; restore STATUS from user defined memory
mov a,acc_stack ; restore ACC from user defined memory
reti

HT46R4A

Rev. 1.00 30 November 28, 2007

A/D Transfer Function

As the device contains a 9-bit A/D converter, its

full-scale converted digitised value is equal to 1FFH giv-

ing a single bit analog input value of VDD/512. The graph

show the ideal transfer function between the analog in-

put value and the digitised output value for the A/D con-

verter.

Note that to reduce the quantisation error, a 0.5 LSB off-

set is added to the A/D Converter input. Except for the

digitised zero value, the subsequent digitised values will

change at a point 0.5 LSB below where they would

change without the offset, and the last full scale digitised

value will change at a point 1.5 LSB below the VDD level.

Interrupts

Interrupts are an important part of any microcontroller

system. When an external event or an internal function

such as a Timer/Event Counter or an A/D converter re-

quires microcontroller attention, their corresponding in-

terrupt will enforce a temporary suspension of the main

program allowing the microcontroller to direct attention

to their respective needs. Each device in this series con-

tains a single external interrupt and two internal inter-

rupts functions. The external interrupt is controlled by

the action of the external INT pin, while the internal inter-

rupts are controlled by the Timer/Event Counter over-

flow and the A/D converter interrupt.

Interrupt Register

Overall interrupt control, which means interrupt enabling

and request flag setting, is controlled by INTC0 and

INTC1 registers, which are located in Data Memory. By

controlling the appropriate enable bits in this register

each individual interrupt can be enabled or disabled.

Also when an interrupt occurs, the corresponding re-

quest flag will be set by the microcontroller. The global

enable flag if cleared to zero will disable all interrupts.

Interrupt Operation

A Timer/Event Counter overflow, an end of A/D conver-

sion or the external interrupt line being pulled low will all

generate an interrupt request by setting their corre-

sponding request flag, if their appropriate interrupt en-

able bit is set. When this happens, the Program

Counter, which stores the address of the next instruction

to be executed, will be transferred onto the stack. The

Program Counter will then be loaded with a new ad-

dress which will be the value of the corresponding inter-

rupt vector. The microcontroller will then fetch its next

instruction from this interrupt vector. The instruction at

this vector will usually be a JMP statement which will

jump to another section of program which is known as

the interrupt service routine. Here is located the code to

control the appropriate interrupt. The interrupt service

routine must be terminated with a RETI statement,

which retrieves the original Program Counter address

from the stack and allows the microcontroller to continue

with normal execution at the point where the interrupt

occurred.

The various interrupt enable bits, together with their as-

sociated request flags, are shown in the following dia-

gram with their order of priority.

Once an interrupt subroutine is serviced, all the other in-

terrupts will be blocked, as the EMI bit will be cleared au-

tomatically. This will prevent any further interrupt nesting

from occurring. However, if other interrupt requests oc-

cur during this interval, although the interrupt will not be

immediately serviced, the request flag will still be re-

corded. If an interrupt requires immediate servicing

while the program is already in another interrupt service

routine, the EMI bit should be set after entering the rou-

tine, to allow interrupt nesting. If the stack is full, the in-

terrupt request will not be acknowledged, even if the

related interrupt is enabled, until the Stack Pointer is

decremented. If immediate service is desired, the stack

must be prevented from becoming full.

3 , 7 B

: � � � � � � � � � ;

� � � � � � � * � � � � � �
� � � � �

3 , , B

3 , � B

4 1 B

4 2 B

4 3 B

4) . � ! � -

4 3 2 1 . 4 9 . 3 4 . 3 3 . 3 2

� � 	 � � � � � � $ �
 � ' � �
 	 � �

3) . � ! � -

' � �

. 3 2

Ideal A/D Transfer Function

HT46R4A

Rev. 1.00 31 November 28, 2007

 , � () � � � � � � � � �

% 6 % 4

7 � � �

� � � � � � � * � �
 � � � � �
 � � � � $
 � � � 	 % � �
3 ? � � � 	 % � �
4 ? � � � � 	 % � �

/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

� � � � � � � * � �
 � � � � �
 � � � � $
 � � � K � � �
 � (� 	 �
3 ? � 	 �
 � * �
4 ? � � � 	 �
 � * �

/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

� � � ,

/ �
 � � � $ � � � � �
 � � @ � � � 	 � � 	 � � E 4 E

Interrupt Control Registers

 , � (' � � � � � � � � �

� 	 �
 � � � � �
 � � � � $
 � � � � % 	 � � � � 	 % � �
3 ? � � � � % 	 � � � � 	 % � �
4 ? � � � � % 	 � � � � � 	 % � �

7 <
 � � � 	 � � � �
 � � � � $
 � � � 	 % � �
3 ? � � � 	 % � �
4 ? � � � � 	 % � �

� � � � � � 7 * � �
 � � � � �
 � � � 4 � � �
 � � � � $
 � � � 	 % � �
3 ? � � � 	 % � �
4 ? � � � � 	 % � �

� � � � � � 7 * � �
 � � � � �
 � � � 3 � � �
 � � � � $
 � � � 	 % � �
3 ? � � � 	 % � �
4 ? � � � � 	 % � �

7 <
 � � � 	 � � � �
 � � � � $
 � 4 � � � K � � �
 � (� 	 �
3 ? � 	 �
 � * �
4 ? � � � 	 �
 � * �

� � � � � � 7 * � �
 � � � � �
 � � � 4 � � �
 � � � � $
 � � � 	 % � �
3 ? � 	 �
 � * �
4 ? � � � 	 �
 � * �

� � � � � � 7 * � �
 � � � � �
 � � � 3 � � �
 � � � � $
 � � � K � � �
 � (� 	 �
3 ? � 	 �
 � * �
4 ? � � � 	 �
 � * �

, � � �
 � �
 � � � � � � � � � � � � � �

� � �
 � % � � D � �

 � � � 	 � � E 4 E L � �
 + � � D � � � � � 	
 � � � � � �
 � � � � � � $ � � � � �
 	 % � � � � $ � � 	
 � � �

% 6 % 4

7 7 � 7 � �7 � , 7 � 3 �� 3 , � 4 , 7 � 4 �

Interrupt Priority

Interrupts, occurring in the interval between the rising

edges of two consecutive T2 pulses, will be serviced on

the latter of the two T2 pulses, if the corresponding inter-

rupts are enabled. In case of simultaneous requests,

the following table shows the priority that is applied.

These can be masked by resetting the EMI bit.

Interrupt Source All Devices Priority

External Interrupt 1

Timer/Event Counter 0 Overflow 2

Timer/Event Counter 1 Overflow 3

A/D Converter Interrupt 4

In cases where both external and internal interrupts are

enabled and where an external and internal interrupt oc-

curs simultaneously, the external interrupt will always

have priority and will therefore be serviced first. Suitable

masking of the individual interrupts using the

INTC0/INTC1 register can prevent simultaneous occur-

rences.

External Interrupt

For an external interrupt to occur, the global interrupt en-

able bit, EMI, and external interrupt enable bit, EEI, must

first be set. An actual external interrupt will take place

when the external interrupt request flag, EIF, is set, a situ-

ation that will occur when a high to low transition appears

on the INT line. The external interrupt pin is pin-shared

with the I/O pin PA5 and can only be configured as an ex-

ternal interrupt pin if the corresponding external interrupt

enable bit in the INTC 0 register has been set. The pin

must also be setup as an input by setting the correspond-

ing PAC.5 bit in the port control register. When the inter-

rupt is enabled, the stack is not full and a high to low

transition appears on the external interrupt pin, a subrou-

tine call to the external interrupt vector at location 04H,

will take place. When the interrupt is serviced, the exter-

nal interrupt request flag, EIF; bit 4 of INTC0 will be auto-

matically reset and the EMI bit will be automatically

cleared to disable other interrupts. Note that any pull-high

resistor configuration options on this pin will remain valid

even if the pin is used as an external interrupt input.

HT46R4A

Rev. 1.00 32 November 28, 2007

� �
 � � 	
 � � 	 � �
 � � � � 	 � � � � %
 � � � �
� 	 � � 	 � �
 � � �
 � � � � � � � 	 � � � � %
 � � � (
 D 	 � �

7 <
 � � � 	 � � � �
 � � � � $

� � K � � �
 � , � 	 � � 7 � ,

7 7 � 7 � �

� � � � � �

� �
 � � � � $

� � � � � � �

B � � +

� �
 � � 	
 � � 	 � �
 � � � � 	 % � � � � %
 � � � �
� 	 � � % � � 7 � 	 % � � � � � 	 � � 	 � �

� � � � � � 7 * � �
 � � � � �
 � � � 4
� �
 � � � � $
 � � � K � � �
 � , � 	 � � � 4 ,

7 � 4 �

! � D
7 � � �� � � � � � � * � �
 � �

� �
 � � � � $
 � � � K � � �
 � , � 	 � � � � ,

� � � � � � 7 * � �
 � � � � �
 � � � 3
� �
 � � � � $
 � � � K � � �
 � , � 	 � � � 3 ,

7 � 3 �

Interrupt Structure

Timer/Event Counter Interrupt

For a Timer/Event Counter interrupt to occur, the global

interrupt enable bit, EMI, and the corresponding timer

interrupt enable bit, ET0I/ET1I; bit 2/bit 3 of INTC0 must

first be set. An actual Timer/Event Counter interrupt will

take place when the Timer/Event Counter request flag,

T0F/T1F; bit 5/bit 6 of INTC0 is set, a situation that will

occur when the Timer/Event Counter overflows. When

the interrupt is enabled, the stack is not full and a

Timer/Event Counter overflow occurs, a subroutine call

to the timer interrupt vector at location 08H/0CH, will

take place. When the interrupt is serviced, the timer in-

terrupt request flag, T0F/T1F, will be automatically reset

and the EMI bit will be automatically cleared to disable

other interrupts.

A/D Interrupt

For an A/D interrupt to occur, the global interrupt enable

bit, EMI, and the corresponding interrupt enable bit,

EADI, must be first set. An actual A/D interrupt will take

place when the A/D converter request flag, ADF; bit 4 of

INTC1 is set, a situation that will occur when an A/D con-

version process has completed. When the interrupt is

enabled, the stack is not full and an A/D conversion pro-

cess finishes execution, a subroutine call to the A/D in-

terrupt vector at location 10H, will take place. When the

interrupt is serviced, the A/D interrupt request flag, ADF,

will be automatically reset and the EMI bit will be auto-

matically cleared to disable other interrupts.

Programming Considerations

By disabling the interrupt enable bits, a requested inter-

rupt can be prevented from being serviced, however,

once an interrupt request flag is set, it will remain in this

condition in the INTC0/INTC1 register until the corre-

sponding interrupt is serviced or until the request flag is

cleared by a software instruction.

