## ReNESAS

## HD74AC283／HD74ACT283

## 4－bit Binary Full Adder with Fast Carry

REJ03D0267－0200Z
（Previous ADE－205－388（Z））

Jul．16．2004

## Description

The HD74AC283／HD74ACT283 high－speed 4－bit binary full adder with internal carry lookahead accepts two 4－bit binary works $\left(A_{0}-A_{3}, B_{0}-B_{3}\right)$ and a Carry input $\left(C_{0}\right)$ ．It generates the binary Sum outputs（ $S_{0}-S_{3}$ ）and the Carry output $\left(\mathrm{C}_{4}\right)$ from the most significant bit．The HD74AC283／HD74ACT283 will operate with either active High or active Low operands（positive or negative logic）．

## Features

－Outputs Source／Sink 24 mA
－HD74ACT283 has TTL－Cmpatible Inputs
－Ordering Information：Ex．HD74AC283

| Part Name | Package Type | Package Code | Package Abbreviation | Taping Abbreviation（Quantity） |
| :--- | :--- | :--- | :--- | :--- |
| HD74AC283AP | DIP－16 pin | DP－16E，－16FV | P |  |
| HD74AC283AFPEL | SOP－16 pin（JEITA） | FP－16DAV | FP | EL（2，000 pcs／reel） |
| HD74AC283ARPEL | SOP－16 pin（JEDEC） | FP－16DNV | RP | EL（2，500 pcs／reel） |
| HD74AC283TELL | TSSOP－16 pin | TTP－16DAV | T | ELL（2，000 pcs／reel） |

Notes：1．Please consult the sales office for the above package availability．
2．The packages with lead－free pins are distinguished from the conventional products by adding $V$ at the end of the package code．

## Pin Arrangement



Rev．2．00，Jul．16．2004，page 1 of 9

## Logic Symbol



## Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{3} \quad$ A Operand Inputs
$\mathrm{B}_{0}-\mathrm{B}_{3} \quad \mathrm{~B}$ Operand Inputs
$\mathrm{C}_{0} \quad$ Carry Input
$\mathrm{S}_{0}-\mathrm{S}_{3} \quad$ Sum Outputs
$\mathrm{C}_{4} \quad$ Carry Output

## Functional Description

The HD74AC283/HD74ACT283 adds two 4-bit binary words (A plus B) plus the incoming Carry ( $\mathrm{C}_{0}$ ). The binary sum appears on the Sum $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ and outgoing carry $\left(\mathrm{C}_{4}\right)$ outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.
$2^{0}\left(\mathrm{~A}_{0}+\mathrm{B}_{0}+\mathrm{C}_{0}\right)+2^{1}\left(\mathrm{~A}_{1}+\mathrm{B}_{1}\right)+2^{2}\left(\mathrm{~A}_{2}+\mathrm{B}_{2}\right)+2^{3}\left(\mathrm{~A}_{3}+\mathrm{B}_{3}\right)=\mathrm{S}_{0}+2 \mathrm{~S}_{1}+4 \mathrm{~S}_{2}+8 \mathrm{~S}_{3}+16 \mathrm{C}_{4}$
Where $(+)=$ plus
Interchanging inputs of equal weight does not affect the operation. Thus $\mathrm{C}_{0}, \mathrm{~A}_{0}, \mathrm{~B}_{0}$ can be arbitrarily assigned to pins 5, 6 and 7 for DIPS. Due to the symmetry of the binary add function, the HD74AC283/HD74ACT283 can be used either with all inputs and outputs active High (positive logic) or with all inputs and outputs active Low (negative logic). See Figure a. Note that if $\mathrm{C}_{0}$ is not used it must be tied Low for active High logic or tied High for active Low logic.

