
HT82A822R

USB Audio MCU

Rev. 1.10 1 June 29, 2007

General Description

This HT82A822R is an 8-bit high performance

RISC-like microcontroller designed for USB Speaker

product applications. The HT82A822R combines a

16-bit DAC, USB transceiver, SIE (Serial Interface En-

gine), audio class processing unit, FIFO, 8-bit MCU into

a single chip. The DAC in the HT82A822R is operating

at the 48kHz sampling rate. The HT82A822R has a digi-

tal programmable gain amplifier. The gain range is from

�32dB to +6dB.

The HT82A822R has a Human Interface Device func-

tion that allows a user to control the playback volume at

the device side. The HT82A822R also can mute the an-

alog output signal by the operation of HID buttons.

Features

� USB 2.0 full speed compatible

� USB spec v1.1 full speed operation and USB audio

device class spec v1.0

� Operating voltage: fSYS= 6MHz/12MHz: 3.3V~5.5V

� Low voltage reset function (3.0V�0.3V)

� High-performance 48kHz sampling rate for audio

playback

� Embedded class AB power amplifier for speaker

driving

� Embedded High Performance 16 bit audio DAC

� Support digital volume control

� HID support which can remote control of playback

volume/mute

� 3 endpoints supported (endpoint 0 included)

� Support 1 Control , 1 Interrupt , 1 Isochronous

transfer

� Total FIFO size are 400 byte (8, 8, 384 for EP0~EP2)

� 4096�15 program memory ROM

� 192�8 MCU type data memory RAM (Bank0)

� 128�8�4 Speaker Out Data RAM (Bank1, Bank2,

Bank3, Bank4)

� 128�8�4 MCU Type General Purpose Data RAM

(Bank5, Bank6, Bank7, Bank8)

� HALT function and wake-up feature reduce power

consumption

� 24 bidirectional I/O lines (max.)

� Two 16-bit programmable timer/event counter and

overflow interrupts

� Watchdog Timer

� 16-level subroutine nesting

� Bit manipulation instruction

� 15-bit table read instruction

� 63 powerful instructions

� All instructions in one or two machine cycles

� 48-pin SSOP package

查询HT82A822R_07供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/ic/sell_search.html?keyword=HT82A822R_07
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

Block Diagram

Pin Assignment

HT82A822R

Rev. 1.10 2 June 29, 2007

� � � � � � � �

� � � �

� 	
 � 	 �

� � �

� 	
 � 	 �

�
 � � � � 	

� � � � 	 	 � � �
� � 	 � � � �

� � � � � � � � � � �

� � � �
� �

 	 �

� � � � 	 � � � �
 �
� � � � � � � 	 �

�
�

� � � � 	 � � � �
 �
� � �
 � 	

� � � � � �� ! �

� " � # � � 	� �
 � � �
$ � � � 	 � �
 	

� � � % � � �
� � � % � 	 � � � � & � 	

�
�
�

� �

' � (� � �

� � �

� � �

� �

� � � � % �
� �) * � � +

� � , � - �
. � & & % � � � � % ' � � � � �

� � � � �

� � � �

�
�
�

� / � (0

� / � (0

� � �)

� � �) �

�
�
�

� / � (0

� � �

� � �

� � � � � � 0

� � � � � 1

� � � � � �

� � � � �)

, �

� � , � - � % � � 2 �
� � , � 3

� � , � 4

2 5 5 � 5 - 5 2 % � � � � & � �
 	

� , �

� ,

� � � � % ,
� ,) * � , +

� � �

� �

� � � � % � � �)
� � 5 * � � �

� � � (� � �)

� � 1 (� � � �

. � . �
� � �

� 	
 � � � �

� � � � � � &
2
 & �
 �
�
 � � 	
 &

� 6 4 7 � �
� (�

�
 8 � 	
�
 �

! � � �

� � � �

� � �

� � � % � 	 � � � % � � � �

� � � � � � � � � �

� � � � � � � 	 	
 � � �

� � 5

� � 1

� � �

� �)

� 2 � � 1

� � � �

! � � �

� 2 � � 1

� 2 � � �

, � � �

� 2 � � �

� 2 � � 5

� , +

� , 6

� , �

� , 0

� , 5

� , 1

� , �

� ,)

