查询HT46R14A供应商

捷多邦,专业PCB打样工厂,24小时加急出货

HT46R14A A/D Type 8-Bit OTP MCU

Technical Document

- Tools Information
- FAQs
- Application Note
 - HA0004E HT48 & HT46 MCU UART Software Implementation Method
- HA0005E Controlling the I^2C bus with the HT48 & HT46 MCU Series
- HA0011E HT48 & HT46 Keyboard Scan Program
- HA0013E HT48 & HT46 LCM Interface Design
- HA0075E MCU Reset and Oscillator Circuits Application Note
- HA0102E Using the HT46R14A in a CCFL Lamp Inverter

Features

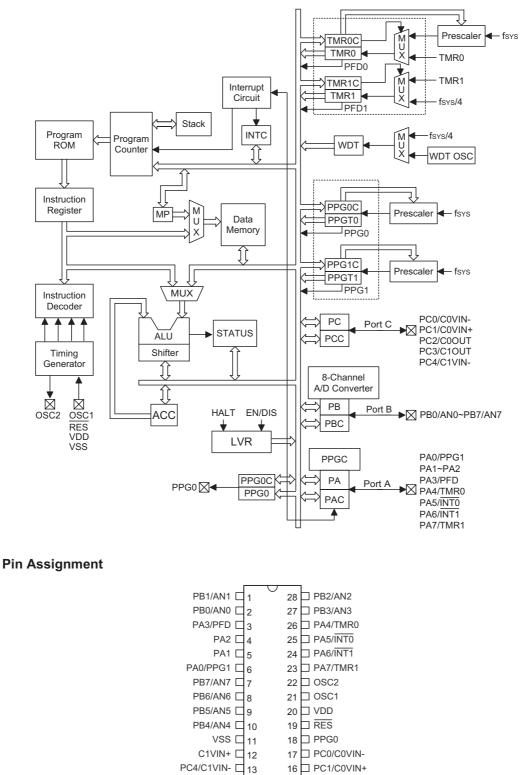
- Operating voltage: f_{SYS}= 4MHz: 2.2V~5.5V f_{SYS}= 8MHz: 3.3V~5.5V
- 21 bidirectional I/O lines
- Three interrupt input shared with an I/O line
- Two 8-bit programmable timer/event counters with overflow interrupt and 7-stage prescaler
- Two 8-bit programmable pulse generator PPG output channel with prescaler and 8-bit programmable timer counter, supporting both active low or active high output
- Two comparator
- 4096×15 program memory
- 192×8 data memory RAM
- Integrated crystal and RC oscillator
- Watchdog Timer

General Description

The HT46R14A is an 8-bit, high performance, RISC architecture microcontroller devices specifically designed for A/D applications that interface directly to analog signals, such as those from sensors.

The advantages of low power consumption, I/O flexibility, programmable frequency divider, timer functions, oscillator options, multi-channel A/D Converter, HALT and wake-up functions, provide the device with the ver-

- PFD for audio generation
- Power-down and wake-up functions for reduced power consumption
- Up to 0.5 μ s instruction cycle with 8MHz system clock at V_DD= 5V
- 8-level subroutine nesting
- 8 channel 9-bit resolution A/D converter
- Two comparators with interrupt function
- Bit manipulation instruction
- 15-bit table read instruction
- 63 powerful instructions
- Instructions executed in one or two machine cycles
- Low voltage reset function
- 28-pin SKDIP/SOP packages


satility to meet the requirements of wide range of A/D application possibilities such as external analog sensor signal processing.

With the inclusion of two comparators and a fully integrated programmable pulse generator, the device is particularly suitable for use in products such as induction cookers and other home appliance application areas.

Block Diagram

PC3/C10UT 14

HT46R14A

15 PC2/C00UT

Pin Description

Pin Name	I/O	Options	Description
PA0/PPG1 PA1~PA2 PA3/PFD PA4/TMR0 PA5/INT0 PA6/INT1 PA7/TMR1	I/O	Pull-high Wake-up PA3 or PFD	Bidirectional 8-bit input/output port. Each pin can be configured as a wake-up input by configuration option. Software instructions determine if the pin is a CMOS output or Schmitt trigger input. Configuration options determine which pins on the port have pull-high resistors. The PFD, INT0 and INT1 are pin-shared with PA3, PA5 and PA6. The TMR0 is pin-shared with PA4, TMR1 is pin shared with PA7, respectively. The PPG1 is a programmable pulse generator1 output pin, pin shared with PA0. The PPG1 or I/O function is selected via configuration option. The PPG1 output pin is floating during power-on reset, RES pin reset or LVR reset. The PPG1 output level (active low or active high) can be selected via configuration option.
PB0/AN0~ PB7/AN7	I/O	Pull-high	Bidirectional 8-bit input/output port. Software instructions determine if the pin is a CMOS output or Schmitt trigger input. Configuration options determine which pins on the port have pull-high resistors. PB is shared with the A/D input pins. The A/D inputs are selected via software instructions. Once selected as an A/D input, the I/O function and pull-high resistor functions are disabled automatically.
PC0/C0VIN- PC1/C0VIN+ PC2/C0OUT PC3/C1OUT PC4/C1VIN- C1VIN+	I/O	Pull-high I/O or Comparator	Bi-directional 5-bit input/output port. Software instructions determine if the pin is a CMOS output or Schmitt trigger input. A configuration option determines if all pins on the the port have pull-high resistors. C0VIN-, C0VIN+ and C0OUT are pin-shared with PC0, PC1 and PC2. Once the comparator 0 is enabled, the inter- nal PC2 port control register can be used as input only, the PC2 output function and the PC0/PC1/PC2 pull-high resistors will be disabled automatically, however PC0 and PC1 maintain their I/O function. Software instructions determine if the Comparator 0 function is enabled or not. C1VIN+ and C1VIN- are the Comparator 1 inputs, C1OUT and C1VIN- are pin-shared with PC3 and PC4. Once the Comparator 1 function is enabled, the in- ternal PC3 port control register can be used as input only, the PC3 output function and the PC3/PC4 pull-high resistors will be disabled automatically, however PC4 maintains its I/O function. Software instructions determine if the Comparator 1 function is enabled or not. The PC1/C0VIN+ pin is also the external interrupt input pin. A falling edge on this pin will form an interrupt trigger source whether the pin is setup as a Comparator input or I/O pin.
PPG0	0		Programmable pulse generator 0 output pin, the pin is floating when the power is first applied. The PPG0 output level can be selected to be either active low or active high, selected via configuration option.
OSC1 OSC2	I O	Crystal or RC	OSC1, OSC2 are connected to an RC network or a Crystal (determined by option) for the internal system clock. If the RC system clock option is selected, pin OSC2 can be used to monitor the system clock at 1/4 frequency.
RES	I		Schmitt trigger reset input. Active low.
VDD			Positive power supply
VSS			Negative power supply, ground.

Absolute Maximum Ratings

Supply Voltage	V _{SS} –0.3V to V _{SS} +6.0V	Storage Temperature	–50°C to 125°C
Input Voltage	V_{SS} –0.3V to V_{DD} +0.3V	Operating Temperature	–40°C to 85°C
I _{OL} Total	150mA	I _{OH} Total	–100mA
Total Power Dissipation	500mW		

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

0	Demonster		Test Conditions	N#2	T	N	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	
\ <i>\</i>			f _{SYS} =4MHz	2.2		5.5	V
V _{DD}	Operating Voltage		f _{SYS} =8MHz	3.3		5.5	V
l	Operating Current	3V	No load, f _{SYS} =4MHz		0.6	1.5	mA
I _{DD1}	(Crystal OSC)	5V	ADC off	—	2	4	mA
I _{DD2}	Operating Current	3V	No load, f _{SYS} =4MHz		0.8	1.5	mA
'DD2	(RC OSC)	5V	ADC off		2.5	4	mA
I _{DD3}	Operating Current (Crystal OSC, RC OSC)	5V	No load, f _{SYS} =8MHz ADC off	_	4	8	mA
I _{STB1}	Standby Current	3V	No load, system HALT			5	μA
ISTB1	(WDT Enabled)	5V	NO IOAU, SYSTEIN HALT			10	μA
I _{STB2}	Standby Current	3V	No load, system HALT			1	μA
'STB2	(WDT Disabled)	5V	No load, system HALT			2	μA
V _{IL1}	Input Low Voltage for I/O Ports, TMR0 and TMR1	_		0	—	$0.3V_{DD}$	V
V _{IH1}	Input High Voltage for I/O Ports, TMR0 and TMR1	_		0.7V _{DD}	_	V _{DD}	V
V _{IL2}	Input Low Voltage (RES)	_		0		0.4V _{DD}	V
V _{IH2}	Input High Voltage (RES)	_		0.9V _{DD}		V _{DD}	V
V _{LVR}	Low Voltage Reset		_	2.7	3.0	3.3	V
l	I/O Port, PPG0 and PPG1 Pin	3V	V _{OL} =0.1V _{DD}	4	8		mA
I _{OL}	Sink Current	5V	V _{OL} =0.1V _{DD}	10	20		mA
lau	I/O Port, PPG0 and PPG1 Pin	3V	V _{OH} =0.9V _{DD}	-2	-4	_	mA
I _{OH}	Source Current	5V	V _{OH} =0.9V _{DD}	-5	-10	_	mA
R _{PH}	Pull-high Resistance	3V		20	60	100	kΩ
' 'PH	Pull-high Resistance		—	10	30	50	kΩ
V _{AD}	A/D Input Voltage			0		V _{DD}	V
E _{AD}	A/D Conversion Error		—		±0.5	±1	LSB
	Additional Power Consumption	3V			0.5	1	mA
I _{ADC}	if A/D Converter is Used	5V		_	1.5	3	mA

Note: If the comparator input voltage is not equal to V_{DD} or V_{SS} , there may be more I_{DD}/I_{STB} current consumed by the pin-shared logic input function whether the comparator is enabled or disabled.

Typically, the current for each comparator input pin is about $500\mu A$ (V_{DD}=5V) if its input voltage is 2.5V.

A.C. Characteristics

Ta=25°C

Complete	Devenuetor		Test Conditions	Min	T	Marr	Unit	
Symbol	Parameter	V _{DD} Conditions		Min.	Тур.	Max.	Unit	
£	Custom Clash	_	2.2V~5.5V	400	_	4000	kHz	
f _{SYS}	System Clock	_	3.3V~5.5V	400	_	8000	kHz	
f	Timer I/P Frequency	_	2.2V~5.5V	0	_	4000	kHz	
f _{TIMER}	(TMR0/TMR1)	_	3.3V~5.5V	0	_	8000	kHz	
1	Matchelan Orailleter Desiral	3V	_	45	90	180	μs	
twdtosc	Watchdog Oscillator Period	5V		32	65	130	μs	
t _{RES}	External Reset Low Pulse Width	_	_	1	_	_	μs	
t _{SST}	System Start-up Timer Period		Power-up or Wake-up from HALT		1024		*t _{SYS}	
t _{INT}	Interrupt Pulse Width			1	_	_	μs	
t _{AD}	A/D Clock Period			1	_	_	μs	
t _{ADC}	A/D Conversion Time			_	76	_	t _{AD}	
t _{ADCS}	A/D Sampling Time	_		_	32		t _{AD}	

Note: *t_{SYS}=1/f_{SYS}

Comparator Electrical Characteristics

Ta=25°C

Cumula al	Demonstern		Test Conditions	Min.	T	Max	11
Symbol	Parameter		V _{DD} Conditions		Тур.	Max.	Unit
	Comparator Operating Voltage	_		2.2	_	5.5	V
	Comparator Operating Current	5V		_	_	200	μA
V _{OPOS1}	Comparator Input Offset Voltage	5V		-10		10	mV
V _{OPOS2}	Comparator Input Offset Voltage	5V	By calibraton	-2	_	2	mV
V _{CM}	Comparator Common Mode Voltage Range	_	_	V _{SS}	_	V _{DD} 1.4V	V
t _{PD}	Comparator Response Time	_	With 10mV overdrive	_	_	2	μs

Note: If the comparator input voltage is not equal to V_{DD} or V_{SS} , there may be more I_{DD}/I_{STB} current consumed by the pin-shared logic input function whether the comparator is enabled or disabled.

Typically, the current for each comparator input pin is about 500μ A (V_{DD}=5V) if its input voltage is 2.5V.

Functional Description

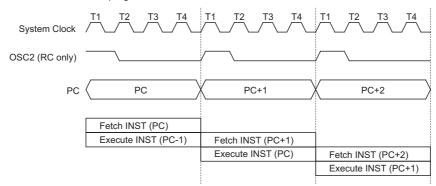
Execution Flow

The system clock for the microcontroller is derived from either a crystal or an RC oscillator. The system clock is internally divided into four non-overlapping clocks. One instruction cycle consists of four system clock cycles.

Instruction fetching and execution are pipelined in such a way that a fetch takes an instruction cycle while decoding and execution takes the next instruction cycle. However, the pipelining scheme allows each instruction to be effectively executed in a cycle. If an instruction changes the program counter, two cycles are required to complete the instruction.

Program Counter – PC

The program counter (PC) controls the sequence in which the instructions stored in the program ROM are executed and its contents specify a full range of program memory.


After accessing a program memory word to fetch an instruction code, the contents of the program counter are incremented by 1. The program counter then points to the memory word containing the next instruction code.

When executing a jump instruction, conditional skip execution, loading PCL register, subroutine call, initial reset, internal interrupt, external interrupt or return from subroutine, the PC manages the program transfer by loading the address corresponding to each instruction.

The conditional skip is activated by instructions. Once the condition is met, the next instruction, fetched during the current instruction execution, is discarded and a dummy cycle replaces it to get the proper instruction. Otherwise proceed with the next instruction.

The lower byte of the program counter (PCL) is a readable and writeable register (06H). Moving data into the PCL performs a short jump. The destination will be within 256 locations.

When a control transfer takes place, an additional dummy cycle is required.

Execution Flow

Mode		Program Counter											
wode	*11	*10	*9	*8	*7	*6	*5	*4	*3	*2	*1	*0	
Initial Reset	0	0	0	0	0	0	0	0	0	0	0	0	
External Interrupt 0	0	0	0	0	0	0	0	0	0	1	0	0	
External Interrupt 1	0	0	0	0	0	0	0	0	1	0	0	0	
Comparator 0 interrupt	0	0	0	0	0	0	0	0	1	1	0	0	
Comparator 1 interrupt	0	0	0	0	0	0	0	1	0	0	0	0	
External Interrupt 2	0	0	0	0	0	0	0	1	0	1	0	0	
Multi-function Interrupt	0	0	0	0	0	0	0	1	1	0	0	0	
Skip					Pr	ogram (Counter	+2					
Loading PCL	*11	*10	*9	*8	@7	@6	@5	@4	@3	@2	@1	@0	
Jump, Call Branch	#11	#10	#9	#8	#7	#6	#5	#4	#3	#2	#1	#0	

Program Counter

Note: *11~*0: Program counter bits #11~#0: Instruction code bits S11~S0: Stack register bits @7~@0: PCL bits

Program Memory – ROM

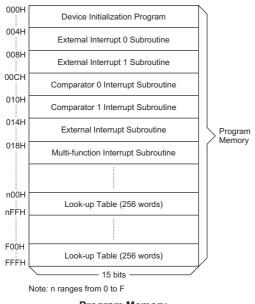
The program memory is used to store the executable program instructions. It also contains data, table, interrupt entries, and is organized into 4096×15 bits, addressed by the program counter and table pointer.

Certain locations in the program memory are reserved for special usage:

Location 000H

Location 000H is reserved for program initialization. After a chip reset, the program will jump to this location and begin execution.

Location 004H


Location 004H is reserved for the external interrupt 0 service program. If the $\overline{INT0}$ input pin is activated, the interrupt is enabled and the stack is not full, the program begins execution at location 004H.

Location 008H

Location 008H is reserved for the external Interrupt 1 service program. If the $\overline{INT1}$ input pin is activated, the interrupt is enabled and the stack is not full, the program begins execution at location 008H.

Location 00CH

Location 004H is reserved for the Comparator 0 interrupt service program. If the Comparator 0 output pin is

Program Memory

activated, and if the interrupt is enabled and the stack is not full, the program will jump to this location and begin execution.

• Location 010H

Location 010His reserved for the Comparator 1 interrupt service program. If the Comparator 1 output pin is activated, and if the interrupt is enabled and the stack is not full, the program will jump to this location and begin execution.

Location 014H

Location 014H is reserved for the external interrupt 2 service program. If the PC1/C0VIN+ input pin is activated (falling edge), and the interrupt is enabled, and the stack is not full, the program will jump to this location and begin execution.

Location 018H

Location 018H is reserved for the multi-function interrupt service program. If an timer interrupt results from Timer/Event counter 0 or Timer/Event counter 1 or ADC interrupt results from ADC conversion completed, and if the interrupt is enabled and the stack is not full, the program will jump to this location and begin execution.

Table location

Any location in the ROM space can be used as a look-up table. The instructions "TABRDC [m]" (the current page, 1 page=256 words) and "TABRDL [m]" (the last page) transfer the contents of the lower-order byte to the specified data memory, and the higher-order byte to TBLH (08H). Only the destination of the lower-order byte in the table is well-defined, the other bits of the table word are transferred to the lower portion of TBLH, and the remaining 2 bits are read as "0". The Table Higher-order byte register (TBLH) is read only. The table pointer (TBLP) is a read/write register (07H), which indicates the table location. Before accessing the table, the location must be placed in TBLP. The TBLH is read only and cannot be restored. If the main routine and the Interrupt Service Routine both employ the table read instruction, the contents of the TBLH in the main routine are likely to be changed by the table read instruction used in the Interrupt Service Routine and errors may occur. Therefore, using the table read instruction in the main routine and simultaneously in the Interrupt Service Routine should be avoided. However, if the table read instruction has to be applied in both the main routine and the interrupt Service Routine, the interrupt should be disabled prior to the table read instruction. It should not be re-en-

						Table L	ocation					
Instruction	*11	*10	*9	*8	*7	*6	*5	*4	*3	*2	*1	*0
TABRDC [m]	P11	P10	P9	P8	@7	@6	@5	@4	@3	@2	@1	@0
TABRDL [m]	1	1	1	1	@7	@6	@5	@4	@3	@2	@1	@0

Table Location

Note: *11~*0: Table location bits @7~@0: Table pointer bits P11~P8: Current program counter bits

abled until the TBLH has been backed up. All table related instructions require two cycles to complete the operation. These areas may function as normal program memory depending upon requirements.