It is recommended that programs do not use the �CALL

subroutine� instruction within the interrupt subroutine.

Interrupts often occur in an unpredictable manner or

need to be serviced immediately in some applications. If

only one stack is left and the interrupt is not well con-

trolled, the original control sequence will be damaged

once a �CALL subroutine� is executed in the interrupt

subroutine.

All of these interrupts have the capability of waking up

the processor when in the Power Down Mode.

Only the Program Counter is pushed onto the stack. If

the contents of the register or status register are altered

by the interrupt service program, which may corrupt the

desired control sequence, then the contents should be

saved in advance.

Reset and Initialisation

A reset function is a fundamental part of any

microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside

parameters. The most important reset condition is after

power is first applied to the microcontroller. In this case,

internal circuitry will ensure that the microcontroller, af-

ter a short delay, will be in a well defined state and ready

to execute the first program instruction. After this

power-on reset, certain important internal registers will

be set to defined states before the program com-

mences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to

begin program execution from the lowest Program

Memory address.

In addition to the power-on reset, situations may arise

where it is necessary to forcefully apply a reset condition

when the microcontroller is running. One example of this

is where after power has been applied and the

microcontroller is already running, the RES line is force-

fully pulled low. In such a case, known as a normal oper-

ation reset, some of the microcontroller registers remain

unchanged allowing the microcontroller to proceed with

normal operation after the reset line is allowed to return

high. Another type of reset is when the Watchdog Timer

overflows and resets the microcontroller. All types of re-

set operations result in different register conditions be-

ing setup.

HT46R4A

Rev. 1.00 33 November 28, 2007

Another reset exists in the form of a Low Voltage Reset,

LVR, where a full reset, similar to the RES reset is imple-

mented in situations where the power supply voltage

falls below a certain threshold.

Reset Functions

There are five ways in which a microcontroller reset can

occur, through events occurring both internally and ex-

ternally:

� Power-on Reset

The most fundamental and unavoidable reset is the

one that occurs after power is first applied to the

microcontroller. As well as ensuring that the Program

Memory begins execution from the first memory ad-

dress, a power-on reset also ensures that certain

other registers are preset to known conditions. All the

I/O port and port control registers will power up in a

high condition ensuring that all pins will be first set to

inputs.

Although the microcontroller has an internal RC reset

function, if the VDD power supply rise time is not fast

enough or does not stabilise quickly at power-on, the

internal reset function may be incapable of providing

proper reset operation. For this reason it is recom-

mended that an external RC network is connected to

the RES pin, whose additional time delay will ensure

that the RES pin remains low for an extended period

to allow the power supply to stabilise. During this time

delay, normal operation of the microcontroller will be

inhibited. After the RES line reaches a certain voltage

value, the reset delay time tRSTD is invoked to provide

an extra delay time after which the microcontroller will

begin normal operation. The abbreviation SST in the

figures stands for System Start-up Timer.

For most applications a resistor connected between

VDD and the RES pin and a capacitor connected be-

tween VSS and the RES pin will provide a suitable ex-

ternal reset circuit. Any wiring connected to the RES

pin should be kept as short as possible to minimise

any stray noise interference.

For applications that operate within an environment

where more noise is present the Enhanced Reset Cir-

cuit shown is recommended.

More information regarding external reset circuits is

located in Application Note HA0075E on the Holtek

website.

� RES Pin Reset

This type of reset occurs when the microcontroller is

already running and the RES pin is forcefully pulled

low by external hardware such as an external switch.

In this case as in the case of other reset, the Program

Counter will reset to zero and program execution initi-

ated from this point.

� Low Voltage Reset � LVR

The microcontroller contains a low voltage reset cir-

cuit in order to monitor the supply voltage of the de-

vice. The LVR function is selected via a configuration

option. If the supply voltage of the device drops to

within a range of 0.9V~VLVR such as might occur when

changing the battery, the LVR will automatically reset

the device internally. For a valid LVR signal, a low sup-

ply voltage, i.e., a voltage in the range between

0.9V~VLVR must exist for a time greater than that spec-

ified by tLVR in the A.C. characteristics. If the low sup-

ply voltage state does not exceed this value, the LVR

will ignore the low supply voltage and will not perform

a reset function. The actual VLVR value can be se-

lected via configuration options.

� 7 �

' � �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

4) 9 � ' � �

 � � � �

Power-On Reset Timing Chart

� 7 �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

4) 9 � ' � �

4) 0 � ' � �

 � � � �

RES Reset Timing Chart

� 7 �

4) 3 � ,

3 4 4 " �

' � �

' � �

4) 4 3 � ,

3 4 " �

Enhanced Reset Circuit

� 7 �

' � �

' � �

4) 3 � ,

3 4 4 " �

Basic Reset Circuit

! ' �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

 � � � �

Low Voltage Reset Timing Chart

HT46R4A

Rev. 1.00 34 November 28, 2007

� Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal opera-

tion is the same as a hardware RES pin reset except

that the Watchdog time-out flag TO will be set to �1�.

� Watchdog Time-out Reset during Power Down

The Watchdog time-out Reset during Power Down is

a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Pro-

gram Counter and the Stack Pointer will be cleared to

�0� and the TO flag will be set to �1�. Refer to the A.C.

Characteristics for tSST details.