� � +

� � 6

� � �

� 2 � � 1

� � 0

� � �

� � 6

� � +

� 2 � � �

2 5 5 �

� � , � �

� � , � �

� 2 � � �

� ' � ' �

� � � �

� � � �

� �

� �

� �

� �

� �

� �

� �)

� � �

� � 1

� � 5

� � 0

� 2 � � 1

0 9

0 +

0 6

0 �

0 0

0 5

0 1

0 �

0)

5 :

5 9

5 +

5 6

5 �

5 0

5 5

5 1

5 �

5)

1 :

1 9

1 +

1 6

1 �

�

1

5

0

�

6

+

9

:

�)

� �

� 1

� 5

� 0

� �

� 6

� +

� 9

� :

1)

1 �

1 1

1 5

1 0

Pin Description

Pin No. Pin Name I/O Description

4~1,

48~45
PA0~PA7 I/O

Bidirectional 8-bit input/output port. Each bit can be configured as wake-up input by

mask option. Software instructions determine the CMOS output or Schmitt trigger input

with or without pull-high (by mask option).

5 AVDD2 �
Audio power amplifier positive power supply, AVDD2 should be external connected to

VDD.

6 ROUT O Right driver analog output

7 LOUT O Left driver analog output

8 AVSS2 � Audio power amplifier negative power supply, ground

9 AVSS1 � Audio DAC negative power supply, ground

10 BIAS O Connect a capacitor to ground to increase half-supply stability

11 AVDD1 � Audio DAC positive power supply

12 DVSS3 � Negative digital & I/O power supply, ground

20~13 PB0~PB7 I/O

Bidirectional 8-bit input/output port. Software instructions determine the CMOS output or

Schmitt trigger input with pull-high resistor (determined by pull-high options, nibble op-

tion).

23~21,

30~26
PC0~PC7 I/O

Bidirectional 8-bit input/output port. Software instructions determine the CMOS output or

Schmitt trigger input with pull-high resistor (determined by pull-high options, nibble op-

tion).

24 DVSS2 � Negative digital & I/O power supply, ground

25 DVDD2 � Positive digital & I/O power supply

36~31 NC � No connection

37

38

OSCI

OSCO

I

O

OSCI, OSCO are connected to an 6MHz or 12MHz crystal/resonator (determined by

software instructions) for the internal system clock

39 RESET I Schmitt trigger reset input, active low

40 DVDD1 � Positive digital power supply

41 USBDN I/O
USBDN is USBD- line

USB function is controlled by software control register

42 USBDP I/O
USBDP is USBD+ line

USB function is controlled by software control register

43 V33O O 3.3V regulator output

44 DVSS1 � Negative digital power supply, ground

Absolute Maximum Ratings

Supply VoltageVSS�0.3V to VSS+6.0V Storage Temperature�50�C to 125�C

Input Voltage..............................VSS�0.3V to VDD+0.3V Operating Temperature...........................�40�C to 85�C

IOL Total ..150mA IOH Total..�100mA

Total Power Dissipation500mW

Note: These are stress ratings only. Stresses exceeding the range specified under �Absolute Maximum Ratings� may

cause substantial damage to the device. Functional operation of this device at other conditions beyond those

listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliabil-

ity.

HT82A822R

Rev. 1.10 3 June 29, 2007

D.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage 5V � 3.3 5 5.5 V

IDD Operating Current 5V No load, fSYS=12MHz � 9 � mA

ISTB Standby Current 5V

No load, system HALT,

USB transceiver and 3.3V

regulator on

� 340 � �A

VIL1 Input Low Voltage for I/O Ports 5V � 0 � 0.3VDD V

VIH1 Input High Voltage for I/O Ports 5V � 0.7VDD � VDD V

VIL2 Input Low Voltage (RESET) 5V � 0 � 0.4VDD V

VIH2 Input High Voltage (RESET) 5V � 0.9VDD � VDD V

IOL I/O Port Sink Current 5V VOL=0.1VDD � 5 � mA

IOH I/O Port Source Current 5V VOH=0.7VDD � �5 � mA

RPH Pull-high Resistance 5V � 30 40 80 k	

VLVR Low Voltage Reset 5V � 2.7 3 3.3 V

VV33O 3.3V Regulator Output 5V IV33O=�5mA 3 3.3 3.6 V

DAC+Power Amp:

Test condition: Measurement bandwidth 20Hz to 20kHz, fS= 48kHz. Line output series capacitor with 220�F.