Stack Register – STACK

This is a special part of the memory which is used to save the contents of the program counter only. The stack is organized into 8 levels and is neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the stack pointer, SP, and is neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of the program counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, indicated by a return instruction, RET or RETI, the program counter is restored to its previous value from the stack. After a chip reset, the SP will point to the top of the stack.

If the stack is full and a non-masked interrupt takes place, the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the stack pointer is decremented, using RET or RETI, the interrupt will be serviced. This feature prevents a stack overflow allowing the programmer to use the structure more easily. In a similar case, if the stack is full and a "CALL" is subsequently executed, a stack overflow will occur and the first entry will be lost as only the most recent 8 return addresses are stored.

Data Memory - RAM

The data memory has a capacity of 224×8 bits, and is divided into two functional groups, namely the special function registers and the general purpose data memory (192×8 bits), most of which are readable/writeable, although some are read only.

The unused space before address 40H is reserved for future expansion usage and reading these locations will obtain a result of "00H". The general purpose data memory, addressed from 40H to FFH is used for data and control information under instruction commands.

All of the data memory areas can handle arithmetic, logic, increment, decrement and rotate operations directly. Except for some dedicated bits, each bit in the data memory can be set and reset by "SET [m].i" and "CLR [m].i". They are also indirectly accessible through the memory pointer registers, MP0 and MP1.

00H Indirect Addressing Register 0 01H MP0 02H Indirect Addressing Register 1 03H MP1 04H TBLP 08H INTC0 0CH TMR0 0EH TMR0C 0FH MP0 11H TMR1C 12H PA 13H PAC 13H PAC 13H PAC 13H PBC 16H PC 17H PCC 18H MFIC 10H CMP1C 1EH			
02H Indirect Addressing Register 1 03H MP1 04H MP1 05H ACC 06H PCL 07H TBLP 08H TBLH 09H MP1 04H STATUS 08H INTCO 0CH MR0 0EH TMR0 0EH TMR0C 0FH Memory 11H TMR1 11H TMR1C 12H PA 13H PAC 13H PAC 15H PBC 16H PC 17H PCC 18H MFIC 10H CMP1C 1EH INTC1 1FH PPG10 2H PPG11 2H PPG11 2H PPG11 2H ADRH 2H ADRH 2H ADCR 2H ADCR 2H ADCR 2H ADCR <td>00H</td> <td>Indirect Addressing Register 0</td> <td>N</td>	00H	Indirect Addressing Register 0	N
03H MP1 04H ACC 06H PCL 07H TBLP 08H TBLH 09H Oddetector 08H TBLH 09H Oddetector 08H TBLH 09H Oddetector 08H INTCO 0CH Oddetector 0DH TMR0 0EH TMR0C 0FH Oddetector 10H TMR1 11H TMR1C 12H PA 13H PAC 13H PAC 13H PAC 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH 20H 20H PPG0C 21H PPG1C 22H PPG11 24H A	01H	MP0	
04H ACC 06H PCL 07H TBLP 08H TBLH 09H 000 0AH STATUS 0BH INTCO 0CH 000 0DH TMR0 0EH TMR0 0EH TMR0 0EH TMR0 0EH TMR1 11H TMR1C 12H PA 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 10H CMP1C 1BH MFIC 10H CMP0C 1DH CMP1C 1EH INTC1 1FH PPG10 22H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H Indemony 3FH ADRH 20H Data Memory 3FH ADRH 26H ADCR 27H ACSR 28H Indemony 3FH ADRH 20H <td< td=""><td>02H</td><td>Indirect Addressing Register 1</td><td></td></td<>	02H	Indirect Addressing Register 1	
O5HACC06HPCL07HTBLP08HTBLH09H	03H	MP1	
06H PCL 07H TBLP 08H TBLH 09H 0000 0AH STATUS 0BH INTCO 0CH 0000 0DH TMR0 0EH PAC 13H PAC 13H PAC 15H PBC 16H PC 17H PCC 18H 0000 19H 0000 1AH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG10 22H PPG12 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H Image: State	04H		
07H TBLP 08H TBLH 09H 000000000000000000000000000000000000	05H	ACC	
08H TBLH 09H STATUS 0BH INTCO 0CH TMR0 0EH TMR0 11H TMR1 11H PAC 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 16H PC 17H PCC 18H MFIC 10H CMP1C 1EH INTC1 1FH PPG10 22H PPG11 24H ADCR 27H ACSR 28H Image: State Sta	06H	PCL	
09HSTATUS0BHINTCO0CHTMR00EHTMR0C0FHInternational System10HTMR111HTMR1C12HPA13HPAC13HPAC14HPB16HPC17HPCC18HInternational System19HInternational System10HCMP1C11HPPG0C11HPPG1C12HPPG1C20HPPG1121HPPG1122HPPG1124HADRH26HADRH27HACSR28HInternational System3FHInternational System40HGeneral Purpose0ata MemoryIntused192 Bytes)Intused	07H	TBLP	
0AH STATUS 0BH INTC0 0CH INTC0 0DH TMR0 0EH TMR0C 0FH Introperation 10H TMR1 11H TMR1C 12H PA 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 10H CMP1C 1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG11 24H ADRH 25H ADRH 26H ADCR 27H ACSR 28H Introperation 3FH Introperation 40H General Purpose Data Memory (192 Bytes)	08H	TBLH	
0BH INTC0 0CH TMR0 0EH TMR0C 0FH TMR1 10H TMR1C 12H PA 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 10H CMP1C 18H MFIC 10H CMP1C 18H MFIC 10H CMP1C 12H PPG0C 12H PPG11 2H PPG11 2H ADRH 2H ADR 3FH ACSR 2	09H		
0BH INTC0 0CH TMR0 0EH TMR0C 0FH TMR1 10H TMR1C 12H PA 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 10H CMP1C 18H MFIC 10H CMP1C 18H MFIC 10H CMP1C 12H PPG0C 12H PPG11 2H PPG11 2H ADRH 2H ADR 3FH ACSR 2	0AH	STATUS	
ODH TMR0 OEH TMR0C OFH 10H 10H TMR1 11H TMR1C 12H PA 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H 19H 10H CMP1C 1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPGT1 24H ADRH 25H ADRH 26H ADCR 27H ACSR 28H	0BH		
0EH TMR0C 0FH 10H 10H TMR1 11H TMR1C 12H PA 13H PAC 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H 19H 10H CMP1C 1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPG11 24H ADRH 25H ADRH 26H ADCR 27H ACSR 28H 10H 3FH 10H 40H General Purpose Data Memory (192 Bytes)	0CH		
0EH TMR0C 0FH 10H 10H TMR1 11H TMR1C 12H PA 13H PAC 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H 19H 10H CMP1C 1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPG11 24H ADRH 25H ADRH 26H ADCR 27H ACSR 28H 10H 3FH 10H 40H General Purpose Data Memory (192 Bytes)		TMR0	
OFH TMR1 10H TMR1C 11H TMR1C 12H PA 13H PAC 13H PAC 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 10H CMP0C 1DH CMP1C 1EH INTC1 1FH PPG1C 20H PPG1C 21H PPG11 24H ADRH 26H ADCR 27H ACSR 28H Image: State Stat	-		
10H TMR1 11H TMR1C 12H PA 13H PAC 13H PAC 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H MFIC 10H CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H Image: Second conditional second cond conditional second conditional second cond			
11H TMR1C 12H PA 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H Image: Comparison of the system of th		TMR1	
12H PA 13H PAC 13H PAC 13H PAC 13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H 19H 19H 10H 10H CMP1C 10H CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H 1 3FH 40H General Purpose 1 Data Memory (192 Bytes)	-		
13H PAC 14H PB 15H PBC 16H PC 17H PCC 18H 19H 19H 19H 16H PC 17H PCC 18H MFIC 10H CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 22H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H 1 3FH 1 40H General Purpose Data Memory (192 Bytes)			
14H PB 15H PBC 16H PC 17H PCC 18H MFIC 18H MFIC 10H CMP1C 1DH CMP1C 1EH INTC1 1FH PPG0C 20H PPG0C 21H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H			Special Durpage
15H PBC 16H PC 17H PCC 18H 19H 19H 19H 1AH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 22H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H	-		
16H PC 17H PCC 18H 19H 19H 19H 1AH 11CH 1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 22H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H			Data Memory
17H PCC 18H	-		
18H Image: Solution of the system 18H MFIC 19H CMP0C 19H Operation 19H PPG0C 21H PPG0C 21H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H Image: Solid Structure 3FH Image: Solid Structure 40H General Purpose Data Memory Image: Solid Structure 192 Bytes) Image: Solid Structure			
19H 1AH 1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H		PCC	
1AH MFIC 1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H SFH 3FH Unused 16H General Purpose Data Memory (192 Bytes)	-		
1BH MFIC 1CH CMP0C 1DH CMP1C 1EH INTC1 1FH PPG0C 21H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H			
1CH CMP0C 1DH CMP1C 1EH INTC1 1FH			
IDH CMP1C 1EH INTC1 1FH			
1EH INTC1 1FH INTC1 20H PPG0C 21H PPG1C 22H PPG1C 23H PPG11 24H ADRH 26H ADCR 27H ACSR 28H Image: Second Secon			
1FH PPG0C 21H PPGT0 22H PPG1C 23H PPGT1 24H ADRL 25H ADRH 26H ADCR 27H ACSR 28H			
20H PPG0C 21H PPGT0 22H PPG1C 23H PPGT1 24H ADRL 25H ADRH 26H ADCR 27H ACSR 28H		INTC1	
21H PPGT0 22H PPG1C 23H PPGT1 24H ADRL 25H ADRH 26H ADCR 27H ACSR 28H			
22H PPG1C 23H PPG11 24H ADRL 25H ADRH 26H ADCR 27H ACSR 28H		PPG0C	
23H PPGT1 24H ADRL 25H ADRH 26H ADCR 27H ACSR 28H 3FH 40H General Purpose Data Memory (192 Bytes) Ead as "00"		PPGT0	
24H ADRL 25H ADRH 26H ADCR 27H ACSR 28H 3FH 40H General Purpose Data Memory (192 Bytes) Ead as "00"	22H	PPG1C	
25H ADRH 26H ADCR 27H ACSR 28H	23H	PPGT1	
26H ADCR 27H ACSR 28H 3FH 40H General Purpose Data Memory (192 Bytes) Ead as "00"	24H	ADRL	
27H ACSR 28H 3FH 40H General Purpose Data Memory (192 Bytes) Read as "00"	25H	ADRH	
28H 3FH 40H General Purpose Data Memory (192 Bytes) Read as "00"	26H	ADCR	
3FH 40H General Purpose Data Memory (192 Bytes) Read as "00"	27H	ACSR	
40H General Purpose Data Memory (192 Bytes) Read as "00"	28H		
40H General Purpose Data Memory (192 Bytes) Read as "00"	250		
Data Memory (192 Bytes) Read as "00"	40H	•	
(192 Bytes) Read as "00"			: Unused
FFH (192 Bytes) Read as "00"			
	FFH	(192 Byles)	Read as "UU"
			I

RAM Mapping

HT46R14A

Indirect Addressing Register

Location 00H and 02H are indirect addressing registers that are not physically implemented. Any read/write operation on [00H] and [02H] accesses the Data Memory pointed to by the MP0 and MP1 registers respectively. Reading locations 00H or 02H indirectly returns the result 00H. Writing to it indirectly leads to no operation.

The function of data movement between two indirect addressing registers is not supported. The memory pointer registers, MP0 and MP1, are both 8-bit registers used to access the RAM by combining the corresponding indirect addressing registers.

Accumulator

The accumulator is closely related to ALU operations. It is also mapped to location 05H of the data memory and can carry out immediate data operations. The data movement between two data memory locations must pass through the accumulator.

Arithmetic and Logic Unit – ALU

This circuit performs 8-bit arithmetic and logic operations. The ALU provides the following functions:

- Arithmetic operations ADD, ADC, SUB, SBC, DAA
- Logic operations AND, OR, XOR, CPL
- Rotation RL, RR, RLC, RRC
- Increment and Decrement INC, DEC
- Branch decision SZ, SNZ, SIZ, SDZ

The ALU not only saves the results of data operations but also changes the status register.

Status Register – STATUS

This 8-bit register contains the 0 flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). It also re-

cords the status information and controls the operation sequence.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PDF flag. In addition operations related to the status register may give different results from those intended. The TO flag can be affected only by system power-up, a WDT time-out or executing the "CLR WDT" or "HALT" instruction. The PDF flag can be affected only by executing the "HALT" or "CLR WDT" instruction or a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

In addition, on entering the interrupt sequence or executing the subroutine call, the status register will not be pushed onto the stack automatically. If the contents of the status are important and if the subroutine can corrupt the status register, precautions must be taken to save it properly.

Interrupt

The device provides three external interrupts, two comparator interrupt, and multi-function interrupt. The interrupt control register 0, INTC0, and interrupt control register 1, INTC1, contains the interrupt control bits to enable or disable the interrupt and to record the interrupt request flags.

Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the EMI bit will be automatically cleared. This scheme may prevent any further interrupt nesting. Other interrupt requests may happen during this interval but only the interrupt request flag is recorded. If a certain interrupt requires servicing within the service routine, the EMI bit and the corresponding bit

Bit No.	Label	Function
0	С	C is set if an operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation, otherwise C is cleared. C is also affected by a rotate through carry instruction.
1	AC	AC is set if an operation results in a carry out of the low nibbles in addition or no borrow from the high nibble into the low nibble in subtraction, otherwise AC is cleared.
2	Z	Z is set if the result of an arithmetic or logic operation is 0; otherwise Z is cleared.
3	ov	OV is set if an operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa, otherwise OV is cleared.
4	PDF	PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by executing the "HALT" instruction.
5	то	TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is set by a WDT time-out.
6, 7	_	Unused bit, read as "0"

Status (0AH) Register

of INTC0 and INTC1 may be set to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the stack pointer is decremented. If immediate service is desired, the stack must be prevented from becoming full.

All these kind of interrupts have a wake-up capability. As an interrupt is serviced, a control transfer occurs by pushing the program counter onto the stack, followed by a branch to a subroutine at specified location in the program memory. Only the program counter is pushed onto the stack. If the contents of the register or status register are altered by the interrupt service program which corrupts the desired control sequence, the contents should be saved in advance.

External interrupts are triggered by a high to low transition of INT0, INT1 or PC1/COVIN+, and the related interrupt request flag (EI0F; bit 4 of the INTC0, EI1F; bit 5 of the INTC0, EI2F; bit 5 of the INTC1) is set as well. After the interrupt is enabled, the stack is not full, and the external interrupt is active, a subroutine call to location 04H or 08H occurs. The interrupt request flag (EI0F, EI1F or EI2F) and EMI bits are all cleared to disable other interrupts. The comparator output Interrupt is initialized by setting the comparator 0 output Interrupt request flag (C0F) or comparator 1 output interrupt request flag (C1F), which is caused by a falling edge transition of comparator 0 or comparator 1 output . After the interrupt is enabled, and the stack is not full, and the interrupt request flag (C0F or C1F bit) is set, a subroutine call to location 0CH/10H occurs. The related interrupt request flag (C0F or C1F) is reset, and the EMI bit is cleared to disable further interrupts.

The Multi-Function Interrupt (MFI) is initialized by setting the interrupt request flag (MFF), that is caused by timer 0 overflow (T0F), timer 1 overflow (T1F) or ADC conversion completed (ADF). After the interrupt is enabled (EMFI=1), the stack is not full, and the MFF bit is set, a subroutine call to location 018H will occur. The related interrupt request flag (MFF) is reset and the EMI bit is cleared to disable further interrupts. T0F, T1F and ADF indicate that a related interrupt has occurred. These flags will not be cleared automatically after reading these flags and should be cleared by user.

Bit No.	Label	Function
0	EMI	Controls the master (global) interrupt (1=enable; 0=disable)
1	EEI0	Controls the external interrupt 0 (1=enable; 0=disable)
2	EEI1	Controls the external interrupt 1 (1=enable; 0=disable)
3	EC0I	Control the Comparator 0 interrupt (1= enable; 0= disable)
4	EI0F	External interrupt 0 request flag (1=active; 0=inactive)
5	EI1F	External interrupt 1 request flag (1=active; 0=inactive)
6	C0F	The Comparator 0 request flag (1=active; 0=inactive)
7	_	For test mode used only. Must be written as "0"; otherwise may result in unpredictable operation.

