

汕头华汕电子器件有限公司

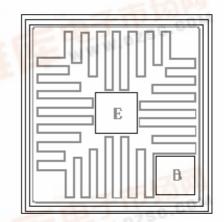
NPN SILICON

TRANSISTOR

HD965

对应国外型号 2SD965

芯片简介


芯片尺寸:4 英寸(100mm) 芯片代码:C089AJ-00-XXX

芯片厚度: $240 \pm 20 \mu m$ 管芯尺寸: $890 \times 890 \mu m^2$

焊位尺寸: B 极 230×230μm; E 极 170×170μm

电极金属:铝 背面金属:金 封装形式:TO-92

芯片图

极限值(T_a=25)

T _{stg} ——贮存温度… <mark></mark>	55~150
T _j ——结温	150
Pc <mark>——集电极耗散功率</mark>	0.75W
V _{CBO} ——集电极—基极电压	40V
V _{CEO} ——集电极—发射极电压	20V
V _{EBO} ——发射极—基极电压	7V
I _C ——集电极电流	5A

电参数 (Ta=25)

f.dzsc.com

参数符号	符号说明	最小值	典型值	最大值	单 位	测 试 条 件
I _{CBO}	集电极—基极截止电流			100	nA	V _{CB} =10V, I _E =0
I _{EBO}	发射极—基极截止电流			100	nA	$V_{EB}=7V$, $I_{c}=0$
Vceo	集电极-发射极电压	20	1	TE VE	V	Ic=1mA , I _B =0
V _{EB0}	发射极-基极电压	7			V	Ιε=10 μ A , Ι c=0
h _{FE1}	直流电流增益	180		800		V _{CE} =2V, I _C =0.5A
h _{FE2}	直流电流增益	150				$V_{CE}=2V$, $I_{C}=2A$
V _{CE (sat)}	集电极—发射极饱和电压			1	V	I c=3A, I B=0.1A
$f_{\scriptscriptstyle T}$	特征频率	150			MHz	$V_{CB}=6V$, $I_{E}=50mA$
C_{ob}	共基极输出电容			50	pF	$V_{CB}=20V$, $I_{E}=0$, $f=1MHz$