Reset Initial Conditions

The different types of reset described affect the reset

flags in different ways. These flags, known as PDF and

TO are located in the status register and are controlled

by various microcontroller operations, such as the

Power Down function or Watchdog Timer. The reset

flags are shown in the table:

TO PDF RESET Conditions

0 0 RES reset during power-on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during Power Down

Note: �u� stands for unchanged

The following table indicates the way in which the vari-

ous components of the microcontroller are affected after

a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT
Clear after reset, WDT begins

counting

Timer/Event

Counter
Timer Counter will be turned off

Prescaler
The Timer Counter Prescaler will

be cleared

Input/Output Ports I/O ports will be setup as inputs

Stack Pointer
Stack Pointer will point to the top

of the stack

The different kinds of resets all affect the internal regis-

ters of the microcontroller in different ways. To ensure

reliable continuation of normal program execution after

a reset occurs, it is important to know what condition the

microcontroller is in after a particular reset occurs. The

following table describes how each type of reset affects

each of the microcontroller internal registers.

� � � � � � � � # � �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

 � � � �

WDT Time-out Reset during Normal Operation

Timing Chart

� � � � � � � � # � �

� � � � � � � � # � �

 � � �

WDT Time-out Reset during Power Down

Timing Chart

HT46R4A

Rev. 1.00 35 November 28, 2007

Register Reset (Power-on) RES or LVR Reset
WDT Time-out

(Normal Operation)

WDT Time-out

(HALT)

MP x x x x x x x x u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH � x x x x x x x � u u u u u u u � u u u u u u u � u u u u u u u

STATUS � � 0 0 x x x x � � u u u u u u � � 1 u u u u u � � 1 1 u u u u

INTC0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

INTC1 � � � 0 � � � 0 � � � 0 � � � 0 � � � 0 � � � 0 � � � u � � � u

TMR0 x u u u u u u u u

TMR0C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

TMR1 x u u u u u u u u

TMR1C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC 1 u u u u u u u u

PCC 1 u u u u u u u u

PD � � ��� � 1 1 1 � � ��� � 1 1 1 � � ��� � 1 1 1 � � ��� � u u u

PDC � � ��� � 1 1 1 � � ��� � 1 1 1 � � ��� � 1 1 1 � � ��� � u u u

PWM0 x u u u u u u u u

PWM1 x u u u u u u u u

ADRL x � ��� � � � � x � ��� � � � � x � ��� � � � � u � ��� � � � �

ADRH x u u u u u u u u

ADCR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

ACSR 1 � ��� � � 0 0 1 � ��� � � 0 0 1 � ��� � � 0 0 u � ��� � � u u

�u� stands for unchanged

�x� stands for unknown

��� stands for unimplemented

HT46R4A

Rev. 1.00 36 November 28, 2007

Oscillator

Various oscillator options offer the user a wide range of

functions according to their various application require-

ments. Two types of system clocks can be selected

while various clock source options for the Watchdog

Timer are provided for maximum flexibility. All oscillator

options are selected through the configuration options.

More information regarding the oscillator is located in

Application Note HA0075E on the Holtek website.

Clock Source Modes

There are two methods of generating the system clock,

using an external crystal/ceramic oscillator and an ex-

ternal RC network. One of these two methods must be

selected using the configuration options.

� External Crystal/Ceramic Oscillator

The simple connection of a crystal across OSC1 and

OSC2 will create the necessary phase shift and feed-

back for oscillation, without requiring external capaci-

tors. However, for some crystal types and

frequencies, to ensure oscillation, it may be neces-

sary to add two small value capacitors, C1 and C2.

Using a ceramic resonator will usually require two

small value capacitors, C1 and C2, to be connected

as shown for oscillation to occur. The values of C1 and

C2 should be selected in consultation with the crystal

or resonator manufacturer�s specification.

Table: capacitor selection for system crystal/ceramic

oscillator.

C1, C2 Value

Crystal Frequency C1 C2 CL*

8MHz TBD TBD TBD

4MHz TBD TBD TBD

1MHz TBD TBD TBD

400kHz TBD TBD TBD

Note: 1. The C1, C2 value is for design guidance

only and not optimized. Due to the different

performance of various crystals/resonators,

it�s suggested to test it over expected VDD

and temperature for the application, and

consult the manufacturer for appropriate val-

ues of external components.

2. �CL*� is the load capacitor for tested crys-

tal which is specified in crystal specification.

Table: Build-in RC value for system crystal/ceramic

oscillator.

Ca, Cb, Rf Value (5V, 25�C)

Ca Cb Rf

TBD TBD TBD

� External RC Oscillator

Using the external RC network as an oscillator requires

that a resistor, with a value between 24k� and 1M�, is

connected between OSC1 and ground, and a 470pF

capacitor is connected to VDD. The generated system

clock divided by 4 will be provided on OSC2 as an out-

put which can be used for external synchronization pur-

poses. Note that as the OSC2 output is an NMOS

open-drain type, a pull high resistor should be con-

nected if it to be used to monitor the internal frequency.

Although this is a cost effective oscillator configuration,

the oscillation frequency can vary with VDD, tempera-

ture and process variations on the device itself and is

therefore not suitable for applications where timing is

critical or where accurate oscillator frequencies are re-

quired. For the value of the external resistor ROSC

please refer to the Appendix section for typical RC Os-

cillator vs. Temperature and VDD characteristics graph-

ics.