INTC0 (0BH) Register

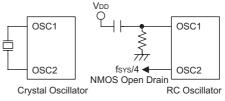
Bit No.	Label	Function
0	EC1I	Control the Comparator 1 interrupt (1=enabled; 0=disabled)
1	EEI2	Control the external interrupt 2 (1=enabled; 0=disabled)
2	EMFI	Control the multi-function interrupt (1=enabled; 0=disabled)
3	_	Unused bit, read as "0"
4	C1F	The Comparator 1 request flag (1=active; 0=inactive)
5	EI2F	External interrupt 2 request flag (1=active; 0=inactive)
6	MFF	Multi-function request flag
7		Unused bit, read as "0"

INTC1 (1EH) Register

Bit No.	Label	Function	
0	ET0I	Control the Timer/Event Counter 0 interrupt (1=enabled; 0=disabled)	
1	ET1I	Control the Timer/Event Counter 1 interrupt (1=enabled; 0=disabled)	
2	EADI	Control the A/D converter interrupt	
3	_	Jnused bit, read as "0"	
4	T0F	nternal Timer/Event Counter 0 request flag (1=active; 0=inactive)	
5	T1F	Internal Timer/Event Counter 1 request flag (1=active; 0=inactive)	
6	ADF	A/D converter request flag (1=active; 0=inactive)	
7	_	Unused bit, read as "0"	

MFIC (1BH) Register

During the execution of an interrupt subroutine, other interrupt acknowledgements are held until the "RETI" instruction is executed or the EMI bit and the related interrupt control bit are set to 1, if the stack is not full. To return from the interrupt subroutine, a RET or RETI instruction may be executed. The RETI instruction will set the EMI bit to re-enable an interrupt service, but the RET will not.


Interrupts, occurring in the interval between the rising edges of two consecutive T2 pulses, will be serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In the case of simultaneous requests the following table shows the priority that is applied. These can be masked by resetting the EMI bit.

Interrupt Source	Priority	Vector
External interrupt 0	1	004H
External interrupt 1	2	008H
Comparator 0 output interrupt	3	00CH
Comparator 1 output interrupt	4	010H
External interrupt 2 (from PC1)	5	014H
Multi-function interrupt (Timer/ event counter 0/1 & ADC converter)	6	018H

The EMI, EEI0, EEI1, EC0I, ET0I, ET1I, and EMFI are all used to control the enable/disable status of interrupts. These bits prevent the requested interrupt from being serviced. Once the interrupt request flags (EI0F, EI1F, C0F, T0F, T1F, MFI) are all set, they remain in the INTC1 or INTC0 respectively until the interrupts are serviced or cleared by a software instruction. It is recommended that a program does not use the "CALL subroutine" within the interrupt subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately in some applications. If only one stack is left and enabling the interrupt is not well controlled, the original control sequence will be damaged if the "CALL" operates within the interrupt subroutine.

Oscillator Configuration

There are two types of system oscillator circuits within the microcontroller. These are an RC oscillator and a Crystal oscillator, the choice of which is determined via a configuration option. The Power-down mode stops the system oscillator and ignores an external signal to conserve power.

System Oscillator

If an RC oscillator is used, an external resistor between OSC1 and VSS is required and whose resistance should range from $24k\Omega$ to $1M\Omega$. Pin OSC2 can be used to monitor the system frequency at 1/4 the system frequency or can be used to synchronize external circuitry. The RC oscillator provides the most cost effective means of oscillator implementation, however, the frequency of oscillation may vary with VDD, temperature and process variations. It is, therefore, not recommended for use in timing sensitive applications where an accurate oscillator frequency is desired.

If a Crystal oscillator is used, a crystal connected between OSC1 and OSC2 is required. No other external components are required. Instead of a crystal, a resonator can also be connected between OSC1 and OSC2 to obtain a frequency reference, but two external capacitors connected between OSC1, OSC2 and ground are required, if the oscillating frequency is less than 1MHz.

When the system enters the Power-down mode the system oscillator is stopped to conserve power.

The WDT oscillator is a free running on-chip RC oscillator, and no external components are required. Even if the system enters the power down mode where the system clock is stopped, the WDT oscillator will continue to operate with a period of approximately $65\mu s$ at 5V. The WDT oscillator can be disabled using a configuration option to conserve power.

Watchdog Timer - WDT

The WDT clock source is implemented using a dedicated internal RC oscillator (WDT oscillator) or by the instruction clock, which is the system clock divided by 4. The choice of which one is used is determined by a configuration option. This timer is designed to prevent a software malfunction or a sequence jumping to an unknown location with unpredictable results. The Watchdog Timer can be disabled by a configuration option. If the Watchdog Timer is disabled, all instructions relating to the WDT result in no operation.

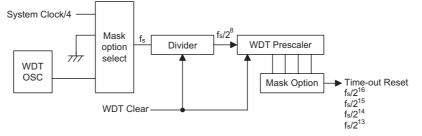
The WDT clock source will be subsequently divided by either 2^{13} , 2^{14} , 2^{15} or 2^{16} , determined by a configuration option, to get the actual WDT time-out period. Using the internal WDT clock source, the minimum WDT time-out period is about 600ms. This time-out period may vary with temperature, VDD and process variations. By selecting appropriate WDT options, longer time-out periods can be implemented. If the WDT time-out is selected to be $f_S/2^{16}$, then a maximum time-out period of about 4.7s can be achieved.

If the WDT oscillator is disabled, the WDT clock may still be sourced from the instruction clock and operate in the same manner except that in the Power-down mode the WDT will stop counting and lose its protecting purpose. In this situation the device can only be restarted by external logic. If the device operates in a noisy environment, using the internal WDT oscillator is strongly recommended, since the Power-down mode will stop the system clock.

The WDT overflow under normal operation will initialise a device reset and set the status bit TO. In the Power-down mode, the overflow will initialise a warm reset where only the program counter and stack pointer are reset to 0. To clear the WDT contents, three methods are adopted; external reset (a low level to $\overline{\text{RES}}$), software instructions, or a HALT instruction. The software instructions include CLR WDT and the other set – CLR WDT1 and CLR WDT2. Of these two types of instruction, only one can be active depending on the options – "CLR WDT times selection option". If the "CLR WDT" is selected (i.e. CLRWDT times equal 1), any execution of the CLR WDT1" and "CLR WDT2" option is selected (i.e. CLRWDT times equal two), these two

instructions must be executed to clear the WDT, otherwise, the WDT will reset the chip due to a time-out.

Power Down Operation – HALT


The Power-down mode is entered by the execution of a "HALT" instruction and results in the following:

- The system oscillator will be turned off but the WDT oscillator will keep running, if the WDT is enabled and if its clock is sourced from the internal WDT oscillator.
- The contents of the Data Memory and registers remain unchanged.
- The WDT will be cleared and will start counting again, if the WDT clock is sourced from the internal WDT oscillator.
- All of the I/O ports maintain their original status.
- The PDF flag is set and the TO flag is cleared.

The system can leave the Power-down mode by means of an external reset, an interrupt, an external falling edge signal on port A or a WDT overflow. An external reset causes a device initialisation and the WDT overflow performs a "warm reset". After the TO and PDF flags are examined, the reason for the device reset can be determined.

The PDF flag is cleared by a system power-up or executing the "CLR WDT" instruction and is set when executing the "HALT" instruction. The TO flag is set if a WDT time-out occurs, and causes a wake-up that only resets the program counter and the stack pointer, the other circuits will maintain their original status.

A port A wake-up and interrupt methods can be considered as a continuation of normal execution. Each bit in port A can be independently selected to wake up the device, setup via configuration options. Awakening from an I/O port stimulus, the program will resume execution at the next instruction. If it is awakening from an interrupt, two sequences may occur. If the related interrupt is disabled or the interrupt is enabled but the stack is full, the program will resume execution at the next instruction. If the interrupt is enabled and the stack is not full, the regular interrupt response takes place. If an interrupt request flag is set to "1" before entering the Power-down mode, the wake-up function of the related interrupt will be disabled. Once a wake-up event occurs, it takes 1024 system clock periods to resume normal op-

Watchdog Timer

eration. In other words, a dummy period will be inserted after the wake-up. If the wake-up results from an interrupt acknowledge, the actual interrupt subroutine execution will be delayed by one or more cycles. If the wake-up results in the next instruction execution, this will be executed immediately after the dummy period is finished.

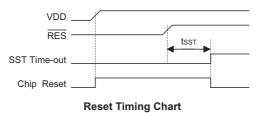
To minimise power consumption, all the I/O pins should be carefully managed before entering the Power-down mode.

Reset

There are three ways in which a reset can occur:

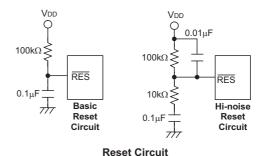
- RES pin reset during normal operation
- $\overline{\text{RES}}$ pin reset during Power-down
- WDT time-out reset during normal operation

The WDT time-out during a Power-down is different from other device reset conditions, since it can perform a "warm reset" that resets only the program counter and the SP, leaving the other circuits in their original state. Some registers remain unchanged during other reset conditions. Most registers are reset to the "initial condition" when the reset conditions are met. By examining the PDF and TO flags, the program can distinguish between different "chip resets".

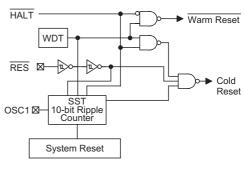

то	PDF	RESET Conditions	
0	0	RES reset during power-up	
u	u	RES reset during normal operation	
0	1	RES wake-up HALT	
1	u	WDT time-out during normal operation	
1	1	WDT wake-up HALT	

Note: "u" means unchanged

To guarantee that the system oscillator is started and stabilised, the SST (System Start-up Timer) provides an extra delay of 1024 system clock pulses when the system reset (power-up, WDT time-out or $\overline{\text{RES}}$ reset) or the system awakes from the Power-down state.


When a system reset occurs, the SST delay is added during the reset period. Any wake-up from a Power-down will enable the SST delay.

An extra option load time delay is added during a system reset (power-up, WDT time-out at normal mode or $\overrightarrow{\text{RES}}$ reset).


The functional unit chip reset status are shown below.

r	
Program Counter	000H
Interrupt	Disable
Prescaler, Divider	Cleared
WDT	Clear. After master reset, WDT begins counting
Timer/Event Counter	Off
PPG Timer	Off
PPG output	Floating
Input/Output Ports	Input mode
Stack Pointer	Points to the top of the stack

Note: Most applications can use the Basic Reset Circuit as shown, however for applications with extensive noise,

it is recommended to use the Hi-noise Reset Circuit.

Reset Configuration

HT46R14A

MP1 xxxx xxxx uuuu uuuu uuuu	WDT Time-out (HALT)*	
ACC xxxx xxxx uuuu uuuu uuu uuu <thuu< th=""> <thu< td=""><td>uu uuuu</td></thu<></thuu<>	uu uuuu	
Program Counter 000H 000H 000H 000H 000H TBLP XXXX XXXX uuuu uuuu uuuu	uu uuuu	
Counter 000H 000H 000H 000H 000H TBLP XXXX XXXX uuuu uuuu uuuu	uu uuuu	
TBLH xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu	000H	
STATUS 00 xxxx 1u uuuu uu uuuu 01 uuuu 01 uuuu INTC0 -000 0000 -000 0000 -000 0000 -000 0000 00 0000 uu TMR0 xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuuu uuuuu uuuu	uu uuuu	
INTCO -000 0000 -000 0000 -000 0000 -000 0000 -000 0000 TMR0 xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu	uu uuuu	
TMR0 xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuu uuuu uuu <t< td=""><td>l1 uuuu</td></t<>	l1 uuuu	
TMR0C 00-0 1000 00-0 1000 00-0 1000 00-0 1000 00-0 1000 TMR1 xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuu uuu TMR1C 00-0 1 00-0 1 00-0 1 00-0 1 uuuu uuu uu PA 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 uu PAC 1111 1111 1111 1111 1111 1111 1111 1111 uu PBC 1111 1111 1111 1111 1111 1111 1111 1111 uu PBC 1111 1111 1111 1111 1111 1111 1111 1111 uu PC 1 1111 1 1111 1111 1111 1111 1111 1111 1111 uu PC 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 PCC 1 1111 1 1111 1 1111 1 1111 1 1111 1 1111 PGC 0000 0000 0000 0000 0000 0000 0000 0000 -000 -000	uuuu uuu	
TMR1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu TMR1C 00-0 1 00-0 1 00-0 1 00-0 1 0uuu uuuu PA 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 uuu PA 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 uu PAC 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 uu PB 1111 1111 1111 1111 1111 1111 1111 1111 uu uu PBC 1111 1111 1111 1111 1111 1111 1111 1111 uu uu PBC 1111 1111 1111 1111 1111 1111 1111 1111 uu	uu uuuu	
TMR1C 00-0 1 00-0 1 00-0 1 00-0 1 00 PA 1111 1111 <	-u uuuu	
PA 1111 1111 11111 11111 1111 1111 111	uu uuuu	
PAC 1111 1111 11111 11111 1111 1111 11	J-U U	
PB 1111 1111 11111 11111 1111 1111 111	uu uuuu	
PBC 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 PC 1 1111 1 1111 1 1111 1 1111 1 1111 PCC 1 1111 1 1111 1 1111 1 1111 1 1111 PCC 1 1111 1 1111 1 1111 1 1111 1 1111 INTC1 -000 -000 -000 -000 -000 -000 -000 -000 1 1111 PFG0C 0000 0000 0000 0000 0000 0000 0000 0000	uu uuuu	
PC 1 11111 1 1111 1	uu uuuu	
PCC 1 11111 1 11111	uu uuuu	
INTC1 -000 -000 -000 -000 -000 -000 -000 -000 -u PPG0C 0000 0000 0000 0000 0000 0000 0000 0000 uu uu PPGT0 xxxx xxxx xxxx xxxx uuuu uuuu uu uu uu PPG1C 0000 00-0 0000 00-0 0000 00-0 0000 00-0 uu	•u uuuu	
PPG0C 0000 0000 0000 0000 0000 0000 0000 0000 uu PPGT0 XXX XXX XXX XXX uuuu uuuu uuuu uuuu uu uu <td>•u uuuu</td>	•u uuuu	
PPGT0 xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uu PPG1C 0000 00-0 0000 00-0 0000 00-0 0000 00-0 uu PPG11 xxxx xxxx xxxx xxxx uuuu uuuu uu uu PPG11 xxxx xxxx xxxx xxxx uuuu uuuu uu uu CMP0C -000 1000 -000 1000 -000 1000 -000 1000 -000 1000	uu -uuu	
PPG1C 0000 00-0 0000 00-0 0000 00-0 0000 00-0 uu PPG11 xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uu CMP0C -000 1000 -000 1000 -000 1000 -000 1000 -000 1000	uu uuuu	
PPGT1 xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuu uuu uuu uuu uuu uuu uuu uuu uuu uu uu uu uu uu uu	uu uuuu	
CMP0C -000 1000 -000 1000 -000 1000 -u	uu uu-u	
	uu uuuu	
	uuuu uuu	
CMP1C -000 1000 -000 1000 -000 1000 -000 1000 -u	uu uuuu	
ADRL x x x x		
ADRH XXXX XXXX XXXX XXXX XXXX XXXX UU	uu uuuu	
ADCR 0100 0000 0100 0000 0100 0000 0100 0000 ut	uu uuuu	
ACSR000000	uu	

The registers states are summarised in the following table.

Note: "*" stands for warm reset

"u" stands for unchanged

"x" stands for unknown

14

Timer/Event Counter

Two timer/event counters are implemented in the microcontroller. Timer/Event Counter 0 contains an 8-bit programmable count-up counter whose clock may be sourced from an external source or an internal clock source. The internal clock source comes from f_{SYS} . Timer/Event Counter 1 contains an 8-bit programmable count-up counter whose clock may come from an external source or an internal clock source. The internal clock source comes from $f_{SYS}/4$. The external clock input allows external events to be counted, time intervals or pulse widths to be measure.

Using the internal system clock, the timer/event counter is has only one reference time base. If the timer clock source is sourced externally then timer intervals can be measured time intervals or pulse widths measured. Using the internal clock allows the user to generate an accurate time base.

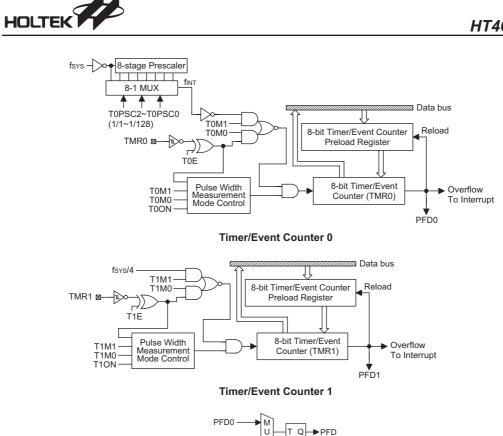
There are two registers associated with Timer/Event Counter 0, TMR0 and TMR0C (0EH) and two registers for Timer/Event Counter 1, TMR1 and TMR1C. Writing values into the TMR0 or TMR1 registers places a start value into the respective Timer/Event Counter 0/1 preload register while reading TMR0 or TMR1 retrieves the contents of the respective Timer/Event Counter. The TMR0C and TMR1C registers are the Timer/Event Counter control registers, which define the operating mode, the counting enable or disable and define the active edge.

The T0M0/T1M0 and T0M1/T1M1 bits in the control registers define the operation mode. The event count mode is used to count external events, which means that the clock source will be sourced from the timer external pins, TMR0 and TMR1. The timer mode functions as a normal timer with the clock source coming from the internally selected clock source. The pulse width measurement mode can be used to measure the duration of a high or low level signal on either TMR0 or TMR1, whose time reference is based on the internally selected clock source.

In the event count or timer mode, the timer/event counter starts counting from the current contents in the timer/event counter register and ends at FFH. Once an overflow occurs, the counter is reloaded from the timer/event counter preload register, and generates an interrupt request flag, which is the TOF bit in the MFIC register or the T1F bit in the MFIC register.

In the pulse width measurement mode with the values of the T0ON/T1ON and T0E/T1E bits equal to "1", after the respective Timer/Event counter has received a transient from low to high, or high to low dependent upon the value of the T0E/T1E bit, it will start counting until the respective logic level on the TMR0 or TMR1 pin returns to its original level and resets the T0ON/T1ON bit. The

measured result remains in the timer/event counter even if the activated transient occurs again, as only a single 1-cycle measurement is made. Not until the TOON/T1ON bit is once again set can further measurements be made. In this operational mode, the timer/event counter begins counting not according to the logic level but according to the transient edges. In the case of a counter overflow, the counter is reloaded from the timer/event counter register and issues an interrupt request, as in the other two modes, i.e. the event and timer modes.