THD+N THD+NNote1 5V
4	 load � �30 �

dB
8	 load � �35 �

SNR Signal to Noise RatioNote1 5V
4	 load � 81 �

dB
8	 load � 82 �

DR Dynamic Range 5V
4	 load � 87 �

dB
8	 load � 88 �

POUT Output Power 5V
4	 load, THD=10% � 400 �

mW/ch
8	 load, THD=10% � 200 �

Note: 1. Sine wave input at 1kHz, �6dB

A.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock (Crystal OSC) 5V � 0.4 � 12 MHz

tWDTOSC Watchdog Oscillator Period 5V � � 100 � �s

tRES RESET Input Pulse Width � � 1 � � �s

tSST System Start-up Timer Period � � � 1024 � tSYS

tINT Interrupt Pulse Width � � 1 � � �s

Note: tSYS=1/fSYS

HT82A822R

Rev. 1.10 4 June 29, 2007

HT82A822R

Rev. 1.10 5 June 29, 2007

Functional Description

Execution Flow

The system clock for the micro-controller is from a crys-

tal oscillator. The system clock is internally divided into

four non-overlapping clocks. One instruction cycle con-

sists of four system clock cycles.

Instruction fetching and execution are pipelined in such

a way that a fetch takes an instruction cycle while de-

coding and execution takes the next instruction cycle.

However, the pipelining scheme causes each instruc-

tion to be effectively executed in a cycle. If an instruction

changes the program counter, two cycles are required to

complete the instruction.

Program Counter � PC

The program counter (PC) controls the sequence in

which the instructions stored in the program ROM are

executed and its contents specify a full range of pro-

gram memory.

After accessing a program memory word to fetch an in-

struction code, the contents of the program counter are

incremented by one. The program counter then points to

the memory word containing the next instruction code.

When executing a jump instruction, conditional skip ex-

ecution, loading to the PCL register, performing a sub-

routine call or return from subroutine, initial reset,

internal interrupt, external interrupt or return from inter-

rupts, the PC manipulates the program transfer by load-

ing the address corresponding to each instruction.

The conditional skip is activated by instructions. Once

the condition is met, the next instruction, fetched during

the current instruction execution, is discarded and a

dummy cycle replaces it to get the proper instruction.

Otherwise proceed with the next instruction.

The lower byte of the program counter (PCL) is a read-

able and writeable register (06H). Moving data into the

PCL performs a short jump. The destination will be

within the current program ROM page.

When a control transfer takes place, an additional

dummy cycle is required.

� � � 1 � 5 � 0 � � � 1 � 5 � 0 � � � 1 � 5 � 0

. � � � " % � � � � % ; � � <

' = � � � � � % � � � � % ; � � 4 � < . � � � " % � � � � % ; � � 3 � <

' = � � � � � % � � � � % ; � � < . � � � " % � � � � % ; � � 3 1 <

' = � � � � � % � � � � % ; � � 3 � <

� � � � 3 � � � 3 1

� � � � �
 % � &
 � >

� � � 1 % ; � � %
 � & � <

� �

Execution Flow

Mode
Program Counter

*11 *10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0

External Interrupt 0 0 0 0 0 0 0 0 0 1 0 0

Timer/Event Counter 0 Overflow 0 0 0 0 0 0 0 0 1 0 0 0

Timer/Event Counter 1 Overflow 0 0 0 0 0 0 0 0 1 1 0 0

USB Interrupt 0 0 0 0 0 0 0 1 0 0 0 0

Skip Program Counter+2

Loading PCL *11 *10 *9 *8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: *11~*0: Program counter bits S11~S0: Stack register bits

#11~#0: Instruction code bits @7~@0: PCL bits

HT82A822R

Rev. 1.10 6 June 29, 2007

Program Memory � PROM

The program memory is used to store the program in-

structions which are to be executed. It also contains

data, table, and interrupt entries, and is organized into

4096�15 bits, addressed by the program counter and ta-

ble pointer.

Certain locations in the program memory are reserved

for special usage:

� Location 000H

This area is reserved for program initialization. After a

chip reset, the program always begins execution at lo-

cation 000H.

� Location 004H

This area is reserved for the USB interrupt service

program. If the USB interrupt is activated, the interrupt

is enabled and the stack is not full, the program begins

execution at location 004H.