� � � �

� � � �

� �

� 	
 � �
 � � � � �
� � � � � �

� � � � � � � � 	
� �

� �

� �

� �

� �

� 	
 � � � � � � � � � �
 � �
 � � � �
 � 	 � � �
 � � � � � � � �
 � � � � � � � �
 � � � � �
 	 �
 � � � �
� �
 � 	

 � � � � � � � � �
 �

 ! � �
 � �
 � � " � � � � �

 	
 � � � � �

 	 � � � � � �
 � 	 �
�
 � �
 # � � � $

External Crystal/Ceramic Oscillator

HT46R4A

Rev. 1.00 37 November 28, 2007

Note that it is the only microcontroller internal circuitry

together with the external resistor, that determine the

frequency of the oscillator. The external capacitor

shown on the diagram does not influence the frequency

of oscillation. The external capacitor is added to improve

oscillator stability, especially if the open-drain OSC2

output is utilised in the application circuit.

Watchdog Timer Oscillator

The WDT oscillator is a fully self-contained free running

on-chip RC oscillator with a typical period of 65�s at 5V

requiring no external components. When the device en-

ters the Power Down Mode, the system clock will stop

running but the WDT oscillator continues to free-run and

to keep the watchdog active. However, to preserve

power in certain applications the WDT oscillator can be

disabled via a configuration option.

Power Down Mode and Wake-up

Power Down Mode

All of the Holtek microcontrollers have the ability to enter

a Power Down Mode. When the device enters this

mode, the normal operating current, will be reduced to

an extremely low standby current level. This occurs be-

cause when the device enters the Power Down Mode,

the system oscillator is stopped which reduces the

power consumption to extremely low levels, however,

as the device maintains its present internal condition, it

can be woken up at a later stage and continue running,

without requiring a full reset. This feature is extremely

important in application areas where the MCU must

have its power supply constantly maintained to keep the

device in a known condition but where the power supply

capacity is limited such as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power

Down Mode and that is to execute the �HALT� instruc-

tion in the application program. When this instruction is

executed, the following will occur:

� The system oscillator will stop running and the appli-

cation program will stop at the �HALT� instruction.

� The Data Memory contents and registers will maintain

their present condition.

� The WDT will be cleared and resume counting if the

WDT clock source is selected to come from the WDT

internal oscillator. The WDT will stop if its clock source

originates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will

be set and the Watchdog time-out flag, TO, will be

cleared.

Standby Current Considerations

As the main reason for entering the Power Down Mode

is to keep the current consumption of the MCU to as low

a value as possible, perhaps only in the order of several

micro-amps, there are other considerations which must

also be taken into account by the circuit designer if the

power consumption is to be minimised. Special atten-

tion must be made to the I/O pins on the device. All

high-impedance input pins must be connected to either

a fixed high or low level as any floating input pins could

create internal oscillations and result in increased cur-

rent consumption. Care must also be taken with the

loads, which are connected to I/O pins, which are setup

as outputs. These should be placed in a condition in

which minimum current is drawn or connected only to

external circuits that do not draw current, such as other

CMOS inputs. Also note that additional standby current

will also be required if the configuration options have en-

abled the Watchdog Timer internal oscillator.

Wake-up

After the system enters the Power Down Mode, it can be

woken up from one of various sources listed as follows:

� An external reset

� An external falling edge on Port A

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the de-

vice will experience a full system reset, however, if the

device is woken up by a WDT overflow, a Watchdog

Timer reset will be initiated. Although both of these

wake-up methods will initiate a reset operation, the ac-

tual source of the wake-up can be determined by exam-

ining the TO and PDF flags. The PDF flag is cleared by a

system power-up or executing the clear Watchdog

Timer instructions and is set when executing the �HALT�
instruction. The TO flag is set if a WDT time-out occurs,

and causes a wake-up that only resets the Program

Counter and Stack Pointer, the other flags remain in

their original status.

Each pin on Port A can be setup via an individual config-

uration option to permit a negative transition on the pin

to wake-up the system. When a Port A pin wake-up oc-

curs, the program will resume execution at the instruc-

tion following the �HALT� instruction.

� � � �

� � � �� � % � & '
 � (� �
 � � � �
) � � � �

' * + � ,

-))

� � � �

External RC Oscillator

HT46R4A

Rev. 1.00 38 November 28, 2007

If the system is woken up by an interrupt, then two possi-

ble situations may occur. The first is where the related

interrupt is disabled or the interrupt is enabled but the

stack is full, in which case the program will resume exe-

cution at the instruction following the �HALT� instruction.

In this situation, the interrupt which woke-up the device

will not be immediately serviced, but will rather be ser-

viced later when the related interrupt is finally enabled or

when a stack level becomes free. The other situation is

where the related interrupt is enabled and the stack is

not full, in which case the regular interrupt response

takes place. If an interrupt request flag is set to �1� be-

fore entering the Power Down Mode, the wake-up func-

tion of the related interrupt will be disabled.

No matter what the source of the wake-up event is, once

a wake-up situation occurs, a time period equal to 1024

system clock periods will be required before normal sys-

tem operation resumes. However, if the wake-up has

originated due to an interrupt, the actual interrupt sub-

routine execution will be delayed by an additional one or

more cycles. If the wake-up results in the execution of

the next instruction following the �HALT� instruction, this

will be executed immediately after the 1024 system

clock period delay has ended.

Watchdog Timer

The Watchdog Timer is provided to prevent program mal-

functions or sequences from jumping to unknown loca-

tions, due to certain uncontrollable external events such

as electrical noise. It operates by providing a device reset

when the WDT counter overflows. The WDT clock is sup-

plied by one of two sources selected by configuration op-

tion: its own self contained dedicated internal WDT

oscillator or fSYS/4. Note that if the WDT configuration op-

tion has been disabled, then any instruction relating to its

operation will result in no operation.