To enable the counting operation, the Timer ON bit, namely the T0ON bit of TMR0C or the T1ON of TMR1C, should be set to 1. In the pulse width measurement mode, the T0ON/T1ON is automatically cleared after the measurement cycle is completed. But in the other two modes, the T0ON/T1ON can only be reset by instructions. The overflow of the Timer/Event Counters is one of the wake-up sources. The Timer/Event Counters can also be use to drive a PFD (Programmable Frequency Divider) output on pin PA3, selected via configuration options. Only one PFD, (PFD0 or PFD1) can be used with PA3 selected via configuration options. No matter what the operation mode is, writing a 0 to ET0I or ET1I disables the related interrupt service. When the PFD function is selected, executing a "SET [PA].3" instruction will enable the PFD output while executing a "CLR [PA].3" instruction will disable the PFD output.

In the case of timer/event counter OFF condition, writing data to the timer/event counter preload register also reloads that data to the timer/event counter. However if the timer/event counter is already on, any data written to the timer/event counter is kept only in the timer/event counter preload register. The timer/event counter will continue normal operation until an overflow occurs.

When the timer/event counter is read, the clock is blocked to avoid errors, and as this may results in a counting error, his should be taken into account by the programmer.

It is strongly recommended to load a desired value into the TMR0/TMR1 registers first, before turning on the related timer/event counter, as the initial power on value of the TMR0/TMR1 registers are unknown. Due to the timer/event structure, the programmer should pay special attention when using instructions to enable then disable the timer for the first time, whenever there is a need to use the timer/event function, to avoid unpredictable results. After this procedure, the timer/event function can be operated normally.

Bit0~bit2 of TMR0C can be used to define the pre-scaling stages for the internal clock sources for the timer/event counter. The overflow signal of the timer/event counter are used to generate the PFD signals.

PFD Source Option
PFD Source Option

PA3 Data CTRL

Х

PFD1

Bit No.	Label	Function
0 1 2	TOPSC0 TOPSC1 TOPSC2	$ \begin{array}{l} \text{Define the prescaler stages, T0PSC2, T0PSC1, T0PSC0=} \\ 000: f_{\text{INT}}=f_{\text{SYS}} \\ 001: f_{\text{INT}}=f_{\text{SYS}}/2 \\ 010: f_{\text{INT}}=f_{\text{SYS}}/4 \\ 011: f_{\text{INT}}=f_{\text{SYS}}/8 \\ 100: f_{\text{INT}}=f_{\text{SYS}}/16 \\ 101: f_{\text{INT}}=f_{\text{SYS}}/32 \\ 110: f_{\text{INT}}=f_{\text{SYS}}/64 \\ 111: f_{\text{INT}}=f_{\text{SYS}}/128 \\ \end{array} $
3	TOE	Defines the TMR0 active edge of the timer/event counter: In Event Counter Mode (T0M1,T0M0)=(0,1): 1:count on falling edge; 0:count on rising edge In Pulse Width measurement mode (T0M1,T0M0)=(1,1): 1: start counting on the rising edge, stop on the falling edge; 0: start counting on the falling edge, stop on the rising edge
4	T0ON	Enable/disable the timer counting (0=disable; 1=enable)
5		Unused bit, read as "0"
6 7	T0M0 T0M1	Define the operating mode (T0M1, T0M0) 01 = Event count mode (External clock) 10 = Timer mode (Internal clock) 11 = Pulse Width measurement mode (External clock) 00 = Unused

TMR0C (0EH) Register

Bit No.	Label	Function	
0~2		Unused bit, read as "0"	
3	T1E	Defines the TMR1 active edge of the timer/event counter: In Event Counter Mode (T1M1,T1M0)=(0,1): 1:count on falling edge; 0:count on rising edge In Pulse Width measurement mode (T1M1,T1M0)=(1,1): 1: start counting on the rising edge, stop on the falling edge; 0: start counting on the falling edge, stop on the rising edge	
4	T1ON	Enable/disable timer counting (0= disable; 1= enable)	
5		Unused bit, read as "0"	
6 7	T1M0 T1M1	Define the operating mode (T1M1, T1M0) 01= Event count mode (External clock) 10= Timer mode (Internal clock) 11= Pulse Width measurement mode (External clock) 00= Unused	

TMR1C (11H) Register

Programmable Pulse Generator – PPG

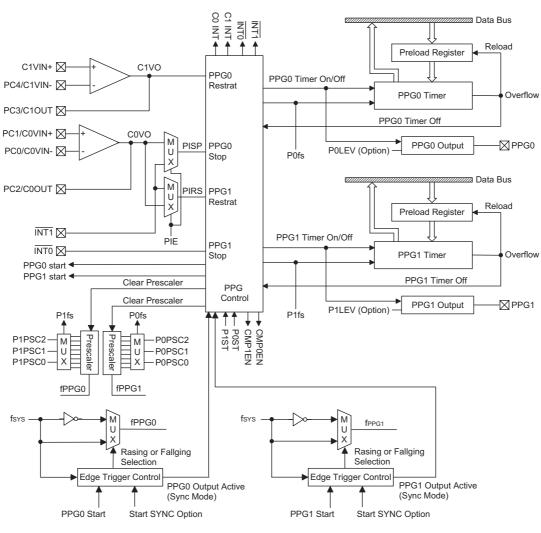
This device contains two 8-bit PPG output channels. Each PPG has a programmable period of 256×T, where "T" can be $1/f_{SYS}$, $2/f_{SYS}$, $4/f_{SYS}$, $8/f_{SYS}$, $16/f_{SYS}$, $32/f_{SYS}$, $64/f_{SYS}$, $128/f_{SYS}$ for an output pulse width.

The PPG detects the falling edge of a trigger input, and then outputs a single pulse. The falling edge trigger may come from comparators, INT0, INT1 or software trigger bit, it can be selected by software, The PPG is capable of generating signals from $0.25\mu s$ to 8.192m s pulse width when the system frequency is operating at 4MHz. The PPG can set the polarity control bit (PxLEV) to be an active low or active high output (by mask option). A "00H" data write to the PPGTx register yields a pulse width $256 \times T$ output.

PPG0 functional description

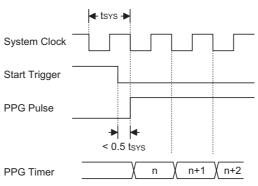
The PPG module consists of PPG timers, a PPG Mode Control, two comparators. Each of PPG timers consists of a prescaler, one 8-bit up-counter timer, and an 8-bit preload data register. The programmable pulse generator (PPG) starts counting at the current contents in the preload register and ends at "FFH \rightarrow 00H", Once an overflow occurs, the counter is reloaded from the PPG timer counter preload register, and generates an signal to stop the PPG timer. The software trigger bit (PxST) will be cleared when the PPG timer overflow occurs.

There are four registers related to the PPG output function, two control registers: PPG0C and PPG1C and two timer preload register PPGT0 and PPGT1. Two control registers PPG0C and PPG1C define the PPG0 and PPG1 input control mode (trigger source), enable or disable the comparators, define the PPG0 or PPG1 timer prescaler rate, range form $f_{SYS}/1$, $f_{SYS}/2$, $f_{SYS}/4$, $f_{SYS}/8$, $f_{SYS}/16$, $f_{SYS}/32$, $f_{SYS}/64$, $f_{SYS}/128$, enable or disable stopping the PPG0/PPG1 timer using PISP/INT0 triggered input, enables or disable restarting the PPG0/PPG1 timer using C1VO/PIRS triggered input, and control the PPG0/PPG1 software trigger bit to trigger the PPG0/PPG1 timer ON or OFF. The PPGT0 is the PPG0 preload register and PPGT1 is PPG1 preload register, these two register content decide the output pulse width.

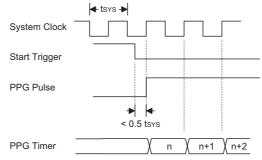

The PPG1 output is pin-shared with PA0. The function is selected via configuration option. If it is not selected as PPG1, the pin can operate as a normal I/O pin. If the pin is selected as a PPG1 output pin, the I/O function is disabled automatically.

Any action causing PPG to stop such as a PPG timer overflow, a SW stop (P0ST=1 \rightarrow 0) – will cause the following actions to occur:

- Stop and clear the PPG prescaler (prescaler means prescaling counter, not P0PSC[2:0] in PPG0C)
- · The PPG timer will be reloaded
- PxST will cleared
- PPGxO will be inactive


For a start delay $\leq 0.5 \times (1/f_{SYS})$, when the start SYNC with clock is selected, the PPG pulse output will be trgiggered by either the rising or falling edge of the next clock (f_{SYS}) edge. After the PPG starts, the PPG output becomes active and its prescaler begins to count as soon as first transition (falling or raising) of the system clock arrives. After the first trigger has completed, the following clock edge trigger type is decided by the first one. For example, once the PPG starts and if the next arriving clock transition is a falling edge, the PPG will be triggered by a falling edge until the PPG stops and vice versa.

PPG0 Block Diagram


EX1: Since the first trigger type is falling edge after PPG starts, the PPG timer is triggered by falling edge until PPG stops.

HOLTEK

EX2: Since the first trigger type is raising edge after PPG starts, the PPG timer is triggered by raising edge until PPG stops.

• PPG0C control register

Bit No.	7	6	5	4	3	2	1	0
PPG0C (20H)	P0ST	P0RSEN	P0SPEN	P0PSC2	P0PSC1	P0PSC0	CMP1EN	CMP0EN
POR value	0	0	0	0	0	0	0	0

CMP0EN: Enables or disables Comparator 0 (0=disable, 1=enable)

CMP1EN: Enables or disables Comparator 1 (0=disable, 1=enable)

P0PSC2, P0PSC1, P0PSC0: These three bits select the PPG0 timer prescaler rate.

P0SPEN: Enables or disables the stopping of the PPG0 timer using the C0VO trigger input (0=disable, 1=enable) P0RSEN: Enables or disables the restarting of the PPG0 timer using the C1VO trigger input. (0=disable, 1=enable) P0ST: PPG0 software trigger bit. (0=Stop PPG0, 1=Restart PPG0)

The CMP0EN and CMP1EN bits are used as the comparator enable or disable bits.

CMP0EN= "0" (comparator is disabled) → PC0/C0VIN-, PC1/C0VIN+, PC2/C00UT are all GPIO pins

- CMP1EN= "0" (comparator is disabled) → PC3/C1OUT, PC4/C1VIN+ are all GPIO.
- CMP0EN= "1" (comparator is enabled) → PC2 will be automatically set to be an input only, the PC2 output function and the PC0/PC1/PC2 pull-high resistors are disabled automatically but PC0/PC1 will maintain their I/O function. Software instructions determine if Comparator 0 is enabled or not.
- CMP1EN= "1" (comparator is enabled) → PC3 will be automatically set to be an input only, the PC3 output function and the PC3/PC4 pull-high resistors will be disabled automatically but PC4 will maintain its I/O function. Software instructions determine if Comparator 1 is enabled or not.

PPG0C: CMP1EN, CMP0EN comparator enable/disable bits

CMP0EN	Description
0	Disable the Comparator 0. PC0/C0VIN-, PC1/C0VIN+, PC2/C0OUT are all I/O pins.
1	Enable the Comparator 0. The PC0/C0VIN-, PC1/C0VIN+ are Comparator 0 input pins, PC2/C0OUT is a Comparator 0 output pin, PC2 output disabled, PC2 Pull-high resistor disabled.

CMP1EN	Description
0	Disable the Comparator 1. PC3/C1OUT, PC4/C1VIN+ is a PGIO pin.
1	Enable the Comparator 1. The PC3/C1OUT is a Comparator 1 output pin, PC3 output disable, PC3/PC4 Pull-high resistor disabled.

Bits2~4 of the PPG0 control register, PPG0C, can be used to define the pre-scaling stages of the PPG0 timer counter clock.

PPG0C: PPG0 timer prescaler rate bits

P0PSC2	P0PSC1	P0PSC0	Prescaler Stage Definition
0	0	0	P0f _S =f _{SYS}
0	0	1	P0f _S =f _{SYS} /2
0	1	0	P0f _S =f _{SYS} /4
0	1	1	P0f _S =f _{SYS} /8
1	0	0	P0f _S =f _{SYS} /16
1	0	1	P0f _S =f _{SYS} /32
1	1	0	P0f _S =f _{SYS} /64
1	1	1	P0f _S =f _{SYS} /128

The P0SPEN bit will enable or disable the PISP trigger stop control of PPG0. If this bit is enabled, the PPG0 stop input will be triggered by a falling edge on PISP. The PISP signal may be sourced from either C0VO, PC2 or INT1, determined by the PIE bit, which is bit0 of the PPG1C register. The P0RSEN bit will enable or disable the C1VO trigger restart control of PPG0. If this bit is enabled, the PPG0 timer restart input will be triggered by C1VO. The status of C0VO or C1VO can be read by setting PC2 or PC3 to be an input pin when Comparator 0 or Comparator 1 is enabled.

POSPEN	Description
0	Disables the PISP trigger stop function of PPG0. In this case the PPG0 module output can only be stopped using software control (P0ST).
1	Enables the PISP trigger stop function of PPG0. In this case the PPG0 module can be stopped by a PISP falling edge trigger or by software control. (P0ST bit is cleared to "0").

PORSEN	Description				
0	Disables the C1VO trigger restart function of PPG0. In this case the PPG0 module output can only be restarted using software control (P0ST).				
1	Enables the C1VO triggerr restart function of PPG0. In this case the PPG0 module output can be re- started by a C1VO falling edge trigger or by software control. (P0ST is set to "1")				

The P0ST bit is a software trigger bit, if this bit is set to "1", the PPG0 timer will start counting and will be cleared when a PPG0 timer overflow occurs or if the PPG0 timer stops counting. If this bit is cleared to "0", the PPG0 timer will stop counting. When the PPG timer is counting and if a falling edge is generated from C1VO, PC3 or if the software control bit, P0ST, is set, the PPG0 timer counter will not be affected, therefore a re-trigger signal from C1VO, PC3 or P0ST will have no effect. The P0ST bit can also be used as a status bit for the PPG0 timer output.

The PPG0 module output pulse active level is decided by P0LEV bit a configuration option, if cleared to "0", the PPG0 output will be defined as an active high output, if the P0LEV bit is set to "1", the PPG0 output will be defined as an active low output.

Another function, which enables the point when the PPG0 timer starts counting and if it is to be synchronised with the system clock or not is determined by a configuration option.

• PPG1C control register

Bit No.	7	6	5	4	3	2	1	0
PPG1C (22H)	P1ST	P1RSEN	P1SPEN	P1PSC2	P1PSC1	P1PSC0		PIE
POR value	0	0	0	0	0	0		0

PIE: PPG input exchange bit (0=disable, 1=Enable).

P1PSC2, P1PSC1, P1PSC0: These three bits select the PPG1 timer prescaler rate.

P1SPEN: Enables or disables stopping the PPG1 timer using INT0 trigger input (0=disable, 1=enable).

P1RSEN: Enables or disables restarting the PPG1 timer using PIRS trigger input (0=disable, 1=enable).

P1ST: PPG1 software trigger bit. (0=Stop PPG1, 1=Restart PPG1)

The PIE bit is used as C0VO and INT1 exchange bit. When PIE bit is reset to 0, the PISP signal comes from INT1 and the PIRS signal comes from C0VO. When PIE bit is set to 1, the PISP signal comes from C0VO and the PIRS signal comes from INT1.

The P1SPEN and P1RSEN should be disabled before setting the PIE bit.

PPG1C: PIE; C0VO and INT1 exchange bit

PIE	Description				
0	The PISP signal is sourced from INT1 and the PIRS signal is sourced from C0VO.				
1	The PISP signal is sourced from C0VO and the PIRS signal is sourced from INT1.				

Bits2~4 of the PPG1 control register, PPG1C, can be used to define the pre-scaling stages of the PPG1 timer counter clock.

PP	G1C:	PPG1	timer	prescaler	rate	bits
• •	0.0.			procoulor	iaio	0110

P1PSC2	P1PSC1	P1PSC0	Prescaler Stage Definition
0	0	0	P1f _S =f _{SYS}
0	0	1	P1f _S =f _{SYS} /2
0	1	0	P1f _S =f _{SYS} /4
0	1	1	P1f _S =f _{SYS} /8
1	0	0	P1f _S =f _{SYS} /16
1	0	1	P1f _S =f _{SYS} /32
1	1	0	P1f _S =f _{SYS} /64
1	1	1	P1f _S =f _{SYS} /128

The P1SPEN is the PPG1 timer Off enable or disable bit using INT0 trigger input, if this bit is enabled, the PPG1 stopping input can be triggered by INT0 falling edge. The P1RSEN is the PPG1 restarting enable or disable bit using trigger input, if this bit is enabled, the PPG1 timer restarting input can be triggered by PIRS falling edge. The PIRS signal may come from C0VO, PC2 or INT1, determined by PIE (bit0 of the PPG1C). User can read the status of C0VO or C1VO by setting the PC2 or PC3 as an input pin when Comparator 0 or Comparator 1 is enabled.

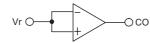
P1SPEN	Description				
0	Disable stopping the PPG1 timer using INT0 trigger input. PPG1 module output can be stopped by software control (P1ST) only.				
1	Enable stopping the PPG0 timer using INT0 trigger input. PPG0 module output can be stopped by INT0 falling edge trigger or software control (P1ST bit is cleared to "0").				