Due to pin limitations, the intermediate carries of the HD74AC283/HD74ACT283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure b shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder $\left(\mathrm{A}_{3}, \mathrm{~B}_{3}\right)$ Low makes $S_{3}$ dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle Figure c shows a way of dividing the HD74AC283/HD74ACT283 into a 2-bit and a 1-bit adder. The third stage adder $\left(A_{2}, B_{2}, S_{2}\right)$ is used merely as a means of getting a carry $\left(\mathrm{C}_{10}\right)$ signal into the fourth stage (via $\mathrm{A}_{2}$ and $\mathrm{B}_{2}$ ) and bringing out the carry from the second stage on $\mathrm{S}_{2}$. Note that as long as $\mathrm{A}_{2}$ and $\mathrm{B}_{2}$ are the same, whether High or Low, they do not influence $S_{2}$. Similarly, when $A_{2}$ and $B_{2}$ are the same the carry into the third stage does not influence the carry out of the third stage. Figure $d$ shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs $S_{0}, S_{1}$ and $S_{2}$ present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure e shows one method of implementing a 5 -input majority gate. When three or more of the inputs $I_{1}-I_{5}$ are true, the output $M_{5}$ is true.

Fig. a Active HIGH varsus Active LOW Interpretation

|  | $\mathbf{C}_{\mathbf{0}}$ | $\mathbf{A}_{\mathbf{0}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{B}_{\mathbf{0}}$ | $\mathbf{B}_{\mathbf{1}}$ | $\mathbf{B}_{\mathbf{2}}$ | $\mathbf{B}_{\mathbf{3}}$ | $\mathbf{S}_{\mathbf{0}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{3}}$ | $\mathbf{C}_{\mathbf{4}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Logic levels | L | L | H | L | H | H | L | L | H | H | H | L | L | H |
| Active HIGH | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| Active LOW | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |

Active HIGH: $0+10+9=3+16$
Active LOW: $1+5+6=12+0$


Fig. b 3-bit Adder


Fig. c 2-bit and 1-bit adders


Fig. d 5-Input Encoder


Fig. e 5-Input Majority Gate

## Logic Diagram



Please note that this diagram is provided only for the understanding of logic operations and shoudl not be used to estimate propagation delays.

## Absolute Maximum Ratings

| Item | Symbol | Ratings | Unit | Condition |
| :--- | :--- | :--- | :--- | :--- |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to 7 | V |  |
| DC input diode current | $\mathrm{I}_{\mathrm{IK}}$ | -20 | mA | $\mathrm{~V}_{\mathrm{I}}=-0.5 \mathrm{~V}$ |
|  |  | 20 | mA | $\mathrm{~V}_{\mathrm{I}}=\mathrm{Vcc}+0.5 \mathrm{~V}$ |
| DC input voltage | $\mathrm{V}_{\mathrm{I}}$ | -0.5 to $\mathrm{VCC}+0.5$ | V |  |
| DC output diode current | $\mathrm{I}_{\mathrm{OK}}$ | -50 | mA | $\mathrm{~V}_{\mathrm{O}}=-0.5 \mathrm{~V}$ |
|  |  | 50 | mA | $\mathrm{~V}_{\mathrm{O}}=\mathrm{Vcc}+0.5 \mathrm{~V}$ |
| DC output voltage | $\mathrm{V}_{\mathrm{O}}$ | -0.5 to $\mathrm{VCC}+0.5$ | V |  |
| DC output source or sink current | $\mathrm{I}_{\mathrm{O}}$ | $\pm 50$ | mA |  |
| DC $\mathrm{V}_{\mathrm{CC}}$ or ground current per output pin | $\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$ | $\pm 50$ | mA |  |
| Storage temperature | Tstg | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |  |

Recommended Operating Conditions: HD74AC283

| Item | Symbol | Ratings | Unit | Condition |
| :--- | :--- | :--- | :--- | :--- |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 2 to 6 | V |  |
| Input and output voltage | $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{O}}$ | 0 to $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Operating temperature | Ta | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Input rise and fall time <br> (except Schmitt inputs) <br> $\mathrm{V}_{\text {IN }} 30 \%$ to $70 \% \mathrm{~V}_{\mathrm{CC}}$ | tr, tf | 8 | $\mathrm{~ns} / \mathrm{V}$ | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ |
|  |  |  |  | $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |
|  |  | $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ |  |  |