In the device, all Watchdog Timer options, such as en-

able/disable, WDT clock source and clear instruction

type all selected through configuration options. There

are no internal registers associated with the WDT in the

Cost-Effective A/D Type MCU series. One of the WDT

clock sources is an internal oscillator which has an ap-

proximate period of 65�s at a supply voltage of 5V. How-

ever, it should be noted that this specified internal clock

period can vary with VDD, temperature and process

variations. The other WDT clock source option is the

fSYS/4 clock. Whether the WDT clock source is its own

internal WDT oscillator, or from fSYS/4, it is further di-

vided by 16 via an internal 15-bit counter and a clearable

single bit counter to give longer Watchdog time-outs. As

this ratio is fixed it gives an overall Watchdog Timer

time-out value of 215/fS to 216/fS. As the clear instruction

only resets the last stage of the divider chain, for this

reason the actual division ratio and corresponding

Watchdog Timer time-out can vary by a factor of two.

The exact division ratio depends upon the residual value

in the Watchdog Timer counter before the clear instruc-

tion is executed. It is important to realise that as there

are no independent internal registers or configuration

options associated with the length of the Watchdog

Timer time-out, it is completely dependent upon the fre-

quency of fSYS/4 or the internal WDT oscillator.

If the fSYS/4 clock is used as the WDT clock source, it

should be noted that when the system enters the Power

Down Mode, then the instruction clock is stopped and

the WDT will lose its protecting purposes. For systems

that operate in noisy environments, using the internal

WDT oscillator is strongly recommended.

Under normal program operation, a WDT time-out will

initialise a device reset and set the status bit TO. How-

ever, if the system is in the Power Down Mode, when a

WDT time-out occurs, the TO bit in the status register

will be set and only the Program Counter and Stack

Pointer will be reset. Three methods can be adopted to

clear the contents of the WDT. The first is an external

hardware reset, which means a low level on the RES

pin, the second is using the watchdog software instruc-

tions and the third is via a �HALT� instruction.

There are two methods of using software instructions to

clear the Watchdog Timer, one of which must be chosen

by configuration option. The first option is to use the sin-

gle �CLR WDT� instruction while the second is to use the

two commands �CLR WDT1� and �CLR WDT2�. For the

first option, a simple execution of �CLR WDT� will clear

the WDT while for the second option, both �CLR WDT1�

and �CLR WDT2� must both be executed to successfully

clear the WDT. Note that for this second option, if �CLR

WDT1� is used to clear the WDT, successive executions

of this instruction will have no effect, only the execution of

a �CLR WDT2� instruction will clear the WDT. Similarly

after the �CLR WDT2� instruction has been executed,

only a successive �CLR WDT1� instruction can clear the

Watchdog Timer.

� � � � � � � � " � � � � � � �

� � � (� � � � 	
 � � �

� $
 � � �

� � � 	 � � � � � � �
 $ �

� � � (� � � � 	
 � � � � � $
 � � �

� ! � � � � � 3 � , � 	 �

� ! � � � � � 2 � , � 	 �

� ! � �

� � � � � � � � # � �

2 3 . � (� I 2 3 5 � (�

3 . # % �
 � � � � �
 � � � 2
� � � � � � � � � � 	
 � �

(� > � � 0

3 � � � � 2 � � � �
 � � �
 � � � �

� � � � � � � � " � � � � � � �

(�

Watchdog Timer

HT46R4A

Rev. 1.00 39 November 28, 2007

Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the device during the program-

ming process. During the development process, these options are selected using the HT-IDE software development

tools. As these options are programmed into the device using the hardware programming tools, once they are selected

they cannot be changed later as the application software has no control over the configuration options. All options must

be defined for proper system function, the details of which are shown in the table.

No. Options

1 Watchdog Timer clock source: WDT oscillator or fSYS/4

2 Watchdog Timer function: enable or disable

3 CLRWDT instructions: 1 or 2 instructions

4 System oscillator: Crystal or RC

5 PA, PB, PC and PD: pull-high enable or disable

6 PWM0, PWM1: enable or disable

7 PA0~PA7: wake-up enable or disable - bit option

8 PFD: normal I/O or PFD output

9 LVR function: enable or disable

Application Circuits

HT46R4A

Rev. 1.00 40 November 28, 2007

� � � 3

� � � 2

� � �
� � � � � �

� � 4 � � � � 4

� - 4 � � / 4 I � - . � � / .
� - 5 I � - 6

� � 4 I � � 2

� � 1 � � , �

� � 0 � � � � 4

� � . � � / �

� � 5 I � � 6

� � 4 I � � 6

� � 3 � � � � 3

� � 5

� � � � � � �

� 7 �

4) 3 � ,

3 4 4 " �

' � �

' � �

4) 3 � ,

' � �

� � � � �
(� � � . � �

 � � � � � � � $ $ " � �

 � � � � #

HT46R4A

Rev. 1.00 41 November 28, 2007

Instruction Set

Introduction

Central to the successful operat ion of any

microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to

perform certain operations. In the case of Holtek

microcontrollers, a comprehensive and flexible set of

over 60 instructions is provided to enable programmers

to implement their application with the minimum of pro-

gramming overheads.

For easier understanding of the various instruction

codes, they have been subdivided into several func-

tional groupings.