P1RSEN	Description				
0	Disable restarting the PPG1 timer using PIRS trigger input. PPG1 module output can be restarted by software control (P1ST) only				
1	Enable restarting the PPG1 timer using PIRS trigger input. PPG1 module output can be restarted by PIRS (C0VO or INT1) falling edge trigger or software control (P1ST is set to "1")				

The P1ST bit is a software trigger bit, if this bit is set to "1", the PPG1 timer will start counting and will be cleared when a PPG1 timer overflow occurs or if the PPG1 timer stops counting. If this bit is cleared to "0", the PPG1 timer will stop counting. When the PPG timer is counting and if a falling edge is generated from PIRS or if the software control bit, P1ST, is set, the PPG1 timer counter will not be affected, therefore a re-trigger signal from PIRS or P1ST will have no effect. The P1ST bit can also be used as a status bit for the PPG1 timer output.

The PPG1 module output pulse active level is decided by P1LEV bit a configuration option, if cleared to "0", the PPG1 output will be defined as an active high output, if the P1LEV bit is set to "1", the PPG1 output will be defined as an active low output.

Another function, which enables the point when the PPG timer starts counting and if it is to be synchronised with the system clock or not is determined by a configuration option.



To start the PPG operation:

- Setting the PPGx (PPG0/1) output active level (P0LEV, P1LEV; by options).
- PPGx input mode selection (P0RSEN, P0SPEN, P1RSEN, P1SPEN, PIE).
- Decision the PPGx output pulse width. Writing data to PPGTx and PPGx timer prescaler (PxPSC2, PxPSC1, PxPSC0).
- Decision the PPGx timer start counting is synchronized with Pxfs clock or not (P0TSYN, P1TSYN; by options).
- When PPG0 input is triggered by C1VO falling edge transition or triggered by software bit which is set to "1"; (POST \rightarrow 1), the PPG0 will start counting from current content of preload register. When PPG0 input is trigged by PISP falling edge transition, triggered by software bit which is cleared to "0" (P0ST \rightarrow 0), or PPG0 timer overflow occurs, the PPG0 will stop counting. When PPG1 input is triggered by PIRS falling edge transition or triggered by software bit which is set to "1" (P1ST \rightarrow 1), the PPG1 will start counting from current content of preload register. When PPG1 input is trigged by INTO falling edge transition, triggered by software bit which is cleared to "0" (P1ST \rightarrow 0), or PPG1 timer overflow occurs, the PPG1 will stop counting.

Comparator

The input voltage offset of the PPG comparator is adjustable by using common mode inputs to calibrate the offset.

The calibration steps are as follows:

$$CN \boxtimes \frac{S1}{CP} \bigcirc \frac{S2}{S3} \bigcirc \frac{9}{S3} + \bigcirc CO$$

- Set CnCOFM = 1 to offset the cancellation mode - S3 is closed
- Set CnCRS to select which input pin is the reference voltage S1 or S2 closed
- Adjust CnCOF0~CnCOF3 until the output status changes
- Set CnCOFM = 0 for the normal comparator operation mode.

Bit No.	Label	Function	POR	
0 1 2 3	C0COF0 C0COF1 C0COF2 C0COF3	Comparator input offset voltage cancellation control bits	1000B	
4	C0CRS	omparator input offset voltage cancellation reference selection bit /0: select CP/CN as the reference input		
5	C0COFM	Input offset voltage cancellation mode and comparator mode selection 1: input offset voltage cancellation mode 0: comparator mode	0	
6	C0CMPOP	Comparator output; positive logic		
7	_	Unused bit, read as "0"	0	

CMP0C (1CH) Register

Bit No.	Label	Function	POR		
0	C1COF0				
1	C1COF1	Comparator input offset voltage cancellation control bits	1000B		
2	C1COF2	Comparator input onset voltage cancellation control bits	TUUUB		
3	C1COF3				
4	C1CRS	omparator input offset voltage cancellation reference selection bit /0: select CP/CN as the reference input			
5	C1COFM	Input offset voltage cancellation mode and comparator mode selection 1: input offset voltage cancellation mode 0: comparator mode	0		
6	C1CMPOP	Comparator output; positive logic			
7		Unused bit, read as "0"	0		

Note: The comparator 0/1 enable is controlled by CMP0EN/COMP1EN in PPG0C/PPG1C. CMP1C (1DH) Register

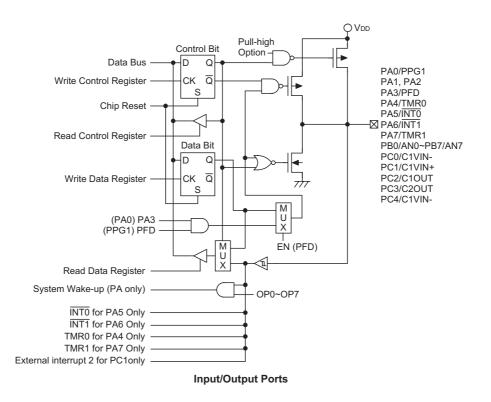
Input/Output Ports

There are 20 bidirectional input/output lines in the microcontroller, labeled as PA, PB and PC, which are mapped to the data memory of [12H], [14H] and [16H] respectively. All of these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, that is, the inputs must be ready at the T2 rising edge of instruction "MOV A,[m]" (m=12H, 14H or 16H). For output operation, all the data is latched and remains unchanged until the output latch is rewritten.

Each I/O line has its own control register (PAC, PBC, PCC) to control the input/output configuration. With this control register, CMOS output or Schmitt trigger input with or without pull-high resistor structures can be reconfigured dynamically under software control. To function as an input, the corresponding latch of the control register must write "1". The input source also depends on the control register. If the control register bit is "1", the input will read the pad state. If the control register bit is "0", the contents of the latches will move to the internal bus. The latter is possible in the "read-modify-write" instruction.

For output function, CMOS is the only configuration. These control registers are mapped to locations 13H, 15H and 17H.

After a chip reset, these input/output lines remain at high levels or floating state (depending on pull-high options). Each bit of these input/output latches can be set or


cleared by "SET [m].i" and "CLR [m].i" (m=12H, 14H or 16H) instructions.

Some instructions first input data and then follow the output operations. For example, "SET [m].i", "CLR [m].i", "CPL [m]", "CPLA [m]" read the entire port states into the CPU, execute the defined operations (bit-operation), and then write the results back to the latches or the accumulator.

Each line of port A has the capability of waking-up the device. Each I/O port has a pull-high option. Once the pull-high option is selected, the I/O port has a pull-high resistor, otherwise, there's none. Take note that a non-pull-high I/O port operating in input mode will cause a floating state.

The PA0, PA3, PA4, PA5, PA6 and PA7 are pin-shared with PPG1, PFD, TMR0, $\overline{\text{INT0}}$, $\overline{\text{INT1}}$ and TMR1 pins respectively. And the PC0, PC1, PC2, PC3 and PC4 are pin-shared with C0VIN1-, C0VIN+, C0OUT, C1OUT and C1VIN-.

The PA3 is pin-shared with the PFD signal. If the PFD option is selected, the output signal in output mode of PA3 will be the PFD signal generated by a timer/event counter overflow signal. The input mode always remain in its original functions. Once the PFD option is selected, the PFD output signal is controlled by the PA3 data register only. Writing "1" to PA3 data register will enable the PFD output function and writing "0" will force the PA3 to remain at "0".

The I/O functions of PA3 are shown below.

I/O	l/P	O/P	l/P	O/P
Mode	(Normal)	(Normal)	(PFD)	(PFD)
PA3	Logical Input	Logical Output	Logical Input	

Note: The PFD frequency is the timer/event counter overflow frequency divided by 2.

It is recommended that unused or not bonded out I/O lines should be set as output pins by software instruction to avoid consuming power under input floating state.

The PFD (PFD0 or PFD1) output shares pin with PA3, as determined by options. When the PFD (PFD0 or PFD1) option is selected, setting PA3 "1" ("SET PA.3") will enable the PFD output and setting PA3 "0" ("CLR PA.3") will disable the PFD output and PA3 output at low level.

The definitions of PFD control signal and PFD output frequency are listed in the following table.

Timer	Timer Preload Value	PA3 Data Register	PA3 Pad State	PFD Frequency
OFF	х	0	0	Х
OFF	х	1	U	Х
ON	Ν	0	0	Х
ON	Ν	1	PFD	f _{TMR} /[2×(M-N)]

Note: "X" stands for unused

"U" stands for unknown

"M" is "256" for PFD

"N" is preload value for the timer/event counter

 ${}^{\prime\prime}f_{\mathsf{TMR}}{}^{\prime\prime}$ is input clock frequency for the timer/event counter

A/D Converter

The 8 channels and 9-bit resolution A/D (8-bit accuracy) converter are implemented in this microcontroller. The reference voltage is VDD. The A/D converter contains four special registers which are; ADRL (24H), ADRH (25H), ADCR (26H) and ACSR (27H). The ADRH and ADRL are A/D result register higher-order byte and lower-order byte and are read-only. After the A/D conversion is completed, the ADRH and ADRL should be read to get the conversion result data. The ADCR is an

A/D converter control register, which defines the A/D channel number, analog channel select, start A/D conversion control bit and end of A/D conversion flag. If users want to start an A/D conversion, define the PB configuration, select the converted analog channel, and give START bit a raising edge and falling edge $(0\rightarrow 1\rightarrow 0)$. At the end of A/D conversion, the EOCB bit is cleared and an A/D converter interrupt occurs (if the A/D converter interrupt is enabled). The ACSR is A/D clock setting register, which is used to select the A/D clock source.

The A/D converter control register is used to control the A/D converter. The bit2~bit0 of the ADCR are used to select an analog input channel. There's a total of 4 channels to select. The bit5~bit3 of the ADCR are used to set the PB configurations. PB can be an analog input or as digital I/O line determined by these 3 bits.

Once a PB line is selected as an analog input, the I/O functions and pull-high resistor of this I/O line are disabled and the A/D converter circuit is powered on. The EOCB bit (bit6 of the ADCR) is end of A/D conversion flag. Check this bit to know when A/D conversion is completed. The START bit of the ADCR is used to begin the conversion of the A/D converter. Giving START bit a rising edge and falling edge means that the A/D conversion is completed, the START should remain at "0" until the EOCB is cleared to "0" (end of A/D conversion).

Bit 7 of the ACSR register is used for test purposes only and must not be used for other purposes by the application program. Bit1 and bit0 of the ACSR register are used to select the A/D clock source.

When the A/D conversion has completed, the A/D interrupt request flag will be set. The EOCB bit is set to "1" when the START bit is set from "0" to "1".

Important Note for A/D initialization:

Special care must be taken to initialize the A/D converter each time the Port B A/D channel selection bits are modified, otherwise the EOCB flag may be in an undefined condition. An A/D initialization is implemented by setting the START bit high and then clearing it to zero within 10 instruction cycles of the Port B channel selection bits being modified. Note that if the Port B channel selection bits are all cleared to zero then an A/D initialization is not required.

Bit No.	Label	Function
0 1	ADCS0 ADCS1	Selects the A/D converter clock source 00: system clock/2 01: system clock/8 10: system clock/32 11: undefined
2~6	_	Unused bit, read as "0"
7	TEST	For test mode used only

ACSR (27H) Register

Bit No.	Label	Function
0 1 2	ACS0 ACS1 ACS2	ACS2, ACS1, ACS0: Select A/D channel 0, 0, 0: AN0 0, 0, 1: AN1 0, 1, 0: AN2 0, 1, 1: AN3 1, 0, 0: AN4 1, 0, 1: AN5 1, 1, 0: AN6 1, 1, 1: AN7
3 4 5	PCR0 PCR1 PCR2	Defines the port B configuration select. If PCR0, PCR1 and PCR2 are all zero, the ADC circuit is powered off to reduce power consumption
6	EOCB	Indicates end of A/D conversion. (0 = end of A/D conversion) Each time bits 3~5 change state the A/D should be initialized by issuing a START signal, other- wise the EOCB flag may have an undefined condition. See "Important note for A/D initialization".
7	START	Starts the A/D conversion. $(0\rightarrow 1\rightarrow 0=$ start; $0\rightarrow 1=$ Reset A/D converter and set EOCB to "1")

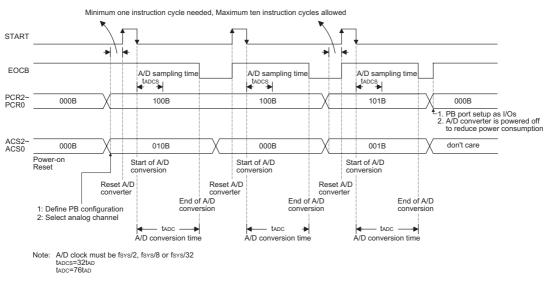
ADCR (26H) Register

Register	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADRL (24H)	D0				_	_		
ADRH (25H)	D8	D7	D6	D5	D4	D3	D2	D1

Note: D0~D8 is A/D conversion result data bit LSB~MSB.

ADRL (24H), ADRH (25H) Register

PCR2	PCR1	PCR0	7	6	5	4	3	2	1	0
0	0	0	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
0	0	1	PB7	PB6	PB5	PB4	PB3	PB2	PB1	AN0
0	1	0	PB7	PB6	PB5	PB4	PB3	PB2	AN1	AN0
0	1	1	PB7	PB6	PB5	PB4	PB3	AN2	AN1	AN0
1	0	0	PB7	PB6	PB5	PB4	AN3	AN2	AN1	AN0
1	0	1	PB7	PB6	PB5	AN4	AN3	AN2	AN1	AN0
1	1	0	PB7	PB6	AN5	AN4	AN3	AN2	AN1	AN0
1	1	1	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0

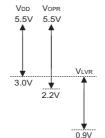

Port B Configuration

The following two programming examples illustrate how to setup and implement an A/D conversion. In the first example, the method of polling the EOCB bit in the ADCR register is used to detect when the conversion cycle is complete, whereas in the second example, the A/D interrupt is used to determine when the conversion is complete.

Example: using EOCB Polling Method to detect end of conversion

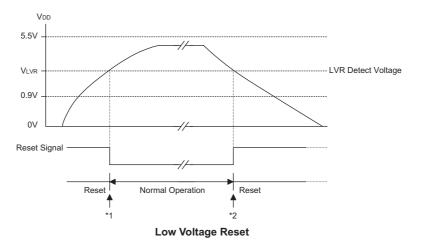
	USING EOCB Polling Met	
clr	EADI	; disable ADC interrupt
mov	a,0000001B	
mov	ACSR,a	; setup the ACSR register to select f _{SYS} /8 as the A/D clock
mov	a,00100000B	; setup ADCR register to configure Port PB0~PB3 as A/D inputs
mov	ADCR,a	; and select AN0 to be connected to the A/D converter
	:	
	:	; As the Port B channel bits have changed the following START
		; signal (0-1-0) must be issued within 10 instruction cycles
	:	
Start_conv	version:	
cĪr	START	
set	START	; reset A/D
clr	START	; start A/D
Polling_E	C:	,
sz	EOCB	; poll the ADCR register EOCB bit to detect end of A/D conversion
jmp	polling EOC	; continue polling
mov	a,ADRH	; read conversion result high byte value from the ADRH register
mov	adrh buffer,a	; save result to user defined memory
mov	a,ADRL	; read conversion result low byte value from the ADRL register
mov	adrl_buffer,a	; save result to user defined memory
mov		, save result to user defined memory
jmp	start conversion	: start next A/D conversion
		b detect end of conversion
clr	EADI	; disable ADC interrupt
mov	a.00000001B	, disable ADC interrupt
	ACSR.a	; setup the ACSR register to select f _{SYS} /8 as the A/D clock
mov	ACSR,a	, setup the ACSR register to select Isys/o as the A/D clock
mov	a.00100000B	; setup ADCR register to configure Port PB0~PB3 as A/D inputs
mov		; and select AN0 to be connected to the A/D converter
mov	ADCR,a	, and select ANU to be connected to the A/D converter
	:	As the Dert Disherred bits have abarred the following CTADT
		: As the Port B channel bits have changed the following START
		,
		; signal (0-1-0) must be issued within 10 instruction cycles
	:	,
Start_conv		,
cĪr	START	; signal (0-1-0) must be issued within 10 instruction cycles
clr set	START START	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D
cĪr set clr	START START START	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D
cĪr set cIr cIr	START START START ADF	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag
cĪr set cIr cIr set	START START START ADF EADI	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt
cĪr set cIr cIr	START START START ADF	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag
cĪr set cIr cIr set	START START START ADF EADI	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt
cĪr set cIr cIr set	START START START ADF EADI	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt
cĪr set cIr cIr set set	START START START ADF EADI EMI :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt
cĪr set cIr cIr set set	START START START ADF EADI EMI : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt
cIr set cIr cIr set set ; ADC inte ADC_ISR:	START START ADF EADI EMI	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt
cĪr set cIr cIr set set	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt
cIr set cIr cIr set set ; ADC inte ADC_ISR:	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt
CIr set cIr set set set ADC_ISR: mov	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt
CIr set cIr set set ADC inte ADC_ISR mov mov	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory
CIr set cIr set set ADC inte ADC_ISR mov mov	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory
CIr set cIr set set ADC inte ADC_ISR mov mov	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register
CIr set cIr cIr set set ADC inte ADC_ISR: mov mov	START START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register
cIr set cIr set set ADC_INTE MOV_MOV mov mov	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory
cIr set cIr set set ADC_ISR: mov mov mov mov	START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result high byte value from the ADRH register ; read conversion result low byte value from the ADRH register
cIr set cIr set set ADC inte ADC_ISR mov mov mov mov	START START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; save result to user defined register
cIr set cIr set set ADC inte ADC_ISR: mov mov mov mov mov mov mov	START START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register
cIr set cIr set set ADC_ISR: mov mov mov mov mov cIr set	START START START ADF EADI EMI : acc_stack,a a,STATUS status_stack,a : a,ADRH adrl_buffer,a a,ADRH adrl_buffer,a START START	; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result high byte value from the ADRH register ; read conversion result low byte value from the ADRH register
cIr set cIr set set ADC inte ADC_ISR: mov mov mov mov mov mov mov	START START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; reset A/D
cIr set cIr set set ADC_ISR: mov mov mov mov mov cIr set	START START START ADF EADI EMI : acc_stack,a a,STATUS status_stack,a : a,ADRH adrh_buffer,a a,ADRH adrh_buffer,a START START	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; reset A/D
cIr set cIr set set ADC inte ADC_ISR: mov mov mov mov mov mov mov mov cIr set cIr	START START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; reset A/D
cIr set cIr set set ADC_ISR: mov mov mov mov mov cIr set	START START START ADF EADI EMI : : : : : : : : : : : : : : : : : : :	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; reset A/D
cIr set cIr set set set ADC inte ADC_ISR: mov mov mov mov mov mov mov mov cIr set cIr set cIr	START START START ADF EADI EMI : acc_stack,a a,STATUS status_stack,a : a,ADRH adrh_buffer,a a,ADRL adrl_buffer,a START START START START START START START START	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register ; reset A/D ; start A/D
cIr set cIr set set set ADC_ISR: mov mov mov mov mov mov mov mov mov mov	START START START ADF EADI EMI : acc_stack,a a,STATUS status_stack,a : a,ADRH adrh_buffer,a a,ADRL adrl_buffer,a START START START START START START START START START START START START	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register ; reset A/D ; testore STATUS from user defined memory
cIr set cIr set set set ADC inte ADC_ISR: mov mov mov mov mov mov mov mov cIr set cIr set cIr	START START START ADF EADI EMI : acc_stack,a a,STATUS status_stack,a : a,ADRH adrh_buffer,a a,ADRL adrl_buffer,a START START START START START START START START	 ; signal (0-1-0) must be issued within 10 instruction cycles ; reset A/D ; start A/D ; clear ADC interrupt request flag ; enable ADC interrupt ; enable global interrupt ; save ACC to user defined memory ; save STATUS to user defined memory ; read conversion result high byte value from the ADRH register ; save result to user defined register ; read conversion result low byte value from the ADRL register ; save result to user defined register ; reset A/D ; start A/D

A/D Conversion Timing


Low Voltage Reset - LVR

HOLTEK

The microcontroller provides low voltage reset circuit in order to monitor the supply voltage of the device. If the supply voltage of the device is within the range $0.9V \sim V_{LVR}$, such as changing a battery, the LVR will automatically reset the device internally.