� Location 008H

This area is reserved for the Timer/Event Counter 0 in-

terrupt service program. If a timer interrupt results

from a Timer/Event Counter 0 overflow, and if the in-

terrupt is enabled and the stack is not full, the program

begins execution at location 008H.

� Location 00CH

This location is reserved for the Timer/Event Counter

1 interrupt service program. If a timer interrupt results

from a Timer/Event Counter 1 overflow, and the inter-

rupt is enabled and the stack is not full, the program

begins execution at location 00CH.

� Table location

Any location in the program memory can be used as

look-up tables. There are three method to read the

ROM data by two table read instructions: �TABRDC�

and �TABRDL�, transfer the contents of the

lower-order byte to the specified data memory, and

the higher-order byte to TBLH (08H).

Only the destination of the lower-order byte in the ta-

ble is well-defined, the other bits of the table word are

transferred to the lower portion of TBLH, and the re-

maining 1-bit words are read as �0�. The Table

Higher-order byte register (TBLH) is read only. The ta-

ble pointer (TBLP, TBHP) is a read/write register (07H,

1FH), which indicates the table location. Before ac-

cessing the table, the location must be placed in the

TBLP and TBHP (If the OTP option TBHP is disabled,

the value in TBHP has no effect). The TBLH is read

only and cannot be restored. If the main routine and

the ISR (Interrupt Service Routine) both employ the

table read instruction, the contents of the TBLH in the

main routine are likely to be changed by the table read

instruction used in the ISR. Errors can occur. In other

words, using the table read instruction in the main rou-

tine and the ISR simultaneously should be avoided.

However, if the table read instruction has to be applied

in both the main routine and the ISR, the interrupt

should be disabled prior to the table read instruction. It

will not be enabled until the TBLH has been backed

up. All table related instructions require two cycles to

complete the operation. These areas may function as

normal program memory depending on the require-

ments.

Stack Register � STACK

This is a special part of the memory which is used to

save the contents of the program counter only. The

stack is organized into 16 levels and is neither part of the

data nor part of the program space, and is neither read-

able nor writeable. The activated level is indexed by the

stack pointer (SP) and is neither readable nor writeable.

At a subroutine call or interrupt acknowledge signal, the

contents of the program counter are pushed onto the

stack. At the end of a subroutine or an interrupt routine,

signaled by a return instruction (RET or RETI), the pro-

. . . ?

� . . ?

� 	
 � 	 �

� �

 	 �

!

 > 4 � � % � � 7 & � % ; 1 � 6 % �
 	 � <

!

 > 4 � � % � � 7 & � % ; 1 � 6 % �
 	 � <

�
 � � @ % � % 	 � � � � � % # 	

 %) % �
 % .

)) 9 ?

�)) ?

� � A � � � % � � � � � � & � B � � �
 � % � 	
 � 	 �

� � , % � � � � 	 	 � � � % � � 7 	
 � � � � �
)) 0 ?

))) ?

� �
 � 	 (' A � � � % �
 � � � � 	 %)
� � � � 	 	 � � � % � � 7 	
 � � � � � %

)) � ? � �
 � 	 (' A � � � % �
 � � � � 	 % �
� � � � 	 	 � � � % � � 7 	
 � � � � � %

� � % , � � �

Program Memory

Instruction
Table Location

*11 *10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0

TABRDC [m] P11 P10 P9 P8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: *11~*0: Table location bits P11~P8: Current program counter bits when TBHP is disabled

@7~@0: Table pointer bits TBHP register bit3~bit0 when TBHP is enabled

HT82A822R

Rev. 1.10 7 June 29, 2007

gram counter is restored to its previous value from the

stack. After a chip reset, the SP will point to the top of the

stack.

If the stack is full and a non-masked interrupt takes

place, the interrupt request flag will be recorded but the

acknowledge signal will be inhibited. When the stack

pointer is decremented (by RET or RETI), the interrupt

will be serviced. This feature prevents stack overflow al-

lowing the programmer to use the structure more easily.

In a similar case, if the stack is full and a �CALL� is sub-

sequently executed, stack overflow occurs and the first

entry will be lost (only the most recent 16 return ad-

dresses are stored).

Data Memory � RAM

The data memory (RAM) is designed with 192�8 bits.

The data memory is divided into two functional groups:

namely; special function registers 54�8 bits and general

purpose data memory, Bank0: 192�8 bits, Bank1~

Bank4: 128�8�4 bits (Read Only), Bank5~Bank8:

128�8�4 bits. Most are read/write, but some are read

only.

