

Current Transducer HTFS 200..800-P/SP2

 $I_{PN} = 200 - 400 - 800 A$

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

All Data are given with a $R_1 = 10 \text{ k}\Omega$

Electrical data

r.m.s.	y nominal Primary current current measuring range (A) I _P (A)	Туре		
200 ±300 400 ±600 800 ±1200		HTFS 200-P/SP2 HTFS 400-P/SP2 HTFS 800-P/SP2		
\mathbf{V}_{OUT}	Analog output voltage $@$ I_p $I_p = 0$ Internal Reference ¹⁾ - Output voltage $V_{REF} \text{ Output impedance}$ $V_{REF} \text{ Load impedance}$	$V_{REF} \pm (1.25)$ $V_{REF} \pm 0.02$ $1/2V_{C} \pm 0.02$ typ. 200 ≥ 200	25 V	
R _L R _{OUT} C _L V _C	Output load resistance Output impedance Max. output capacitive load Supply voltage (± 5 %) Current consumption @ V _C = 5 V	≥ 2 < 10 < 1 5 22	kΩ Ω μF V mA	

Accuracy - Dynamic performance data

Χ	Accuracy $^{2)}$ @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\text{C}$	≤±1	% of I _{PN}
$\mathbf{e}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity 0 1.5 x I _{PN}	≤±0.5	% of I _{PN}
TCV _{OUT}	Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_{P} = 0$	≤±0.3	mV/K
TCV _{REF}	Thermal drift of V _{REF}	≤±0.01	%/K
TCV _{OUT}	V_{REF} Thermal drift of V_{OUT}/V_{REF} @ $I_{P} = 0$	≤±0.2	mV/K
TC e _G	Thermal drift of the gain	$\leq \pm 0.05\%$ of	reading/K
V _{OM}	Residual voltage @ $I_p = 0$, after an overload of 3 x I_{PNDC}	<±0.5	% of $I_{_{\mathrm{PN}}}$
t _{ra}	Reaction time @ 10 % of I _{PN}	< 3	μs
t _r	Response time @ 90 % of I _{PN}	< 7	μs
di/dt	di/dt accurately followed	> 100	A/µs
	Output noise (DC10 kHz)	< 15	mVpp
	(DC 1 MHz)	< 40	mVpp
f	Frequency bandwidth (-3 dB) ³⁾	DC 20	kHz

General data

	The state of the s		
T _A	Ambient operating temperature	- 40 + 105	°C
T _s	Ambient storage temperature	- 40 + 105	°C
dCp	Creepage distance	> 4	m m
dCl	Clearance distance	> 4	m m
СТІ	Comparative tracking index (Group IIIa) UL94 classification	220 V0	V
m	Mass	60	g
戈西	Standards	EN 50178 (97-	10-01)

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Low power consumption
- Single power supply +5V
- Ratiometric offset
- **T**_△ = -40..+105 °C
- PCB fixation by 4 Ø1 pins

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- V_{REF.} IN/OUT

Applications

- Forklift drives
- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

041222/2

Current Transducer HTFS 200..800-P/SP2

Insulation category

 $\mathbf{V}_{_{\mathrm{b}}}$ Nominal Voltage 150 V r.m.s.

with IEC 61010-1 standards and following conditions

- Single insulation

- Over voltage category III

- Pollution degree 2

- Heterogeneous field

V_b Nominal Voltage 150 V r.m.s.

with EN 50178 standards and following conditions

- Reinforced insulation

- Over voltage category III

- Pollution degree 2

- Heterogeneous field

 $f V_d$ R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn 2.5 kV $f V_e$ R.m.s. voltage for partial discharge extinction @ 10pC >1 kV $f V_m$ Impulse withstand voltage 1.2/50 μ s 4 kV

If insulated cable is used for the primary circuit, the voltage category could be improved with the following table :

Cable insulation (primary)

HAR 03

HAR 05

HAR 07

Category

300V CAT III

400V CAT III

500V CAT III

 $\underline{\text{Notes}}$: 1) It is possible to overdrive \mathbf{V}_{REF} with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approx. 2.5 mA.

Safety:

 $\overline{\mathbb{V}}$

Caution, risk of danger

Caution, risk of electrical shock

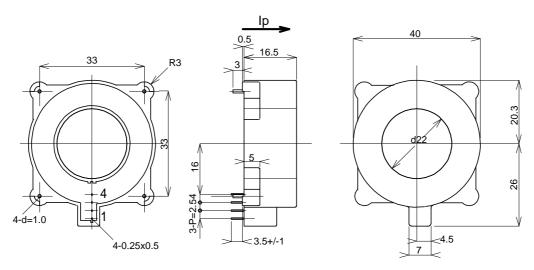
This transducer shall be used in accordance with manufacturer instruction. Power supply shall be a low voltage source and shall have an efficient

protective system against over current. Power supply must incorporate a circuit breaker.

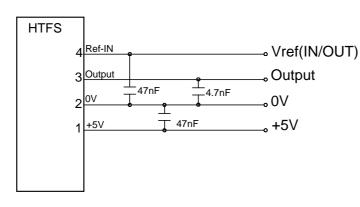
This transducer shall be used in an electric/electronic equipment in respect of standards rules and applicable safety requirements.

Primary bar and output terminals can provide hazardous voltage.

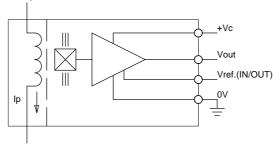
This transducer is a built in device, of which conducting parts must be inaccessible by installation.


Protective envelope or additional shield must be used.

²⁾ Excluding offset.


³⁾Small signal only to avoid excessive heatings of the magnetic core.

HTFS 200..800-P/SP2 Dimensions (in mm)


Required Connection Circuit

Terminal Pin

- 2...0V
- 4...Vref(IN/OUT)

Operation Principle

Mechanical characteristics

General tolerance

Fixation

• Recommended PCB hole

 Fastening & connection of secondary Recommended PCB hole

±0.2 mm

4 pins x Ø 1.0

Ø 1.2 mm 4 pins 0.5 x 0.25

Ø 0.7 mm

- 1...+5V
- 3...Output

Remarks

- $\bullet~{\rm \textbf{V}_{OUT}}$ is positive when ${\rm \textbf{I}_{P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 120°C.