The LVR includes the following specifications:

- The low voltage (0.9V~V_{LVR}) state has to be maintained for more than 1ms. If the low voltage state does not exceed 1ms, the LVR will ignore it and do not perform a reset function.
- The LVR uses the "OR" function with the external RES signal to perform a chip reset.

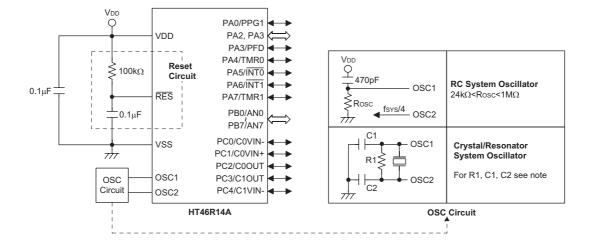
The relationship between V_{DD} and V_{LVR} is shown below.

Note: V_{OPR} is the voltage range for proper chip operation at 4MHz system clock.

- Note: *1: To ensure oscillator stabilisation, the SST provides an extra 1024 system clock pulse delay before normal operation commences.
 - *2: Since the low voltage state has to be maintained for over 1ms, after this 1ms delay, the device will enter the reset mode.

Options

The following shows ten kinds of options in the microcontroller. ALL the options must be defined to ensure proper system function.


Options
OSC type selection. This option is to determine whether an RC or crystal oscillator is chosen as system clock.
WDT clock source selection. WDT oscillator or fsys/4.
WDT enable/disable selection. WDT can be enabled or disabled by option.
WDT time-out period selection. There are four types of selection: $f_S/2^{13}$, $f_S/2^{14}$, $f_S/2^{15}$ and $f_S/2^{16}$
CLRWDT times selection. This option defines how to clear the WDT by instruction. "One time" means that the CLR WDT instruction can cle the WDT. "Two times" means only if both of the CLR WDT1 and CLR WDT2 instructions have been executed, the WDT can be cleared.
Wake-up selection. This option defines the wake-up function activity. External I/O pins (PA only) all have the capabity to wake-up the chip from a HALT.
Pull-high selection. This option is to determine whether a pull-high resistance is viable or not in the input mode of the I/O ports. PA0~PA7, can be independently selected.
Pull-high selection. This option is to determine whether a pull-high resistance is viable or not in the input mode of th I/O ports. PB0~PB7, can be independently selected.
This option is to determine whether a pull-high resistance is viable or not in the input mode of the I/O ports. PC0~PC byte option.
I/O pins share with other function selections. PA0/PPG1: PA0 can be set as I/O pins or PPG1 output.
I/O pins share with other function selections. PA3/PFD: PA3 can be set as I/O pins or PFD output.
PFD selection: If PA3 is set as PFD output, there are two types of selections; One is PFD0 as the PFD output, the other is PFD1 a the PFD output. PFD0, PFD1 are generated by the timer overflow signals of the Timer/Event Counter 0, Timer/Eve Counter 1 respectively.
Low voltage reset selection. Enable or disable the LVR function.
PPG0 output level selection; P0LEV. This option is to determine the PPG0 output level. Active Low or Active High selection. Disable this bit to "0", the PPG0 output will be defined as an active high output, Enable this bit to "1", the PPG0 output will be defined as an a tive low output.
PPG1 output level selection; P1LEV. This option is to determine the PPG1 output level. Active Low or Active High selection. Disable this bit to "0", th PPG1 output will be defined as an active high output, Enable this bit to "1", the PPG1 output will be defined as an a tive low output.
PPG0 timer start counting synchronized with clock; P0TSYN. This option is to determine whether the PPG0 timer start counting is synchronized with input clock or not.
PPG1 timer start counting synchronized with clock; P1TSYN. This option is to determine the PPG1 timer start counting is synchronized with input clock or not.

This option is to determine the PPG1 timer start counting is synchronized with input clock or not.

Application Circuits

Note: 1. Crystal/resonator system oscillators

For crystal oscillators, C1 and C2 are only required for some crystal frequencies to ensure oscillation. For resonator applications C1 and C2 are normally required for oscillation to occur. For most applications it is not necessary to add R1. However if the LVR function is disabled, and if it is required to stop the oscillator when V_{DD} falls below its operating range, it is recommended that R1 is added. The values of C1 and C2 should be selected in consultation with the crystal/resonator manufacturer specifications.

2. Reset circuit

The reset circuit resistance and capacitance values should be chosen to ensure that VDD is stable and remains within its operating voltage range before the $\overline{\text{RES}}$ pin reaches a high level. Ensure that the length of the wiring connected to the $\overline{\text{RES}}$ pin is kept as short as possible, to avoid noise interference.

3. For applications where noise may interfere with the reset circuit and for details on the oscillator external components, refer to Application Note HA0075E for more information.

Instruction Set Summary

Mnemonic	Description	Instruction Cycle	Flag Affected
Arithmetic			
ADD A,[m] ADDM A,[m] ADD A,x ADC A,[m] ADCM A,[m] SUB A,x SUB A,[m] SUBM A,[m] SBC A,[m] SBCM A,[m] DAA [m]	Add data memory to ACC Add ACC to data memory Add immediate data to ACC Add data memory to ACC with carry Add ACC to data memory with carry Subtract immediate data from ACC Subtract data memory from ACC Subtract data memory from ACC with result in data memory Subtract data memory from ACC with carry Subtract data memory from ACC with carry Subtract data memory from ACC with carry and result in data memory Decimal adjust ACC for addition with result in data memory	$ \begin{array}{c} 1\\ 1^{(1)}\\ 1\\ 1^{(1)}\\ 1\\ 1^{(1)}\\ 1\\ 1^{(1)}\\ 1^{(1)}\\ 1^{(1)} \end{array} $	Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV Z,C,AC,OV C
Logic Operation	on		
AND A,[m] OR A,[m] XOR A,[m] ANDM A,[m] ORM A,[m] XORM A,[m] AND A,x OR A,x XOR A,x CPL [m] CPLA [m]	AND data memory to ACC OR data memory to ACC Exclusive-OR data memory to ACC AND ACC to data memory OR ACC to data memory Exclusive-OR ACC to data memory AND immediate data to ACC OR immediate data to ACC Exclusive-OR immediate data to ACC Complement data memory Complement data memory with result in ACC	1 1 1 ⁽¹⁾ 1 ⁽¹⁾ 1 1 1 1 1 1	Z Z Z Z Z Z Z Z Z Z Z Z Z
Increment & D			
INCA [m] INC [m] DECA [m] DEC [m]	Increment data memory with result in ACC Increment data memory Decrement data memory with result in ACC Decrement data memory	1 1 ⁽¹⁾ 1 1 ⁽¹⁾	Z Z Z Z
Rotate			
RRA [m] RR [m] RRCA [m] RRC [m] RLA [m] RLCA [m] RLCA [m]	Rotate data memory right with result in ACC Rotate data memory right Rotate data memory right through carry with result in ACC Rotate data memory right through carry Rotate data memory left with result in ACC Rotate data memory left Rotate data memory left through carry with result in ACC Rotate data memory left through carry	$ \begin{array}{c} 1 \\ 1^{(1)} \\ 1 \\ 1^{(1)} \\ 1 \\ 1^{(1)} \\ 1 \\ 1^{(1)} \end{array} $	None C C None None C C
Data Move			
MOV A,[m] MOV [m],A MOV A,x	Move data memory to ACC Move ACC to data memory Move immediate data to ACC	1 1 ⁽¹⁾ 1	None None None
Bit Operation		(1)	
CLR [m].i SET [m].i	Clear bit of data memory Set bit of data memory	1 ⁽¹⁾ 1 ⁽¹⁾	None None

Mnemonic	Description	Instruction Cycle	Flag Affected
Branch			
JMP addr	Jump unconditionally	2	None
SZ [m]	Skip if data memory is zero	1 ⁽²⁾	None
SZA [m]	Skip if data memory is zero with data movement to ACC	1 ⁽²⁾	None
SZ [m].i	Skip if bit i of data memory is zero	1 ⁽²⁾	None
SNZ [m].i	Skip if bit i of data memory is not zero	1 ⁽²⁾	None
SIZ [m]	Skip if increment data memory is zero	1 ⁽³⁾	None
SDZ [m]	Skip if decrement data memory is zero	1 ⁽³⁾	None
SIZA [m]	Skip if increment data memory is zero with result in ACC	1 ⁽²⁾	None
SDZA [m]	Skip if decrement data memory is zero with result in ACC	1 ⁽²⁾	None
CALL addr	Subroutine call	2	None
RET	Return from subroutine	2	None
RET A,x	Return from subroutine and load immediate data to ACC	2	None
RETI	Return from interrupt	2	None
Table Read			
TABRDC [m]	Read ROM code (current page) to data memory and TBLH	2 ⁽¹⁾	None
TABRDL [m]	Read ROM code (last page) to data memory and TBLH	2 ⁽¹⁾	None
Miscellaneou	5		
NOP	No operation	1	None
CLR [m]	Clear data memory	1 ⁽¹⁾	None
SET [m]	Set data memory	1 ⁽¹⁾	None
CLR WDT	Clear Watchdog Timer	1	TO,PDF
CLR WDT1	Pre-clear Watchdog Timer	1	TO ⁽⁴⁾ ,PDF ⁽⁴⁾
CLR WDT2	Pre-clear Watchdog Timer	1	TO ⁽⁴⁾ ,PDF ⁽⁴⁾
SWAP [m]	Swap nibbles of data memory	1 ⁽¹⁾	None
SWAPA [m]	Swap nibbles of data memory with result in ACC	1	None
HALT	Enter power down mode	1	TO,PDF

Note: x: Immediate data

m: Data memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

 \checkmark : Flag is affected

- -: Flag is not affected
- ⁽¹⁾: If a loading to the PCL register occurs, the execution cycle of instructions will be delayed for one more cycle (four system clocks).
- ⁽²⁾: If a skipping to the next instruction occurs, the execution cycle of instructions will be delayed for one more cycle (four system clocks). Otherwise the original instruction cycle is unchanged.
- (3): (1) and (2)
- ⁽⁴⁾: The flags may be affected by the execution status. If the Watchdog Timer is cleared by executing the CLR WDT1 or CLR WDT2 instruction, the TO and PDF are cleared. Otherwise the TO and PDF flags remain unchanged.

Instruction Definition

ADC A,[m]	Add data	memory a	nd carry t	o the accu	mulator			
Description			•		ory, accum ccumulatoi		d the carry flag are a	dded si-
Operation	$ACC \leftarrow A$	CC+[m]+(C					
Affected flag(s)							1	
	ТО	PDF	OV	Z	AC	С		
			\checkmark	\checkmark	\checkmark	\checkmark		
ADCM A,[m]	Add the a	ccumulato	or and car	y to data r	nemory			
Description					ory, accum pecified da		l the carry flag are ad y.	dded si-
Operation	$[m] \leftarrow AC$	C+[m]+C						
Affected flag(s)							1	
	то	PDF	OV	Z	AC	С		
			\checkmark	\checkmark	\checkmark	\checkmark		
ADD A,[m]	Add data	memory to	o the accu	mulator				
Description	The conte stored in t			data mem	ory and the	e accumul	ator are added. The	result is
Operation	$ACC \leftarrow A$	CC+[m]						
Affected flag(s)								
	то	PDF	OV	Z	AC	С		
			\checkmark	\checkmark	\checkmark	\checkmark		
ADD A,x	Add imme	ediate data	a to the ac	cumulator				
Description	The conte accumula		accumula	tor and the	specified o	lata are ao	dded, leaving the resu	ılt in the
Operation	$ACC \leftarrow A$	CC+x						
Affected flag(s)								
	ТО	PDF	OV	Z	AC	С		
			\checkmark	\checkmark	\checkmark	\checkmark		
ADDM A,[m]	Add the a	ccumulato	or to the da	ata memor	У			
Description	The conte stored in t			data mem	ory and the	e accumul	ator are added. The	result is
Operation	$[m] \gets AC$	C+[m]						
Affected flag(s)								
	то	PDF	OV	Z	AC	С		
			\checkmark	\checkmark	\checkmark	\checkmark		

AND A,[m]	Logical A	ND accum	ulator with	ı data mer	nory		
Description		e accumula he result is				nory perfo	rm a bitwise logical_AND op-
Operation	$ACC \leftarrow A$	CC "AND	' [m]				
Affected flag(s)							1
	ТО	PDF	OV	Z	AC	С	-
			—	\checkmark			
AND A,x	Logical A	ND immed	iate data t	o the accu	umulator		
Description		ne accumul It is stored		•	ed data pe	rform a bit	wise logical_AND operation.
Operation	$ACC \leftarrow A$	CC "AND	′ x				
Affected flag(s)							_
	то	PDF	OV	Z	AC	С	
				\checkmark	_	—	
				h 4h			
ANDM A,[m]	•	ND data m	-				
Description		he result is		•		ator perfo	rm a bitwise logical_AND op-
Operation	$[m] \leftarrow AC$	C "AND" [m]				
Affected flag(s)	[1
	ТО	PDF	OV	Z	AC	С	
				\checkmark	—		
CALL addr	Subroutir	ne call					
Description	program this onto	counter inc	rements of The indica	nce to obta ated addre	ain the add	ress of the	t the indicated address. The e next instruction, and pushes Program execution continues
Operation		Program C Counter ←					
Affected flag(s)							1
	ТО	PDF	OV	Z	AC	С	
			_	_			
CLR [m]	Clear dat	a memory					
Description	The conte	ents of the	specified of	data mem	ory are cle	ared to 0.	
Operation	[m] ← 00	Н					
Affected flag(s)							~
	то	PDF	OV	Z	AC	С	
							•
					_		