Instruction Timing

Most instructions are implemented within one instruc-

tion cycle. The exceptions to this are branch, call, or ta-

ble read instructions where two instruction cycles are

required. One instruction cycle is equal to 4 system

clock cycles, therefore in the case of an 8MHz system

oscillator, most instructions would be implemented

within 0.5�s and branch or call instructions would be im-

plemented within 1�s. Although instructions which re-

quire one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instruc-

tions, it is important to realize that any other instructions

which involve manipulation of the Program Counter Low

register or PCL will also take one more cycle to imple-

ment. As instructions which change the contents of the

PCL will imply a direct jump to that new address, one

more cycle will be required. Examples of such instruc-

tions would be �CLR PCL� or �MOV PCL, A�. For the

case of skip instructions, it must be noted that if the re-

sult of the comparison involves a skip operation then

this will also take one more cycle, if no skip is involved

then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program

is one of the most frequently used operations. Making

use of three kinds of MOV instructions, data can be

transferred from registers to the Accumulator and

vice-versa as well as being able to move specific imme-

diate data directly into the Accumulator. One of the most

important data transfer applications is to receive data

from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and

data manipulation is a necessary feature of most

microcontroller applications. Within the Holtek

microcontroller instruction set are a range of add and

subtract instruction mnemonics to enable the necessary

arithmetic to be carried out. Care must be taken to en-

sure correct handling of carry and borrow data when re-

sults exceed 255 for addition and less than 0 for

subtraction. The increment and decrement instructions

INC, INCA, DEC and DECA provide a simple means of

increasing or decreasing by a value of one of the values

in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR

and CPL all have their own instruction within the Holtek

microcontroller instruction set. As with the case of most

instructions involving data manipulation, data must pass

through the Accumulator which may involve additional

programming steps. In all logical data operations, the

zero flag may be set if the result of the operation is zero.

Another form of logical data manipulation comes from

the rotate instructions such as RR, RL, RRC and RLC

which provide a simple means of rotating one bit right or

left. Different rotate instructions exist depending on pro-

gram requirements. Rotate instructions are useful for

serial port programming applications where data can be

rotated from an internal register into the Carry bit from

where it can be examined and the necessary serial bit

set high or low. Another application where rotate data

operations are used is to implement multiplication and

division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to

specified locations using the JMP instruction or to a sub-

routine using the CALL instruction. They differ in the

sense that in the case of a subroutine call, the program

must return to the instruction immediately when the sub-

routine has been carried out. This is done by placing a

return instruction RET in the subroutine which will cause

the program to jump back to the address right after the

CALL instruction. In the case of a JMP instruction, the

program simply jumps to the desired location. There is

no requirement to jump back to the original jumping off

point as in the case of the CALL instruction. One special

and extremely useful set of branch instructions are the

conditional branches. Here a decision is first made re-

garding the condition of a certain data memory or indi-

vidual bits. Depending upon the conditions, the program

will continue with the next instruction or skip over it and

jump to the following instruction. These instructions are

the key to decision making and branching within the pro-

gram perhaps determined by the condition of certain in-

put switches or by the condition of internal data bits.

HT46R4A

Rev. 1.00 42 November 28, 2007

Bit Operations

The ability to provide single bit operations on Data Mem-

ory is an extremely flexible feature of all Holtek

microcontrollers. This feature is especially useful for

output port bit programming where individual bits or port

pins can be directly set high or low using either the �SET

[m].i� or �CLR [m].i� instructions respectively. The fea-

ture removes the need for programmers to first read the

8-bit output port, manipulate the input data to ensure

that other bits are not changed and then output the port

with the correct new data. This read-modify-write pro-

cess is taken care of automatically when these bit oper-

ation instructions are used.

Table Read Operations

Data storage is normally implemented by using regis-

ters. However, when working with large amounts of

fixed data, the volume involved often makes it inconve-

nient to store the fixed data in the Data Memory. To over-

come this problem, Holtek microcontrollers allow an

area of Program Memory to be setup as a table where

data can be directly stored. A set of easy to use instruc-

tions provides the means by which this fixed data can be

referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range

of other instructions also exist such as the �HALT� in-

struction for Power-down operations and instructions to

control the operation of the Watchdog Timer for reliable

program operations under extreme electric or electro-

magnetic environments. For their relevant operations,

refer to the functional related sections.

Instruction Set Summary

The following table depicts a summary of the instruction

set categorised according to function and can be con-

sulted as a basic instruction reference using the follow-

ing listed conventions.

Table conventions:

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

HT46R4A

Rev. 1.00 43 November 28, 2007

Mnemonic Description Cycles Flag Affected

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note
None

None

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note
None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the �CLR WDT1� and �CLR WDT2� instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both �CLR WDT1� and

�CLR WDT2� instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC
 ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m]
 ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC
 ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC
 ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m]
 ACC + [m]

Affected flag(s) OV, Z, AC, C

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �AND� [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC
 ACC �AND� x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m]
 ACC �AND� [m]

Affected flag(s) Z

HT46R4A

Rev. 1.00 44 November 28, 2007

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack
 Program Counter + 1

Program Counter
 addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m]
 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i
 0

Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

HT46R4A

Rev. 1.00 45 November 28, 2007

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1
s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m]
 [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1
s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC
 [m]

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m]
 ACC + 00H or

[m]
 ACC + 06H or

[m]
 ACC + 60H or

[m]
 ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m]
 [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC
 [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO
 0

PDF
 1

Affected flag(s) TO, PDF

HT46R4A

Rev. 1.00 46 November 28, 2007

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m]
 [m] + 1

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC
 [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter
 addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC
 [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC
 x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m]
 ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC
 ACC �OR� [m]

Affected flag(s) Z

HT46R4A

Rev. 1.00 47 November 28, 2007

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �OR� x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m]
 ACC �OR� [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the re-

stored address.