The special function registers include the indirect ad-

dressing registers (R0;00H, R1;02H), Bank register (BP,

04H), Timer/Event Counter 0 higher order byte register

(TMR0H;0CH), Timer/Event Counter 0 lower order byte

register (TMR0L;0DH), Timer/Event Counter 0 control

register (TMR0C;0EH), Timer/Event Counter 1 higher

order byte register (TMR1H;0FH), Timer/Event Counter

1 lower order byte register (TMR1L;10H), Timer/Event

Counter 1 control register (TMR1C;11H), program coun-

ter lower-order byte register (PCL;06H), memory pointer

registers (MP0;01H, MP1;03H), accumulator

(ACC;05H), table pointer (TBLP;07H, TBHP;1FH), table

higher-order byte register (TBLH;08H), status register

(STATUS;0AH), interrupt control register0

(INTC0;0BH), Watchdog Timer option setting register

(WDTS;09H), I/O registers (PA;12H), I/O control regis-

ters (PAC;13H). Digital Volume Control Register

(USVC;1CH). USB speaker flag register (USF;1DH),

USB status and control register (USC;20H), USB end-

point interrupt status register (USR;21H), system clock

control register (UCC;22H). Address and remote

wakeup register (AWR;23H), STALL register(24H),

SIES register (25H), MISC register(26H), SETIO regis-

ter(27H), FIFO0~FIFO2 register (28H~2AH).

DAC_Limit_L register (2DH), DAC_Limit_H register

(2EH), DAC_WR register (2FH).

The remaining space before the 40H is reserved for fu-

ture expanded usage and reading these locations will

get �00H�. The general purpose data memory, ad-

dressed from 40H to FFH, is used for data and control

information under instruction commands.

All of the data memory areas can handle arithmetic,

logic, increment, decrement and rotate operations di-

rectly. Except for some dedicated bits, each bit in the

data memory can be set and reset by �SET [m].i� and

�CLR [m].i�. They are also indirectly accessible through

memory pointer registers (MP0 or MP1).

� 0 ?

� , ?

� � ?

� � ?

$ � � � 	 � & % � � 	 �
 � �

� � � � % � � �

; � : 1 % , � � � � <

� . ?

. . ?

1) ?

1 � ?

1 1 ?

1 5 ?

1 0 ?

)) ?

) � ?

) 1 ?

) 5 ?

) 0 ?

) � ?

) 6 ?

) + ?

) 9 ?

) : ?

) � ?

) , ?

) � ?

) � ?

) ' ?

) . ?

�) ?

� � ?

� 1 ?

� 5 ?

� � � 	 � � � % � 	 � � � � � � % � � � � � � � 	 %)

� �)

� � � 	 � � � % � 	 � � � � � � % � � � � � � � 	 % �

� � �

, �

� � �

� � !

� , ! �

� , ! ?

� � � �

� � � � � �

� � � �)

� � �) ?

� � �) !

� � �) �

� � � � ?

� � � � !

� � � � �

� �

� � �

� ,

� , �

� �

� � �

, � � > %) % � � � � � � & % � � � � � � � 	

� � 2 �

1 � ?

1 6 ?

1 + ?

1 9 ?

1 : ?

1 � ?

1 , ?

1 � ?

1 � ?

1 ' ?

1 . ?

5) ?

5 . ?

0) ?

� � �

� � �

� � �

� � �

� � � ! !

� � ' �

� � � �

� ' � � �

. � . �)

. � . � �

. � . � 1

� � � C ! �
 � � C !

� � � C ! �
 � � C ?

� � � C � �

� � .

� ' ?

� , ? �

� � ?

� 6 ?

� + ?

� 9 ?

RAM Mapping

HT82A822R

Rev. 1.10 8 June 29, 2007

Indirect Addressing Register

Locations 00H and 02H are indirect addressing regis-

ters that are not physically implemented. Any read/write

operation on [00H] ([02H]) will access the data memory

pointed to by MP0 (MP1). Reading location 00H (02H)

indirectly will return the result 00H. Writing indirectly re-

sults in no operation.

The function of data movement between two indirect ad-

dressing registers is not supported. The memory pointer

registers (MP0 and MP1) are 8-bit registers used to ac-

cess the RAM by combining corresponding indirect ad-

dressing registers.

