

COMPLIANT

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 60 A

40 A at 100 °C

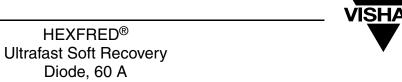
SOT-227

I_{F(DC)} at T_C

PRODUCT SUMMARY				
V_{R}	600 V			
V _F (typical) at 125 °C	1.4 V			
Q _{rr} (typical)	270 nC			
I _{RRM} (typical)	7.0 A			
t _{rr} (typical)	65 ns			
dl/dt (typical) at 125 °C	270 A/us			

FEATURES

- Fast recovery time characteristic
- Electrically isolated base plate
- Large creepage distance between terminal
- Simplified mechanical designs, rapid assembly
- UL pending
- Totally lead (Pb)-free
- · Designed for industrial level


DESCRIPTION

This SOT-227 modules with HEXFRED® rectifier are available in two basic configurations. They are the antiparallel and the parallel configurations. The antiparallel configuration (HFA120EA60) is used for simple series rectifier and high voltage application. The parallel configuration (HFA120FA60) is used for simple parallel rectifier and high current application. The semiconductor in the SOT-227 package is isolated from the copper base plate, allowing for common heatsinks and compact assemblies to be built. These modules are intended for general applications such as power supplies, battery chargers, electronic welders, motor control, DC chopper, and inverters.

ABSOLUTE MAXIMUM RATINGS PER LEG				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Cathode to anode voltage	V _R	60 (C) -	600	V
Continuous forward current	C.CPM	T _C = 25 °C	75	
		T _C = 100 °C	40	A
Single pulse forward current	I _{FSM}		TBD	A
Maximum repetitive forward current	I _{FRM}		180	
RMS isolation voltage, any terminal to case	V _{ISOL}	t = 1 minute	2500	V
Maximum power dissipation	P _D	T _C = 25 °C	180	w
		T _C = 100 °C	71 71	5C-0-W
Operating junction and storage temperature range	T _J , T _{Stg}	- LT- 12	- 55 to 150	°C

ELECTRICAL SPECIFICATIONS PER LEG (T _{,I} = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V_{BR}	I _R = 100 μA		600	-	-	
Maximum forward voltage V _{FM}		I _F = 60 A	See fig. 1	-	1.5	1.7	V
	V_{FM}	I _F = 120 A		-	1.9	2.1	
	I _F = 60 A, T _J = 125 °C		-	1.4	1.6		
Maximum reverse leakage current I _{RM}	$V_R = V_R$ rated	Coo fig. 0	-	2.5	20		
	IRM	$T_J = 125 ^{\circ}\text{C}, V_R = 0.8 ^{\circ}\text{x} ^{\circ}\text{V}_R ^{\circ}\text{rated}$	See fig. 2	-	130	2000	μΑ
Junction capacitance	C _T	V _R = 200 V	See fig. 3	-	120	170	pF

Vishay High Power Products

DYNAMIC RECOVERY CHARACTERISTICS PER LEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	34	-	
Reverse recovery time See fig. 5, 6 and 16	t _{rr1}	T _J = 25 °C		-	65	98	ns
300 lig. 0, 0 and 10	t _{rr2}	T _J = 125 °C		-	130	200	
Peak recovery current	I _{RRM1}	T _J = 25 °C	$I_F = 60 \text{ A}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$ $V_R = 200 \text{ V}$	-	7.0	13	Α
See fig. 7 and 8	I _{RRM2}	T _J = 125 °C		-	13	23	_ ^
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	270	410	nC
See fig. 9 and 10	Q _{rr2}	T _J = 125 °C		-	490	740	IIC
Peak rate of recovery current during t_b See fig. 11 and 12	dI _{(rec)M} /dt1	T _J = 25 °C		-	350	-	A /
	dI _{(rec)M} /dt2	T _J = 125 °C		=	270	-	A/μs

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	
Junction to case, single leg conducting	В	-	-	0.70		
Junction to case, both legs conducting	- R _{thJC}	-	-	0.35	°C/W K/W	
Case to sink, flat, greased surface	R _{thCS}	-	0.05	-		
Weight		-	30	-	g	
Mounting torque		-	1.3	-	Nm	

HEXFRED® Ultrafast Soft Recovery Diode, 60 A

Vishay High Power Products

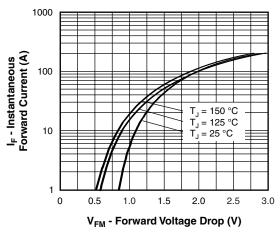


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current (Per Leg)