DC Characteristics: HD74AC283

| Item | Symbol | Vcc <br> (V) | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | $\begin{aligned} \mathrm{Ta} & =-40 \mathrm{to} \\ & +85^{\circ} \mathrm{C} \end{aligned}$ |  | Unit | Condition |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | min. | typ. | max. | min. | max. |  |  |  |
| Input Voltage | $\mathrm{V}_{\mathrm{IH}}$ | 3.0 | 2.1 | 1.5 | - | 2.1 | - | V | $\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$ |  |
|  |  | 4.5 | 3.15 | 2.25 | - | 3.15 | - |  |  |  |
|  |  | 5.5 | 3.85 | 2.75 | - | 3.85 | - |  |  |  |
|  | $\mathrm{V}_{\text {IL }}$ | 3.0 | - | 1.50 | 0.9 | - | 0.9 |  | $\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$ |  |
|  |  | 4.5 | - | 2.25 | 1.35 | - | 1.35 |  |  |  |
|  |  | 5.5 | - | 2.75 | 1.65 | - | 1.65 |  |  |  |
| Output voltage | $\mathrm{V}_{\mathrm{OH}}$ | 3.0 | 2.9 | 2.99 | - | 2.9 | - | V | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\text {IH }} \\ & \mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A} \end{aligned}$ |  |
|  |  | 4.5 | 4.4 | 4.49 | - | 4.4 | - |  |  |  |
|  |  | 5.5 | 5.4 | 5.49 | - | 5.4 | - |  |  |  |
|  |  | 3.0 | 2.58 | - | - | 2.48 | - |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ | $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ |
|  |  | 4.5 | 3.94 | - | - | 3.80 | - |  |  | $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$ |
|  |  | 5.5 | 4.94 | - | - | 4.80 | - |  |  | $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\text {OL }}$ | 3.0 | - | 0.002 | 0.1 | - | 0.1 |  | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL or }} \mathrm{V}_{\text {IH }} \\ & \mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A} \end{aligned}$ |  |
|  |  | 4.5 | - | 0.001 | 0.1 | - | 0.1 |  |  |  |
|  |  | 5.5 | - | 0.001 | 0.1 | - | 0.1 |  |  |  |
|  |  | 3.0 | - | - | 0.32 | - | 0.37 |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ |
|  |  | 4.5 | - | - | 0.32 | - | 0.37 |  |  | $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$ |
|  |  | 5.5 | - | - | 0.32 | - | 0.37 |  |  | $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$ |
| Input leakage current | $\mathrm{I}_{\text {IN }}$ | 5.5 | - | - | $\pm 0.1$ | - | $\pm 1.0$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GN |  |
| Dynamic output current* | $\mathrm{I}_{\text {OLD }}$ | 5.5 | - | - | - | 86 | - | mA | $\mathrm{V}_{\text {OLD }}=1.1 \mathrm{~V}$ |  |
|  | $\mathrm{I}_{\text {OHD }}$ | 5.5 | - | - | - | -75 | - | mA | $\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ |  |
| Quiescent supply current | $\mathrm{I}_{\mathrm{cc}}$ | 5.5 | - | - | 8.0 | - | 80 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or ground |  |

[^0]Recommended Operating Conditions: HD74ACT283

| Item | Symbol | Ratings | Unit | Condition |
| :--- | :--- | :--- | :--- | :--- |
| Supply voltage | $\mathrm{V}_{\mathrm{CC}}$ | 2 to 6 | V |  |
| Input and output voltage | $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{O}}$ | 0 to $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Operating temperature | Ta | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Input rise and fall time <br> (except Schmitt inputs) <br> $\mathrm{V}_{\text {IN }} 0.8$ to 2.0 V | tr, tf | 8 | $\mathrm{~ns} / \mathrm{V}$ | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |

DC Characteristics: HD74ACT283

| Item | Symbol | $\mathrm{V}_{\mathrm{cc}}$ <br> (V) | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} \mathrm{Ta}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$ |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | min. | typ. | max. | min. | max. |  |  |
| Input voltage | $\mathrm{V}_{\mathrm{IH}}$ | 4.5 | 2.0 | 1.5 | - | 2.0 | - | V | $\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{Vcc}-0.1 \mathrm{~V}$ |
|  |  | 5.5 | 2.0 | 1.5 | - | 2.0 | - |  |  |
|  | $\mathrm{V}_{\text {IL }}$ | 4.5 | - | 1.5 | 0.8 | - | 0.8 |  | $\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{Vcc}-0.1 \mathrm{~V}$ |
|  |  | 5.5 | - | 1.5 | 0.8 | - | 0.8 |  |  |
| Output voltage | $\mathrm{V}_{\mathrm{OH}}$ | 4.5 | 4.4 | 4.49 | - | 4.4 | - | V | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{HH}} \\ & \mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A} \end{aligned}$ |
|  |  | 5.5 | 5.4 | 5.49 | - | 5.4 |  |  |  |
|  |  | 4.5 | 3.94 | - | - | 3.80 |  |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ |
|  |  | 5.5 | 4.94 | - | - | 4.80 | - |  |  |
|  | $\mathrm{V}_{\text {OL }}$ | 4.5 | - | 0.001 | 0.1 | - | 0.1 |  | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL or }} \mathrm{V}_{\text {HH }} \\ & \mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A} \end{aligned}$ |
|  |  | 5.5 | - | 0.001 | 0.1 | - | 0.1 |  |  |
|  |  | 4.5 | - | - | 0.32 | - | 0.37 |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ |
|  |  | 5.5 | - | - | 0.32 | - | 0.37 |  |  |
| Input current | $\mathrm{I}_{\text {IN }}$ | 5.5 | - | - | $\pm 0.1$ | - | $\pm 1.0$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND |
| $\mathrm{I}_{\text {cc }}$ input current | $\mathrm{I}_{\text {CCT }}$ | 5.5 | - | 0.6 | - | - | 1.5 | mA | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$ |
| Dynamic output current* | $\mathrm{I}_{\text {OLD }}$ | 5.5 | - | - | - | 86 | - | mA | $\mathrm{V}_{\text {OLD }}=1.1 \mathrm{~V}$ |
|  | $\mathrm{I}_{\text {OHD }}$ | 5.5 | - | - | - | -75 | - | mA | $\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ |
| Quiescent supply current | $\mathrm{I}_{\mathrm{CC}}$ | 5.5 | - | - | 8.0 | - | 80 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or ground |

*Maximum test duration 2.0 ms , one output loaded at a time.

AC Characteristics: HD74AC283

| Item | Symbol | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})^{* 1}$ | $\begin{aligned} \mathrm{Ta} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$ |  |  | $\begin{gathered} \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max |  |
| Propagation delay | $\mathrm{t}_{\text {PLH }}$ | 3.3 | 1.0 | 11.5 | 15.0 | 1.0 | 16.5 | ns |
| $\mathrm{C}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ |  | 5.0 | 1.0 | 9.5 | 11.5 | 1.0 | 12.5 |  |
| Propagation delay | $\mathrm{t}_{\text {PHL }}$ | 3.3 | 1.0 | 10.5 | 14.0 | 1.0 | 15.5 | ns |
| $\mathrm{C}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ |  | 5.0 | 1.0 | 8.5 | 10.5 | 1.0 | 11.5 |  |
| Propagation delay | $\mathrm{t}_{\text {PLH }}$ | 3.3 | 1.0 | 14.0 | 17.0 | 1.0 | 18.5 | ns |
| $A_{n}$ or $B_{n}$ to $S_{n}$ |  | 5.0 | 1.0 | 11.5 | 13.5 | 1.0 | 14.5 |  |
| Propagation delay | $\mathrm{t}_{\text {PHL }}$ | 3.3 | 1.0 | 13.5 | 16.5 | 1.0 | 18.0 | ns |
| $A_{n} \text { or } B_{n} \text { to } S_{n}$ |  | 5.0 | 1.0 | 11.0 | 13.0 | 1.0 | 14.0 |  |
| Propagation delay | $\mathrm{t}_{\text {PLH }}$ | 3.3 | 1.0 | 9.5 | 12.5 | 1.0 | 15.5 | ns |
| $\mathrm{C}_{0}$ to $\mathrm{C}_{4}$ |  | 5.0 | 1.0 | 7.5 | 9.5 | 1.0 | 10.5 |  |
| Propagation delay | $\mathrm{t}_{\text {PHL }}$ | 3.3 | 1.0 | 10.0 | 13.0 | 1.0 | 14.0 | ns |
| $\mathrm{C}_{0}$ to $\mathrm{C}_{4}$ |  | 5.0 | 1.0 | 8.0 | 10.0 | 1.0 | 11.0 |  |
| Propagation delay | $\mathrm{t}_{\text {PLH }}$ | 3.3 | 1.0 | 11.5 | 14.5 | 1.0 | 16.0 | ns |
| $\mathrm{A}_{\mathrm{n}}$ or $\mathrm{B}_{\mathrm{n}}$ to $\mathrm{C}_{4}$ |  | 5.0 | 1.0 | 9.5 | 11.5 | 1.0 | 12.5 |  |
| Propagation delay | $\mathrm{t}_{\text {PHL }}$ | 3.3 | 1.0 | 12.0 | 15.0 | 1.0 | 16.5 | ns |
| $\mathrm{A}_{\mathrm{n}}$ or $\mathrm{B}_{\mathrm{n}}$ to $\mathrm{C}_{4}$ |  | 5.0 | 1.0 | 10.0 | 12.0 | 1.0 | 13.0 |  |