Bank Pointer

The bank pointer is used to assign the accessed RAM

bank. When the users want to access the RAM bank 0, a

�0� should be loaded onto BP. RAM locations before

40H in any bank are overlapped.

Accumulator

The accumulator is closely related to ALU operations. It

is also mapped to location 05H of the data memory and

can carry out immediate data operations. The data

movement between two data memory locations must

pass through the accumulator.

Arithmetic and Logic Unit � ALU

This circuit performs 8-bit arithmetic and logic opera-

tions. The ALU provides the following functions:

� Arithmetic operations (ADD, ADC, SUB, SBC, DAA)

� Logic operations (AND, OR, XOR, CPL)

� Rotation (RL, RR, RLC, RRC)

� Increment and Decrement (INC, DEC)

� Branch decision (SZ, SNZ, SIZ, SDZ)

The ALU not only saves the results of a data operation

but also changes the status register.

Status Register � STATUS

This 8-bit register (0AH) contains the zero flag (Z), carry

flag (C), auxiliary carry flag (AC), overflow flag (OV),

power down flag (PDF), and watchdog time-out flag

(TO). It also records the status information and controls

the operation sequence.

With the exception of the TO and PDF flags, bits in the

status register can be altered by instructions like most

other registers. Any data written into the status register

will not change the TO or PDF flag. In addition, opera-

tions related to the status register may give different re-

sults from those intended.

The TO flag can be affected only by a system power-up,

a WDT time-out or executing the �CLR WDT� or �HALT�
instruction. The PDF flag can be affected only by exe-

cuting the �HALT� or �CLR WDT� instruction or during a

system power-up.

The Z, OV, AC and C flags generally reflect the status of

the latest operations.

In addition, upon entering the interrupt sequence or exe-

cuting a subroutine call, the status register will not be

automatically pushed onto the stack. If the contents of

the status are important and if the subroutine can cor-

rupt the status register, precautions must be taken to

save it properly.

Interrupt

The device provides USB interrupt and internal

timer/event counter interrupts. The Interrupt Control

Register0 (INTC0;0BH) contains the interrupt control

bits that are used to set the enable/disable status and in-

terrupt request flags.

Once an interrupt subroutine is serviced, all the other in-

terrupts will be blocked (by clearing the EMI bit). This

scheme may prevent any further interrupt nesting. Other

interrupt requests may occur during this interval but only

Bit No. Label Function

0 C

C is set if an operation results in a carry during an addition operation or if a borrow does not

take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate

through carry instruction.

1 AC
AC is set if an operation results in a carry out of the low nibbles in addition or no borrow from

the high nibble into the low nibble in subtraction; otherwise AC is cleared.

2 Z Z is set if the result of an arithmetic or logic operation is zero; otherwise Z is cleared.

3 OV
OV is set if an operation results in a carry into the highest-order bit but not a carry out of the

highest-order bit, or vice versa; otherwise OV is cleared.

4 PDF
PDF is cleared by a system power-up or executing the �CLR WDT� instruction. PDF is set by

executing the �HALT� instruction.

5 TO
TO is cleared by a system power-up or executing the �CLR WDT� or �HALT� instruction. TO is

set by a WDT time-out.

6~7 � Unused bit, read as �0�

Status (0AH) Register

HT82A822R

Rev. 1.10 9 June 29, 2007

the interrupt request flag is recorded. If a certain inter-

rupt requires servicing within the service routine, the

EMI bit and the corresponding bit of the INTC may be

set to allow interrupt nesting. If the stack is full, the inter-

rupt request will not be acknowledged, even if the re-

lated interrupt is enabled, until the SP is decremented. If

immediate service is desired, the stack must be pre-

vented from becoming full.

All these kinds of interrupts have a wake-up capability.

As an interrupt is serviced, a control transfer occurs by

pushing the program counter onto the stack, followed by

a branch to a subroutine at a specified location in the

program memory. Only the program counter is pushed

onto the stack. If the contents of the register or status

register (STATUS) are altered by the interrupt service

program which corrupts the desired control sequence,

the contents should be saved in advance.

The USB interrupts are triggered by the following USB

events and the related interrupt request flag (USBF; bit

4 of the INTC0) will be set.

� Access of the corresponding USB FIFO from PC

� The USB suspend signal from PC

� The USB resume signal from PC

� USB Reset signal

When the interrupt is enabled, the stack is not full and

the external interrupt is active, a subroutine call to loca-

tion 04H will occur. The interrupt request flag (USBF)

and EMI bits will be cleared to disable other interrupts.

