

HMC-ABH241

GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, 50 - 66 GHz

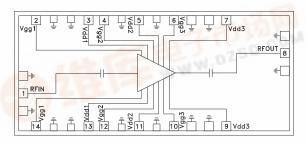
Typical Applications

This HMC-ABH241 is ideal for:

- · Short Haul / High Capacity Links
- Wireless LAN Bridges
- Military & Space

Features

Output IP3: +25 dBm


P1dB: +17 dBm

Gain: 24 dB

Supply Voltage: +5 V

50 Ohm Matched Input/Output Die Size: 3.2 x 1.42 x 0.1 mm

Functional Diagram

General Description

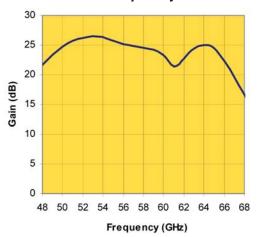
The HMC-ABH241 is a four stage GaAs HEMT MMIC Medium Power Amplifier which operates between 50 and 66 GHz. The HMC-ABH241 provides 24 dB of gain, and an output power of +17 dBm at 1dB compression from a +5V supply voltage. All bond pads and the die backside are Ti/Au metallized and the amplifier device is fully passivated for reliable operation. The HMC-ABH241 GaAs HEMT MMIC Medium Power Amplifier is compatible with conventional die attach methods, as well as thermocompression and thermosonic wire bonding, making it ideal for MCM and hybrid microcircuit applications. All data shown herein is measured with the chip in a 50 Ohm environment and contacted with RF probes.

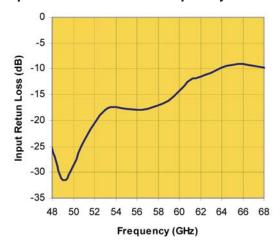
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd1 = Vdd2 = Vdd3 = 5V, Idd1 + Idd2 + Idd3 = 220 mA

Parameter	Min.	Тур.	Max.	Units
Frequency Range	130	50 - 66	College P	GHz
Gain	19	24		dB
Input Return Loss		15		dB
Output Return Loss		15		dB
Output Power for 1 dB Compression (P1dB)		17		dBm
Output Third Order Intercept (IP3)		25		dBm
Saturated Output Power (Psat)		19		dBm
Supply Current (Idd1 + Idd2 + Idd3)		220		mA

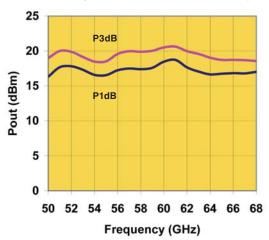
^[1] Unless otherwise indicated, all measurements are from probed die

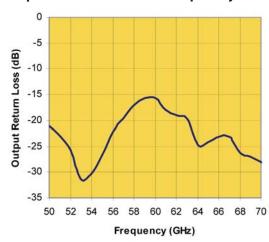
^[2] Adjust Vgg1 = Vgg2 = Vgg3 between -1V to +0.3V (typ -0.3V).





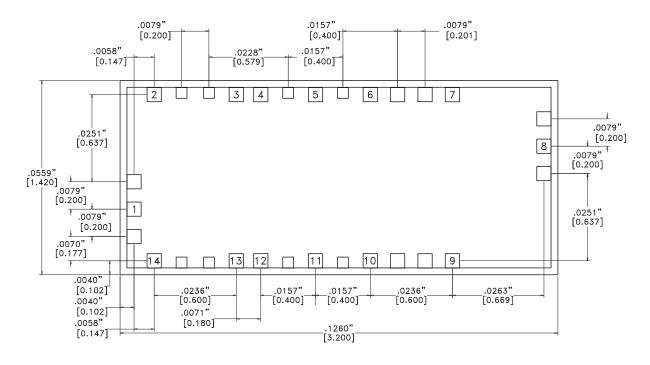
GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, 50 - 66 GHz


Linear Gain vs. Frequency


Input Return Loss vs. Frequency

Fixtured Output Power vs. Frequency

Output Return Loss vs. Frequency


GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, 50 - 66 GHz

Absolute Maximum Ratings

Drain Bias Voltage	+5.5 Vdc	
Gain Bias Voltage	-1 to +0.3 Vdc	
RF Input Power	2 dBm	
Storage Temperature	-65 °C to + 150°C	
Chennel Temperature	+180 °C	

Outline Drawing

NOTES

- 1. ALL DIMENSIONS ARE IN INCHES [MM].
- 2. TYPICAL BOND PAD IS .004" SQUARE.
- 3. BACKSIDE METALLIZATION: GOLD.
- 4. BACKSIDE METAL IS GROUND.
- 5. BOND PAD METALLIZATION: GOLD.
- 6. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.
- 7. OVERALL DIE SIZE ±.002"