Note: 1. Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Characteristics: HD74ACT283

| Item | Symbol | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V}){ }^{1}$ | $\begin{aligned} \mathrm{Ta} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$ |  |  | $\begin{gathered} \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max |  |
| Propagation delay $\mathrm{C}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ | $\mathrm{t}_{\text {PLH }}$ | 5.0 | 1.0 | $11.5$ | 13.5 | 1.0 | 14.5 | ns |
| Propagation delay $\mathrm{C}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ | $\mathrm{t}_{\text {PHL }}$ | 5.0 | 1.0 | 10.0 | 12.0 | 1.0 | 13.0 | ns |
| Propagation delay $A_{n}$ or $B_{n}$ to $S_{n}$ | $\mathrm{t}_{\text {PLH }}$ | 5.0 | 1.0 | 13.0 | 15.0 | 1.0 | 16.5 | ns |
| Propagation delay $A_{n}$ or $B_{n}$ to $S_{n}$ | $\mathrm{t}_{\mathrm{PHL}}$ | 5.0 | 1.0 | 12.0 | 14.0 | 1.0 | 15.5 | ns |
| Propagation delay $\mathrm{C}_{0}$ to $\mathrm{C}_{4}$ | $\mathrm{t}_{\text {PLH }}$ | 5.0 | 1.0 | 9.0 | 11.0 | 1.0 | 12.0 | ns |
| Propagation delay $\mathrm{C}_{0}$ to $\mathrm{C}_{4}$ | $\mathrm{t}_{\text {PHL }}$ | 5.0 | 1.0 | 10.0 | 12.0 | 1.0 | 13.0 | ns |
| Propagation delay $A_{n}$ or $B_{n}$ to $C_{4}$ | $\mathrm{t}_{\text {PLH }}$ | 5.0 | 1.0 | 11.0 | 13.0 | 1.0 | 14.0 | ns |
| Propagation delay $\mathrm{A}_{\mathrm{n}}$ or $\mathrm{B}_{\mathrm{n}}$ to $\mathrm{C}_{4}$ | $\mathrm{t}_{\text {PHL }}$ | 5.0 | 1.0 | 11.5 | 13.5 | 1.0 | 14.5 | ns |

Note: 1. Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

| Item | Symbol | Typ | Unit | Condition |
| :--- | :--- | :--- | :--- | :--- |
| Input capacitance | $\mathrm{C}_{\mathbb{N}}$ | 4.5 | pF | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ |
| Power dissipation capacitance | $\mathrm{C}_{\mathrm{PD}}$ | 60.0 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |

## Package Dimensions



Unit: mm

*NI/Pd/AU Plating

| Package Code | DP-16FV |
| :--- | :--- |
| JEDEC | Conforms |
| JEITA | Conforms |
| Mass (reference value) | 1.05 g |



As of January, 2003
Unit: mm

*Ni/Pd/Au plating

| Package Code | FP-16DNV |
| :--- | :--- |
| JEDEC | Conforms |
| JEITA | Conforms |
| Mass (reference value) | 0.15 g |

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blag., 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs! may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party ams, algorithms, or circuit application examples contained in these material
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is herefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

## RENESAS SALES OFFICES

## Renesas Technology America, Inc

450 Holger Way San Jose CA 95134-1368 U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

## Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001


[^0]:    *Maximum test duration 2.0 ms , one output loaded at a time.