When PC Host access the FIFO of the HT82A822R, the

corresponding request bit of USR is set, and a USB in-

terrupt is triggered. So user can easy to decide which

FIFO is accessed. When the interrupt has been served,

the corresponding bit should be cleared by firmware.

When HT82A822R receive a USB Suspend signal from

Host PC, the suspend line (bit0 of USC) of the

HT82A822R is set and a USB interrupt is also triggered.

When the HT82A822R receives a Resume signal from

the Host PC, the resume line (bit3 of the USC) of the

HT82A822R are set and a USB interrupt is triggered.

Also when HT82A822R receive a Resume signal from

Host PC, the resume line (bit3 of USC) of HT82A822R is

set and a USB interrupt is triggered.

The internal Timer/Event Counter 0 interrupt is initial-

ized by setting the Timer/Event Counter 0 interrupt re-

quest flag (bit 5 of INTC0), caused by a timer 0 overflow.

When the interrupt is enabled, the stack is not full and

the T0F bit is set, a subroutine call to location 08H will

occur. The related interrupt request flag (T0F) will be re-

set and the EMI bit cleared to disable further interrupts.

The internal Timer/Even Counter 1 interrupt is initialized

by setting the Timer/Event Counter 1 interrupt request

flag (bit 6 of INTC0), caused by a timer 1 overflow. When

the interrupt is enabled, the stack is not full and the T1F

is set, a subroutine call to location 0CH will occur. The

related interrupt request flag (T1F) will be reset and the

EMI bit cleared to disable further interrupts.

During the execution of an interrupt subroutine, other in-

terrupt acknowledge signals are held until the �RETI� in-

struction is executed or the EMI bit and the related

interrupt control bit are set to 1 (if the stack is not full). To

return from the interrupt subroutine, �RET� or �RETI�
may be invoked. RETI will set the EMI bit to enable an

interrupt service, but RET will not.

Interrupts, occurring in the interval between the rising

edges of two consecutive T2 pulses, will be serviced on

the latter of the two T2 pulses, if the corresponding inter-

rupts are enabled. In the case of simultaneous requests

the following table shows the priority that is applied.

These can be masked by resetting the EMI bit.

No. Interrupt Source Priority Vector

a USB interrupt 1 04H

b Timer/Event Counter 0 overflow 2 08H

c Timer/Event Counter 1 overflow 3 0CH

It is recommended that a program does not use the

�CALL subroutine� within the interrupt subroutine. Inter-

rupts often occur in an unpredictable manner or need to

be serviced immediately in some applications. If only

one stack is left and enabling the interrupt is not well

controlled, the original control sequence will be dam-

aged once the �CALL� operates in the interrupt subrou-

tine.

Bit No. Label Function

0 EMI Controls the master (global) interrupt (1=enable; 0=disable)

1 EUI Controls the USB interrupt (1=enable; 0= disable)

2 ET0I Controls the Timer/Event Counter 0 interrupt (1=enable; 0=disable)

3 ET1I Controls the Timer/Event Counter 1 interrupt (1=enable; 0=disable)

4 USBF USB interrupt request flag (1=active; 0=inactive)

5 T0F Internal Timer/Event Counter 0 request flag (1:active; 0:inactive)

6 T1F Internal Timer/Event Counter 1 request flag (1:active; 0:inactive)

7 � Unused bit, read as �0�

INTC0 (0BH) Register

HT82A822R

Rev. 1.10 10 June 29, 2007

Oscillator Configuration

There is an oscillator circuit in the microcontroller.

This oscillator is designed for system clocks. The HALT

mode stops the system oscillator and ignores an exter-

nal signal to conserve power.

A crystal across OSCI and OSCO is needed to provide

the feedback and phase shift required for the oscillator.

No other external components are required. Instead of a

crystal, a resonator can also be connected between

OSCI and OSCO to get a frequency reference, but two

external capacitors in OSCI and OSCO are required.

The WDT oscillator is a free running on-chip RC oscilla-

tor, and no external components are required. Even if

the system enters the power down mode, the system

clock is stopped, but the WDT oscillator still works. The

WDT oscillator can be disabled by ROM code option to

conserve power.