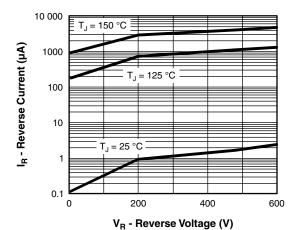


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Leg)

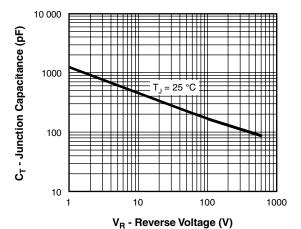


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

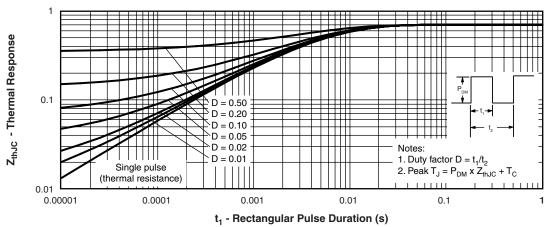


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 60 A

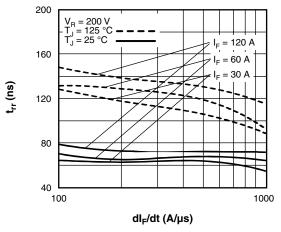


Fig. 5 - Typical Reverse Recovery Time vs. dl_F/dt (Per Leg)

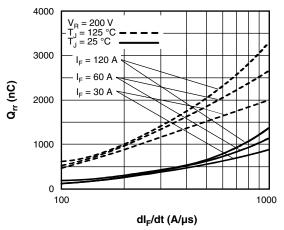


Fig. 7- Typical Stored Charge vs. dl_F/dt (Per Leg)

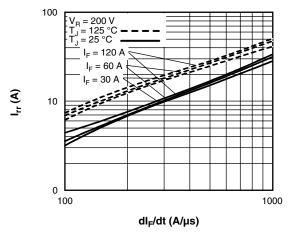


Fig. 6 - Typical Recovery Current vs. dI_F/dt (Per Leg)

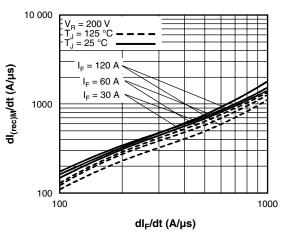
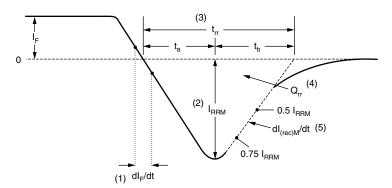


Fig. 8 - Typical $dI_{(rec)M}/dt$ vs. dI_F/dt (Per Leg)



HEXFRED® Ultrafast Soft Recovery Diode, 60 A

Vishay High Power Products

Fig. 9 - Reverse Recovery Parameter Test Circuit

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- $\begin{array}{l} \text{(3) } \textbf{t}_{\text{rr}} \text{ reverse recovery time measured} \\ \text{from zero crossing point of negative} \\ \text{going I}_{\text{F}} \text{ to point where a line passing} \\ \text{through 0.75 I}_{\text{RRM}} \text{ and 0.50 I}_{\text{RRM}} \\ \text{extrapolated to zero current.} \end{array}$
- (4) $\mathbf{Q}_{\rm rr}$ area under curve defined by $\mathbf{t}_{\rm rr}$ and $\mathbf{I}_{\rm RRM}$

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 10 - Reverse Recovery Waveform and Definitions

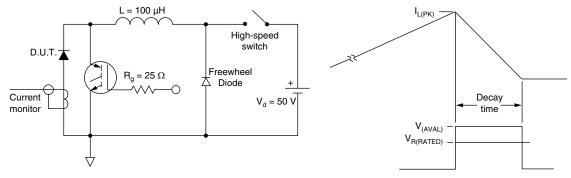


Fig. 11 - Avalanche Test Circuit and Waveforms

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 60 A

ORDERING INFORMATION TABLE

1 - HEXFRED® family

Process: A electron irradiated

3 - Current rating (120 = 120 A)

- Package indicator (SOT-227)

5 - Voltage rating (60 = 600 V)

P = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS				
Dimensions http://www.vishay.com/doc?95036				
Packaging information	http://www.vishay.com/doc?95037			

www.vishay.com

For technical questions, contact: ind-modules@vishay.com

Document Number: 94049

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com