CLR [m].i	Clear bit o	of data me	mory			
Description	The bit i c	f the spec	ified data i	memory is	cleared to	0.
Operation	[m].i ← 0					
Affected flag(s)			0 1/	_		
	ТО	PDF	OV	Z	AC	С
			_	_	_	
CLR WDT	Clear Wat	chdog Tin	ner			
Description	The WDT cleared.	is cleared	(clears the	e WDT). Tł	ne power d	lown bit (l
Operation	WDT \leftarrow 0 PDF and					
Affected flag(s)	TO	DDE	0)/	7	4.0	<u> </u>
	ТО 0	PDF 0	OV	Z	AC	С
	0	0			_	
CLR WDT1	Preclear \	Watchdog	Timer			
Description	of this inst	ruction wit	hout the of	her precle	DT. PDF ar ear instruction and the To	ion just se
Operation	WDT \leftarrow 0 PDF and					
Affected flag(s)						
Affected flag(s)	ТО	PDF	OV	Z	AC	С
Affected flag(s)	TO 0*	PDF 0*	OV	Z	AC	C
Affected flag(s)		0*		Z 	AC	C —
	0* Preclear V Together of this ins	0* Watchdog with CLR \ truction w	Timer NDT1, clea		AC — DT. PDF ar lear instru- and the T	nd TO are
CLR WDT2	0* Preclear V Together of this ins	0* Watchdog with CLR V truction w nstruction 0H*	Timer NDT1, clea		DT. PDF ar	nd TO are
CLR WDT2 Description	0^* Preclear V Together of this ins plies this WDT $\leftarrow 0$ PDF and	0^* Watchdog with CLR N truction w instruction 0H* TO $\leftarrow 0^*$	Timer WDT1, clea ithout the o has been	ars the WI other prec executed	DT. PDF ar lear instru and the To	nd TO are ction, set O and PE
CLR WDT2 Description Operation	0^* Preclear V Together of this ins plies this WDT $\leftarrow 0$ PDF and TO	0^* Watchdog with CLR \ truction w nstruction 0H [*] TO ← 0 [*] PDF	Timer NDT1, clea		DT. PDF ar	nd TO are
CLR WDT2 Description Operation	0^* Preclear V Together of this ins plies this WDT $\leftarrow 0$ PDF and	0^* Watchdog with CLR N truction w instruction 0H* TO $\leftarrow 0^*$	Timer WDT1, clea ithout the o has been	ars the WI other prec executed	DT. PDF ar lear instru and the To	nd TO are ction, set O and PE
CLR WDT2 Description Operation	0^* Preclear V Together of this ins plies this WDT $\leftarrow 0$ PDF and TO	0^* Watchdog with CLR V truction w instruction 0H* TO $\leftarrow 0^*$ PDF 0^*	Timer NDT1, clea ithout the o has been OV	ars the WI other prec executed	DT. PDF ar lear instru and the To	nd TO are ction, set O and PE
CLR WDT2 Description Operation Affected flag(s)	0^* Preclear V Together v of this ins plies this WDT $\leftarrow 0$ PDF and TO 0^* Complem Each bit of	0^* Watchdog with CLR \ truction w nstruction 0H* TO ← 0* PDF 0* ent data n of the spece	Timer WDT1, clea ithout the o has been OV 	ars the WI other prec executed Z memory i	DT. PDF ar lear instru and the To	nd TO are ction, set O and PE C C complem
CLR WDT2 Description Operation Affected flag(s)	0^* Preclear V Together v of this ins plies this WDT $\leftarrow 0$ PDF and TO 0^* Complem Each bit of	0^* Watchdog with CLR \ truction w instruction 0H* TO ← 0* PDF 0* ent data n of the spection of the specti	Timer WDT1, clea ithout the o has been OV 	ars the WI other prec executed Z memory i	DT. PDF ar lear instruct and the To AC	nd TO are ction, set O and PE C C complem
CLR WDT2 Description Operation Affected flag(s) CPL [m] Description	0^* Preclear V Together v of this ins plies this is WDT $\leftarrow 0$ PDF and TO 0^* Complem Each bit of which pre	0^* Natchdog with CLR \ truction w instruction 0H* TO ← 0* PDF 0* ent data n of the spection viously co	Timer WDT1, clea ithout the o has been OV 	ars the WI other prec executed Z 	DT. PDF ar lear instruct and the To AC	nd TO are ction, set O and PE C C complem nd vice-v
CLR WDT2 Description Operation Affected flag(s) CPL [m] Description Operation	0^* Preclear V Together v of this ins plies this is WDT $\leftarrow 0$ PDF and TO 0^* Complem Each bit of which pre	0^* Watchdog with CLR \ truction w instruction 0H* TO ← 0* PDF 0* ent data n of the spection of the specti	Timer WDT1, clea ithout the o has been OV 	ars the WI other prec executed Z memory i	DT. PDF ar lear instruct and the To AC	nd TO are ction, set O and PE C C complem

CPLA [m]	Complement data memory and place result in the accumulator	
Description	Each bit of the specified data memory is logically complemented (1's complemen which previously contained a 1 are changed to 0 and vice-versa. The complemented is stored in the accumulator and the contents of the data memory remain unchang	resul
Operation	$ACC \leftarrow [\overline{m}]$	
Affected flag(s)		
	TO PDF OV Z AC C	
DAA [m]	Decimal-Adjust accumulator for addition	
Description	The accumulator value is adjusted to the BCD (Binary Coded Decimal) code. The accumulator is divided into two nibbles. Each nibble is adjusted to the BCD code and an in carry (AC1) will be done if the low nibble of the accumulator is greater than 9. The BC justment is done by adding 6 to the original value if the original value is greater than carry (AC or C) is set; otherwise the original value remains unchanged. The result is in the data memory and only the carry flag (C) may be affected.	nterna CD ad n 9 or a
Operation	If ACC.3~ACC.0 >9 or AC=1 then [m].3~[m].0 \leftarrow (ACC.3~ACC.0)+6, AC1= \overline{AC} else [m].3~[m].0 \leftarrow (ACC.3~ACC.0), AC1=0 and If ACC.7~ACC.4+AC1 >9 or C=1 then [m].7~[m].4 \leftarrow ACC.7~ACC.4+6+AC1,C=1 else [m].7~[m].4 \leftarrow ACC.7~ACC.4+AC1,C=C	
Affected flag(s)		
	TO PDF OV Z AC C	
DEC [m]	Decrement data memory	
DEC [m] Description	Decrement data memory Data in the specified data memory is decremented by 1.	
Description	Data in the specified data memory is decremented by 1.	
Description Operation	Data in the specified data memory is decremented by 1.	
Description Operation	Data in the specified data memory is decremented by 1. $[m] \leftarrow [m]-1$	
Description Operation	Data in the specified data memory is decremented by 1. $[m] \leftarrow [m]-1$ TO PDF OV Z AC C	
Description Operation Affected flag(s)	Data in the specified data memory is decremented by 1. [m] \leftarrow [m]-1 TO PDF OV Z AC C — — — $$ — —	umula
Description Operation Affected flag(s)	Data in the specified data memory is decremented by 1. $[m] \leftarrow [m]-1$ $\boxed{TO PDF OV Z AC C}$ $\boxed{- - - - - -}$ Decrement data memory and place result in the accumulator Data in the specified data memory is decremented by 1, leaving the result in the accum	umula
Description Operation Affected flag(s) DECA [m] Description	Data in the specified data memory is decremented by 1. $[m] \leftarrow [m]-1$ $\boxed{TO PDF OV Z AC C}$ $\boxed{ }$ Decrement data memory and place result in the accumulator Data in the specified data memory is decremented by 1, leaving the result in the accumulator tor. The contents of the data memory remain unchanged.	umula
Description Operation Affected flag(s) DECA [m] Description Operation	Data in the specified data memory is decremented by 1. $[m] \leftarrow [m]-1$ $\boxed{TO PDF OV Z AC C}$ $\boxed{ }$ Decrement data memory and place result in the accumulator Data in the specified data memory is decremented by 1, leaving the result in the accumulator tor. The contents of the data memory remain unchanged.	umula

HALT	Enter pov	ver down n	node				
Description	This instr the RAM	uction stop	es program ers are reta	ined. The	WDT and	prescaler	ystem clock. The contents of are cleared. The power down
Operation	Program PDF \leftarrow 1 TO \leftarrow 0	Counter ←	Program	Counter+	1		
Affected flag(s)							1
	ТО	PDF	OV	Z	AC	С	-
	0	1			—		
INC [m]	Incremen	t data men	nory				
Description	Data in th	e specified	l data mer	nory is inc	remented	by 1	
Operation	[m] ← [m]]+1					
Affected flag(s)	[1
	ТО	PDF	OV	Z	AC	С	-
		—					
INCA [m]	Incremen	t data men	nory and p	lace resul	t in the ac	cumulator	
Description		e specified ontents of					ng the result in the accumula-
Operation	ACC ← [I	m]+1					
Affected flag(s)							1
	ТО	PDF	OV	Z	AC	С	-
		_	—		—		
JMP addr	Directly ju	ımp					
Description		ram counte passed to			he directly	-specified	address unconditionally, and
Operation	Program	Counter ←	addr				
Affected flag(s)							1
	ТО	PDF	OV	Z	AC	С	-
		_	—	—			
MOV A,[m]	Move dat	-					
	move dut	amemory	to the acc	umulator			
Description					ory are co	pied to the	accumulator.
Description Operation		ents of the			ory are co	pied to the	accumulator.
·	The conte	ents of the			ory are co	pied to the	e accumulator.
Operation	The conte	ents of the			ory are co	c	accumulator.

MOV A,x					r			
Description	The 8-bit	data spec	ified by the	code is lo	baded into	the accu		
Operation	$ACC \leftarrow x$							
Affected flag(s)								
	ТО	PDF	OV	Z	AC	С		
						_		
MOV [m],A	Move the	accumula	tor to data	memory				
Description	The conte memories		accumulat	or are cop	ied to the	specified		
Operation	[m] ←AC	С						
Affected flag(s)								
	ТО	PDF	OV	Z	AC	С		
			_	—		_		
NOP	No opera	tion						
Description	No opera	tion is perf	formed. Ex	ecution co	ontinues w	vith the ne		
Operation	Program	Counter ←	- Program	Counter+	1			
Affected flag(s)								
	ТО	PDF	OV	Z	AC	С		
			—	—		_		
OR A,[m]	Logical O	R accumu	lator with o	data mem	ory			
Description			lator and t					
Operation		form a bitwise logical_OR operation. The result is stored in the accumulator.						
Operation			[m]					
Affected flog(a)	$AUU \leftarrow P$	CC "OR"	[m]					
Affected flag(s)	[Z	AC	С		
Affected flag(s)		PDF	[m] OV	Z	AC	C		
Affected flag(s)	[Z √	AC	C		
Affected flag(s) OR A,x		PDF			_	C		
	TO — Logical O Data in th	PDF — R immedia	OV	√ the accur he specifi	nulator			
OR A,x	TO — Logical O Data in th The resul	PDF — R immedia	OV — ate data to ilator and t in the acc	√ the accur he specifi	nulator			
OR A,x Description	TO — Logical O Data in th The resul	PDF — R immedia ne accumu t is stored	OV — ate data to ilator and t in the acc	√ the accur he specifi	nulator			
OR A,x Description Operation	TO — Logical O Data in th The resul	PDF — R immedia ne accumu t is stored	OV — ate data to ilator and t in the acc	√ the accur he specifi	nulator			
OR A,x Description Operation	TO — Logical O Data in th The resul ACC ← A	PDF — R immedia ne accumu t is stored ACC "OR"	OV — ate data to lator and t in the acco x	√ the accur he specifi umulator.	nulator ed data p	erform a		
OR A,x Description Operation	TO — Logical O Data in th The resul ACC ← A TO —	PDF R immedia ne accumu t is stored ACC "OR" PDF 	OV — ate data to lator and t in the acco x	√ the accur the specifi umulator. Z √	nulator ed data p AC	erform a		
OR A,x Description Operation Affected flag(s)	TO	PDF R immedia re accumu t is stored ACC "OR" PDF R data me	OV 	√ the accur he specifi umulator. Z √ the accur	AC	erform a C		
OR A,x Description Operation Affected flag(s)	TO Logical O Data in th The result ACC \leftarrow A TO - Logical O Data in t	PDF R immedia ae accumu t is stored CC "OR" PDF R data me ne data me	OV 	√ the accur he specifi umulator. Z √ the accur e of the o	AC AC ullator AC	erform a C 		
OR A,x Description Operation Affected flag(s)	TO	PDF R immedia ae accumu t is stored CC "OR" PDF R data me ne data me	OV ate data to ate data to a	√ the accur he specifi umulator. Z √ the accur e of the o	AC AC ullator AC	erform a C 		
OR A,x Description Operation Affected flag(s) ORM A,[m] Description	TO	PDF R immedia a accumu t is stored CC "OR" PDF R data me ne data m gical_OR d	OV ate data to ate data to a	√ the accur he specifi umulator. Z √ the accur e of the o	AC AC ullator AC	erform a C 		
OR A,x Description Operation Affected flag(s) ORM A,[m] Description Operation	TO	PDF R immedia a accumu t is stored CC "OR" PDF R data me ne data m gical_OR d	OV ate data to ate data to a	√ the accur he specifi umulator. Z √ the accur e of the o	AC AC ullator AC	erform a C 		

RET	Return fro	om subrou	tine			
Description			er is restor	ed from th	e stack. T	his is a 2-
Operation	Program	Counter ←	- Stack			
Affected flag(s)						
	то	PDF	OV	Z	AC	С
	_	—	_	—	—	_
RET A,x	Return an	d place in	nmediate d	lata in the	accumula	tor
Description	The progr fied 8-bit i		er is restore data.	ed from the	stack and	I the accur
Operation	$\begin{array}{l} Program \\ ACC \leftarrow x \end{array}$		- Stack			
Affected flag(s)	то		0)/	Z	10	<u> </u>
	ТО	PDF	OV	Z	AC	С
ETI	Return fro	m interrup	ot			
escription			er is restore enable mas			
Operation	Program EMI ← 1	Counter ←	- Stack			
Affected flag(s)						
	то	PDF	OV	Z	AC	С
L [m]	Rotate da	ta memor	y left			
escription	The conte	nts of the	specified d	ata memoi	ry are rota	ted 1 bit le
Operation	[m].(i+1) ∢ [m].0 ← [r		ı].i:bit i of tl	he data me	emory (i=0)~6)
Affected flag(s)						
	ТО	PDF	OV	Z	AC	С
		—	—	—	—	_
LA [m]	Rotate da	ta memor	y left and p	lace resul	t in the ac	cumulato
Description		•	l data merr accumulat	•		
Operation	ACC.(i+1) ACC.0 ←		m].i:bit i of	the data r	memory (i=	=0~6)
Affected flag(s)						
	ТО	PDF	OV	Z	AC	С

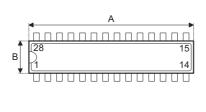
RLC [m]	Rotate data	a memory	left throu	gh carry		
Description	The conten places the		•		•	•
Operation	[m].(i+1) ← [m].0 ← C C ← [m].7	[m].i; [m].i:bit i of tł	ne data me	emory (i=0	~6)
Affected flag(s)						
	ТО	PDF	OV	Z	AC	С
		—	—	—	—	
RLCA [m]	Rotate left	through c	arry and p	lace resul	t in the acc	cumulato
Description	Data in the carry bit an in the accu	d the orig	inal carry	flag is rota	ted into bit	0 positio
Operation	ACC.(i+1) ↔ ACC.0 ← 0 C ← [m].7		m].i:bit i of	the data n	nemory (i=	0~6)
Affected flag(s)						
	то	PDF	OV	Z	AC	С
		—	—	—	—	\checkmark
RR [m]	Rotate data	a memory	right			
Description	The conten	ts of the s	pecified d	ata memor	y are rotat	ed 1 bit r
Operation	[m].i ← [m] [m].7 ← [m]	• • •].i:bit i of th	ne data me	emory (i=0	~6)
Affected flag(s)						
	то	PDF	OV	Z	AC	С
		—	—	—	—	
RRA [m]	Rotate righ	t and pla	ce result ir	the accur	nulator	
Description	Data in the the rotated	•		•		-
Operation	ACC.(i) ← ACC.7 ← [i		[m].i:bit i d	of the data	memory (i=0~6)
Affected flag(s)						
	ТО	PDF	OV	Z	AC	С
		_	—	_		_
RRC [m]	Rotate data	a memory	right thro	ugh carry		
Description	The conten					
o "	right. Bit 0			-		-
Operation	$[m].i \leftarrow [m]$.(i+1); [m].i:bit i of th	ne data me	emory (i=0	~6)
	[m].7 ← C C ← [m].0					
Affected flag(s)	_					
	то	PDF	OV	Z	AC	С
	_	_				\checkmark