Operation Program Counter
 Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter
 Stack

ACC
 x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending

when the RETI instruction is executed, the pending Interrupt routine will be processed be-

fore returning to the main program.

Operation Program Counter
 Stack

EMI
 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1)
 [m].i; (i = 0~6)

[m].0
 [m].7

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1)
 [m].i; (i = 0~6)

ACC.0
 [m].7

Affected flag(s) None

HT46R4A

Rev. 1.00 48 November 28, 2007

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1)
 [m].i; (i = 0~6)

[m].0
 C

C
 [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1)
 [m].i; (i = 0~6)

ACC.0
 C

C
 [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i
 [m].(i+1); (i = 0~6)

[m].7
 [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i
 [m].(i+1); (i = 0~6)

ACC.7
 [m].0

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i
 [m].(i+1); (i = 0~6)

[m].7
 C

C
 [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i
 [m].(i+1); (i = 0~6)

ACC.7
 C

C
 [m].0

Affected flag(s) C

HT46R4A

Rev. 1.00 49 November 28, 2007

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result

of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or

zero, the C flag will be set to 1.

Operation ACC
 ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m]
 ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m]
 [m] � 1

Skip if [m] = 0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC
 [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m]
 FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i
 1

Affected flag(s) None

HT46R4A

Rev. 1.00 50 November 28, 2007

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m]
 [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC
 [m] + 1

Skip if ACC = 0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC
 ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m]
 ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC
 ACC � x

Affected flag(s) OV, Z, AC, C

HT46R4A

Rev. 1.00 51 November 28, 2007

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0
 [m].7 ~ [m].4

ACC.7 ~ ACC.4
 [m].3 ~ [m].0

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC
 [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m]
 program code (low byte)

TBLH
 program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m]
 program code (low byte)

TBLH
 program code (high byte)

Affected flag(s) None

HT46R4A

Rev. 1.00 52 November 28, 2007

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �XOR� [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m]
 ACC �XOR� [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC
 ACC �XOR� x

Affected flag(s) Z

HT46R4A

Rev. 1.00 53 November 28, 2007

Package Information

28-pin SKDIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 1375 � 1395

B 278 � 298

C 125 � 135

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 295 � 315

I 330 � 375

� 0� � 15�

HT46R4A

Rev. 1.00 54 November 28, 2007

� �
2 8

3

3 .

3 0

�

�

-

�

�

7 , �

B

�

28-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394 � 419

B 290 � 300

C 14 � 20

C
 697 � 713

D 92 � 104

E � 50 �

F 4 � �

G 32 � 38

H 4 � 12

� 0� � 10�

HT46R4A

Rev. 1.00 55 November 28, 2007

2 8

3

3 .

3 0

� -

�

�

,

� �
�

B

�7

32-pin DIP (600mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 1635 � 1665

B 535 � 555

C 145 � 155

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 595 � 615

I 635 � 670

� 0� � 15�

HT46R4A

Rev. 1.00 56 November 28, 2007

1 2

3

3 6

3 5

�

�

-

�

�

7 , �

B

�

44-pin QFP (10�10) Outline Dimensions

Symbol
Dimensions in mm

Min. Nom. Max.

A 13 � 13.4

B 9.9 � 10.1

C 13 � 13.4

D 9.9 � 10.1

E � 0.8 �

F � 0.3 �

G 1.9 � 2.2

H � � 2.7

I 0.25 � 0.5

J 0.73 � 0.93

K 0.1 � 0.2

L � 0.1 �

� 0� � 7�

HT46R4A

Rev. 1.00 57 November 28, 2007

1 0

3 33

0 0

� -

2 2

3 2

7

,

�

B

�

M

H �

1 1 2 1

�

�

!

Product Tape and Reel Specifications

Reel Dimensions

SOP 28W (300mil)

Symbol Description Dimensions in mm

A Reel Outer Diameter 330	1

B Reel Inner Diameter 62	1.5

C Spindle Hole Diameter
13+0.5

�0.2

D Key Slit Width 2	0.5

T1 Space Between Flange
24.8+0.3

�0.2

T2 Reel Thickness 30.2	0.2

HT46R4A

Rev. 1.00 58 November 28, 2007

� �-

� 3

� 2
�

Carrier Tape Dimensions

SOP 28W (300mil)

Symbol Description Dimensions in mm

W Carrier Tape Width 24	0.3

P Cavity Pitch 12	0.1

E Perforation Position 1.75	0.1

F Cavity to Perforation (Width Direction) 11.5	0.1

D Perforation Diameter 1.5+0.1

D1 Cavity Hole Diameter 1.5+0.25

P0 Perforation Pitch 4	0.1

P1 Cavity to Perforation (Length Direction) 2	0.1

A0 Cavity Length 10.85	0.1

B0 Cavity Width 18.34	0.1

K0 Cavity Depth 2.97	0.1

t Carrier Tape Thickness 0.35	0.01

C Cover Tape Width 21.3

HT46R4A

Rev. 1.00 59 November 28, 2007

�� 3

�

� 3� 4
�

7

,

H 4

- 4

� 4

�

HT46R4A

Rev. 1.00 60 November 28, 2007

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 86-21-6485-5560
Fax: 86-21-6485-0313
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District,
Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752
Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 86-28-6653-6590
Fax: 86-28-6653-6591

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

Copyright � 2007 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life

due to malfunction or otherwise. Holtek
s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.