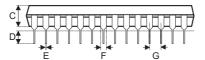
Description Data of the specified data memory and the carry flag are rotated 1 bit right. Bit 0 replaces the carry bit and the original carry flag is rotated into the bit 7 position. The rotated result is stored in the accumulator. The contents of the data memory remain unchanged. Operation ACC.1 \leftarrow [m].(+1); [m].ibit i of the data memory (i=0-6) ACC.7 \leftarrow C (= [m].0 Affected flag(s) $\overline{D PDF OV Z AC C} \\ \Box - - - V$ SBC A.[m] Subtract data memory and carry from the accumulator Description The contents of the specified data memory and the complement of the carry flag are sub- tracted from the accumulator. Ieaving the result in the accumulator. Operation ACC \leftarrow ACC + [m]+C Affected flag(s) $\overline{D PDF OV Z AC C} \\ \Box - - V V V V V V V V$	RRCA [m]	Rotate rig	ht through	carry and	place res	ult in the a	ccumulato	r	
ACC.7 \leftarrow C C Affected flag(s) \overrightarrow{TO} PDF OV Z AC C SBC A,[m] Subtract data memory and carry from the accumulator Description The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the accumulator. Operation ACC \leftarrow ACC \leftarrow [m]+C Affected flag(s) \overrightarrow{TO} \overrightarrow{PDF} \overrightarrow{V} $$	Description	the carry bit and the original carry flag is rotated into the bit 7 position. The rotated result is							
TOPDFOVZACCImage: Sign 2 and S	Operation	ACC.7 ←	С	n].i:bit i of	the data r	nemory (i=	=0~6)		
SBC A,[m] Subtract data memory and carry from the accumulator Description The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the accumulator. Operation ACC \leftarrow ACC+(m)+C Affected flag(s) $\overline{10}$ \overline{PDF} \overline{OV} \overline{Z} \overline{AC} \overline{C} SBCM A,[m] Subtract data memory and carry from the accumulator The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory. Operation The contents of the specified data memory and the complement of the carry flag are subtracted finag(s) SDZ [m] Skip if decrement data memory is 0 Description The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction is skipped. If the result is 0, the next instruction (1 cycle). Operation Skip if (m]-1)=0, m] \leftarrow ((m]-1) Affected flag(s) $\overline{10}$ $\overline{2}$ \overline{AC} SDZ [m] Decrement data memory and place result in ACC, skip if 0 $\overline{10}$ $\overline{10}$ $\overline{10}$, where we are accumulator is 0, the next instruction (1 cycle). $\overline{10}$ $\overline{10}$ $\overline{10}$ $\overline{10}$ $\overline{10}$ 1	Affected flag(s)								
SBC A.[m] Subtract data memory and carry from the accumulator Description The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the accumulator. Operation ACC \leftarrow ACC+[m]+C Affected flag(s) $\boxed{10}$ PDF OV Z AC C SBCM A.[m] Subtract data memory and carry from the accumulator. Description The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory. Operation [m] \leftarrow ACC+[m]+C Affected flag(s) $\boxed{10}$ PDF OV Z AC C SDZ [m] Skip if decrement data memory is 0 $\boxed{10}$ The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if (m]-100, [m] \leftarrow ([m]-1) $\boxed{10}$ 10		ТО	PDF	OV	Z	AC			
Description The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the accumulator. Operation ACC \leftarrow ACC $+$ [m]+C Affected flag(s) \overline{TO} \overline{PDF} \overline{OV} \overline{Z} \overline{AC} \overline{C} SBEM A,[m] Subtract data memory and carry from the accumulator \overline{O} \overline{Z} \overline{AC} \overline{C} Description The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory. \overline{O} \overline{D} $\overline{AC} \leftarrow [m] + C$ Affected flag(s) \overline{TO} \overline{PDF} \overline{OV} \overline{Z} \overline{AC} \overline{C} SDZ [m] Skip if decrement data memory is 0 \overline{O} \overline{Z} \overline{AC} \overline{C} Sbescription The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction is skipped. If the result is 0, the following instruction (1 cycle). \overline{O} Operation Skip if ([m]-1)=0, [m] \leftarrow ([m]-1) \overline{TO} \overline{P} \overline{AC} \overline{C} Affected flag(s) Decrement data memory and place result in ACC, skip i 0 \overline{O}				_			v		
tracted from the accumulator, leaving the result in the accumulator.OperationACC \leftarrow ACC+[m]+CAffected flag(s) \overline{U} </td <td>SBC A,[m]</td> <td>Subtract of</td> <td>data memo</td> <td>ry and car</td> <td>ry from the</td> <td>e accumul</td> <td>ator</td> <td></td> <td></td>	SBC A,[m]	Subtract of	data memo	ry and car	ry from the	e accumul	ator		
Affected flag(s) \overrightarrow{TO} PDFOVZACC \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} SBCM A,[m]Subtract data memory and carry from the accumulatorDescriptionThe contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory.Operation $[m] \leftarrow ACC+[m]+C$ Affected flag(s) \overrightarrow{TO} \overrightarrow{PDF} \overrightarrow{OV} \overrightarrow{Z} \overrightarrow{AC} \overrightarrow{C} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} SDZ [m]Skip if decrement data memory is 0DescriptionThe contents of the specified data and durmy cycle is replaced to get the proper instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a durmy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s) \overrightarrow{TO} \overrightarrow{PDF} SDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction is skipped. The result is 0, the following instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s)To contents of the specified data memory are decremented by 1. If the result is 0, the next instruction exec	Description			•		•		•	lag are sub-
TOPDFOVZACCSBCM A,[m]Subtract data memory and carry from the accumulatorDescriptionThe contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory.Operation[m] \leftarrow ACC+[m]+CAffected flag(s)TOPDFOVZACCSDZ [m]Skip if decrement data memory is 0DescriptionThe contents of the specified data and durmy cycle is replaced to get the proper instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a durmy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s)TOPDFOVZACCSDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction execution, is discarded and a dummy cycle is replaced to y 1. If the result is 0, the next instruction is skipped. The result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction execution, is discarded	Operation	$ACC \leftarrow A$	CC+[m]+C						
Image: second state is a second state in the second state is a second state is a second state in the second state is a second state t	Affected flag(s)			<u></u>					
SBCM A,[m] Subtract data memory and carry from the accumulator Description The contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory. Operation $[m] \leftarrow ACC+[\overline{m}]+C$ Affected flag(s) \overline{TO} PDF OV Z AC C SDZ [m] Skip if decrement data memory is 0 The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if ([m]-1)=0, [m] \leftarrow ([m]-1) Affected flag(s) \overline{TO} PDF OV Z AC C SDZ [m] Decrement data memory and place result in ACC, skip if 0 Skip if ([m]-1)=0, [m] \leftarrow ([m]-1) Affected flag(s) The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (2 cycles). Otherwise proceed with the next instruction (2 cycles). Otherwise proceed w		TO	PDF				-		
DescriptionThe contents of the specified data memory and the complement of the carry flag are subtracted from the accumulator, leaving the result in the data memory.Operation $[m] \leftarrow ACC+[\overline{m}]+C$ Affected flag(s) $\overline{DOPFOVZAACCCCC}$ SDZ [m]Skip if decrement data memory is 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s) $\overline{TOPPFOVZACCC}$ SDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction (1 cycle).SDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction execution, is discar				V	V	N	N		
tracted from the accumulator, leaving the result in the data memory.Operation $[m] \leftarrow ACC + [m] + C$ Affected flag(s) $\boxed{TO PDF OV Z AC C}{_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ $	SBCM A,[m]	Subtract of	data memo	ry and car	ry from th	e accumul	ator		
Affected flag(s) $\overline{\text{TO} \text{PDF} \text{OV} \textbf{Z} AC C \\ \hline - & \hline & \hline$	Description			•		•		•	lag are sub-
TOPDFOVZACCSDZ [m]Skip if decrement data memory is 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s) TO PDFOVZACCSDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, ACC \leftarrow ([m]-1)Affected flag(s)Skip if ([m]-1)=0, ACC \leftarrow ([m]-1)	Operation	[m] ← AC	C+[m]+C						
SDZ [m]Skip if decrement data memory is 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruc- tion (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s) $\overline{\text{TO} \text{PDF} \text{OV} \text{Z} \text{AC} \text{C} \\ \hline - - - - - - - - - -$	Affected flag(s)								
SDZ [m] Skip if decrement data memory is 0 Description The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if ([m]-1)=0, [m] \leftarrow ([m]-1) Affected flag(s) TO PDF OV Z AC C SDZA [m] Decrement data memory and place result in ACC, skip if 0 Description The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if ([m]-1)=0, ACC \leftarrow ([m]-1) Affected flag(s) Skip if ([m]-1)=0, ACC \leftarrow ([m]-1)		ТО	PDF	OV	Z	AC	С		
DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s) $\overline{TO PDF OV Z AC C}$ $- - -$ SDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cy- cles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, ACC \leftarrow ([m]-1)Affected flag(s)Skip if ([m]-1)=0, ACC \leftarrow ([m]-1)		—	—	\checkmark			\checkmark		
DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, [m] \leftarrow ([m]-1)Affected flag(s) $\overline{TO PDF OV Z AC C}$ $- - -$ SDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cy- cles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, ACC \leftarrow ([m]-1)Affected flag(s)Skip if ([m]-1)=0, ACC \leftarrow ([m]-1)	SDZ [m]	Skip if deo	crement da	ita memor	y is 0				
Affected flag(s) TO PDFOVZACC $ -$ SDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, ACC \leftarrow ([m]-1)Affected flag(s)		The conte instructior instructior	ents of the s n is skipped n execution	pecified da d. If the res , is discard	ata memoi sult is 0, th led and a d	e following dummy cy	g instructio cle is repla	n, fetched during ced to get the pro	g the current
TOPDFOVZACC $ -$ SDZA [m]Decrement data memory and place result in ACC, skip if 0DescriptionThe contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).OperationSkip if ([m]-1)=0, ACC \leftarrow ([m]-1)Affected flag(s)	Operation	Skip if ([m	n]–1)=0, [m] ← ([m]–1)				
SDZA [m] Decrement data memory and place result in ACC, skip if 0 Description The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if ([m]–1)=0, ACC ← ([m]–1) Affected flag(s)	Affected flag(s)								
Description The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if ([m]-1)=0, ACC ← ([m]-1) Affected flag(s)		ТО	PDF	OV	Z	AC	С		
Description The contents of the specified data memory are decremented by 1. If the result is 0, the next instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if ([m]-1)=0, ACC ← ([m]-1) Affected flag(s)				—	_				
instruction is skipped. The result is stored in the accumulator but the data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle). Operation Skip if ([m]-1)=0, ACC ← ([m]-1) Affected flag(s)	SDZA [m]	Decremer	nt data mei	mory and p	place resu	lt in ACC,	skip if 0		
Affected flag(s)	Description	instructior unchange execution	n is skipped ed. If the res , is discard	I. The resu sult is 0, the ed and a c	It is stored e following dummy cy	in the acc instruction cle is repla	cumulator b n, fetched aced to get	out the data mem during the curren	ory remains nt instruction
	Operation	Skip if ([m	n]–1)=0, AC	CC ← ([m]-	-1)				
TO PDF OV Z AC C	Affected flag(s)								
		ТО	PDF	OV	Z	AC	С		
			—	—	—	—	—		

SET [m]	Set data memory						
Description	Each bit of the specified data memory is set to 1.						
Operation	[m] ← FFH						
Affected flag(s)							
	TO PDF OV Z AC C						
SET [m]. i	Set bit of data memory						
Description	Bit i of the specified data memory is set to 1.						
Operation	[m].i ← 1						
Affected flag(s)							
	TO PDF OV Z AC C						
SIZ [m]	Skip if increment data memory is 0						
Description	The contents of the specified data memory are incremented by 1. If the result is 0, the fol- lowing instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).						
Operation	Skip if ([m]+1)=0, [m] ← ([m]+1)						
Affected flag(s)							
0()	TO PDF OV Z AC C						
SIZA [m]	Increment data memory and place result in ACC, skip if 0						
Description	The contents of the specified data memory are incremented by 1. If the result is 0, the next instruction is skipped and the result is stored in the accumulator. The data memory remains unchanged. If the result is 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).						
Operation	Skip if ([m]+1)=0, ACC ← ([m]+1)						
Affected flag(s)							
	TO PDF OV Z AC C						
SNZ [m].i	Skip if bit i of the data memory is not 0						
Description	If bit i of the specified data memory is not 0, the next instruction is skipped. If bit i of the data memory is not 0, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction (2 cycles). Otherwise proceed with the next instruction (1 cycle).						
Operation	Skip if [m].i≠0						
Affected flag(s)							
	TO PDF OV Z AC C						

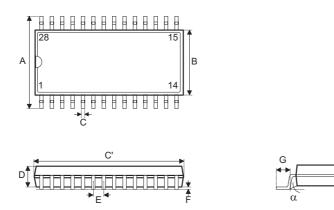
SUB A,[m]	Subtract	data memo	orv from th	e accumul	lator		
Description	The specified data memory is subtracted from the contents of the accumulator, leaving th result in the accumulator.						
Operation	$ACC \leftarrow A$	CC+[m]+1					
Affected flag(s)	[
	ТО	PDF	OV	Z	AC	С	
		_	\checkmark	\checkmark	\checkmark	\checkmark	
SUBM A,[m]	Subtract	data memo	ory from th	e accumul	lator		
Description		ified data n he data me		subtracted	from the o	contents o	
Operation	$[m] \leftarrow AC$	C+[m]+1					
Affected flag(s)							
	то	PDF	OV	Z	AC	C	
		—	V	\checkmark			
SUB A,x	Subtract i	immediate	data from	the accum	nulator		
Description		ediate data ig the resu	•	•		cted from	
Operation	$ACC \leftarrow A$	CC+x+1					
Affected flag(s)							
	ТО	PDF	OV	Z	AC	С	
		_	\checkmark		\checkmark	\checkmark	
SWAP [m]	Swap nib	bles within	the data r	nemory			
Description		order and h	-	nibbles of	the specif	fied data ı	
Operation	[m].3~[m]	.0 ↔ [m].7	′~[m].4				
Affected flag(s)							
	ТО	PDF	OV	Z	AC	С	
		_	_	—		_	
SWAPA [m]	Swap dat	a memory	and place	result in t	he accum	ulator	
Description	The low-c	order and h	igh-order i	nibbles of t	he specifi	ed data m	
	ing the re	sult to the	accumula	tor. The co	ntents of	the data r	
Operation		$CC.0 \leftarrow [n]$					
Affected flag(s)	AUU./~A	.CC.4 ← [n	ııj.3~[m].0				
Affected flag(s)	ТО	PDF	OV	Z	AC	С	
			_			_	
		I					

SZ [m]	Skip if dat	a memory	is 0				
Description				data mem	ory are 0, t	he followi	ng instruction, fetched during
						-	y cycle is replaced to get the
Operation			cycles). C	Inerwise	proceed wi	ith the ne	xt instruction (1 cycle).
Operation Affected flag(s)	Skip if [m]	-0					
Allected llag(s)	ТО	PDF	OV	Z	AC	С]
	_	_		_		_	-
]
SZA [m]	Move data	a memory	to ACC, sł	kip if 0			
Description	0, the follo and a dum	owing instr nmy cycle i	uction, fet	ched durir I to get the	ng the curr	ent instru	accumulator. If the contents is ction execution, is discarded 2 cycles). Otherwise proceed
Operation	Skip if [m]	=0					
Affected flag(s)							1
	ТО	PDF	OV	Z	AC	С	-
	—	—	—			_	
SZ [m].i	Skip if bit	i of the dat	ta memory	is 0			
Description	•				ne following	g instructio	on, fetched during the current
							aced to get the proper instruc-
Onerstien		,	rwise proc	eed with t	he next ins	struction (1 cycle).
Operation	Skip if [m]	.1=0					
Affected flag(s)	ТО	PDF	OV	Z	AC	С]
			_	_			-
TABRDC [m]	Move the	ROM code	e (current p	bage) to T	BLH and d	lata mem	ory
Description			•			•	able pointer (TBLP) is moved to TBLH directly.
Operation	[m] ← RO	•	• •				
	$TBLH \leftarrow F$	ROM code	(high byte	e)			
Affected flag(s)	ТО	PDF	OV	Z	AC	С]
	10		0.	2		0	-
		_		_		_	
TABRDL [m]	Move the	ROM code	e (last pag	e) to TBLH	and data	memory	
Description					ddressed b sferred to T		e pointer (TBLP) is moved to ctly.
Operation	$[m] \leftarrow RO$ TBLH $\leftarrow F$	•	ow byte) (high byte	e)			
Affected flag(s)							-
	то	PDF	OV	Z	AC	С	-
		—	—		—	_	




XOR A,[m]	Logical XO	R accum	ulator with	n data mer	norv	
Description	Data in the sive_OR op	accumul	ator and t	he indicate	ed data m	5.
Operation	$ACC \leftarrow AC$	C "XOR"	' [m]			
Affected flag(s)						
	то	PDF	OV	Z	AC	С
	_	_	_	\checkmark	_	
XORM A,[m]	Logical XOI	R data m	emory wit	h the accu	umulator	
Description	Data in the sive_OR op			5		•
Operation	$[m] \gets ACC$	"XOR" [m]			
Affected flag(s)						
	то	PDF	OV	Z	AC	С
	_	_	_	\checkmark	_	
XOR A,x	Logical XOI	R immed	iate data f	to the accu	umulator	
Description	Data in the a eration. The			•	•	
Operation	$ACC \leftarrow AC$	C "XOR"	x			
Affected flag(s)						
	то	PDF	OV	Z	AC	С

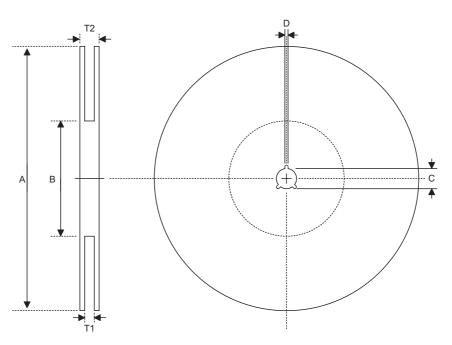
Package Information 28-pin SKDIP (300mil) Outline Dimensions



Symbol	Dimensions in mil						
Symbol	Min.	Nom.	Max.				
А	1375		1395				
В	278	_	298				
С	125		135				
D	125	_	145				
E	16		20				
F	50		70				
G		100	_				
Н	295		315				
I	330		375				
α	0°		15°				

₹H

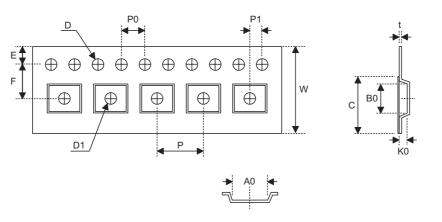
28-pin SOP (300mil) Outline Dimensions



Complete	Dimensions in mil						
Symbol	Min.	Nom.	Max.				
A	394		419				
В	290		300				
С	14		20				
C′	697		713				
D	92	_	104				
E	_	50					
F	4	_	—				
G	32		38				
Н	4	—	12				
α	0°		10°				

Product Tape and Reel Specifications

Reel Dimensions



SOP	28W	(300mil)

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	13.0+0.5 _0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	24.8+0.3 0.2
T2	Reel Thickness	30.2±0.2

Carrier Tape Dimensions

SOP 28W

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	24.0±0.3
Р	Cavity Pitch	12.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	11.5±0.1
D	Perforation Diameter	1.5+0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	10.85±0.1
B0	Cavity Width	18.34±0.1
K0	Cavity Depth	2.97±0.1
t	Carrier Tape Thickness	0.35±0.01
С	Cover Tape Width	21.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233 Tel: 86-21-6485-5560 Fax: 86-21-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District, Shenzhen, China 518057 Tel: 86-755-8616-9908, 86-755-8616-9308 Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office) Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031

Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752 Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)

709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016 Tel: 86-28-6653-6590 Fax: 86-28-6653-6591

Holtek Semiconductor (USA), Inc. (North America Sales Office)

46729 Fremont Blvd., Fremont, CA 94538 Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com

Copyright © 2007 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.