Watchdog Timer � WDT

The WDT clock source is implemented by a dedicated

RC oscillator (WDT oscillator) or a instruction clock (sys-

tem clock/4). The timer is designed to prevent a soft-

ware malfunction or sequence from jumping to an

unknown location with unpredictable results. The WDT

can be disabled by options. But if the WDT is disabled,

all executions related to the WDT lead to no operation.

When the WDT clock source is selected, it will be first di-

vided by 256 (8-stage) to get the nominal time-out pe-

riod. By invoking the WDT prescaler, longer time-out

periods can be realized. Writing data to WS2, WS1,

WS0 can give different time-out periods.

The WDT OSC period is typical 65�s. This time-out pe-

riod may vary with temperature, VDD and process varia-

tions. The WDT OSC always works for any operation

mode.

If the instruction clock is selected as the WDT clock

source, the WDT operates in the same manner except in

the halt mode. In the mode, the WDT stops counting and

lose its protecting purpose. In this situation the logic can

only be re-started by external logic. The high nibble and

bit3 of the WDTS are reserved for user defined flags,

which can be used to indicate some specified status.

The WDT overflow under normal operation initializes a

�chip reset� and sets the status bit �TO�. In the HALT

mode, the overflow initializes a �warm reset�, and only

the PC and SP are reset to zero. To clear the contents of

the WDT, there are three methods to be adopted, i.e.,

external reset (a low level to RESET), software instruc-

tion, and a �HALT� instruction. There are two types of

software instructions; �CLR WDT� and the other set

�CLR WDT1� and �CLR WDT2�. Of these two types of

instruction, only one type of instruction can be active at a

time depending on the options �CLR WDT� times selec-

tion option. If the �CLR WDT� is selected (i.e., CLR WDT

times equal one), any execution of the �CLR WDT� in-

struction clears the WDT. In the case that �CLR WDT1�

and �CLR WDT2� are chosen (i.e., CLR WDT times

equal two), these two instructions have to be executed

to clear the WDT; otherwise, the WDT may reset the

chip due to time-out.

� 	 � � � � & % � � � � & & � �
 	

� � � �

� � � �

System Oscillator

� � � � �
 % � &
 � > (0 9 4 7 � � % �
 � � � � 	

� � � % � 	 � � � � & � 	

+ 4 7 � � % �
 � � � � 	

9 4 �
 4 � % � � �

� � � % � �
 � 4
 � �

� �) * � � 1

� � � >

� � � �
 �

� � & � � �

� � � % � � �

Watchdog Timer

Bit No. Label Function

0

1

2

WS0

WS1

WS2

Watchdog Timer division ratio selection bits

Bit 2,1,0 = 000, division ratio = 1:1

Bit 2,1,0 = 001, division ratio = 1:2

Bit 2,1,0 = 010, division ratio = 1:4

Bit 2,1,0 = 011, division ratio = 1:8

Bit 2,1,0 = 100, division ratio = 1:16

Bit 2,1,0 = 101, division ratio = 1:32

Bit 2,1,0 = 110, division ratio = 1:64

Bit 2,1,0 = 111, division ratio = 1:128

3 � Unused bit, read as �0�

7~4 T3~T0
Test mode setting bits

(T3, T2, T1, T0)=(0, 1, 0, 1), enter DAC write mode. Otherwise normal operation.

WDTS (09H) Register

HT82A822R

Rev. 1.10 11 June 29, 2007

Power Down Operation � HALT

The HALT mode is initialized by the �HALT� instruction

and results in the following:

� The system oscillator will be turned off but the WDT

oscillator remains running (if the WDT oscillator is se-

lected).

� The contents of the on-chip RAM and registers remain

unchanged.

� The WDT and WDT prescaler will be cleared and re-

counted again (if the WDT clock is from the WDT os-

cillator).

� All of the I/O ports remain in their original status.

� The PDF flag is set and the TO flag is cleared.

The system can leave the HALT mode by means of an

external reset, an interrupt, an external falling edge sig-

nal on port A or a WDT overflow. An external reset

causes a device initialization and the WDT overflow per-

forms a �warm reset�. After the TO and PDF flags are

examined, the cause for chip reset can be determined.

The PDF flag is cleared by a system power-up or exe-

cuting the �CLR WDT� instruction and is set when exe-

cuting the �HALT� instruction. The TO flag is set if the

WDT time-out occurs, and causes a wake-up that only

resets the program counter and SP; the others remain in

their original status.

The port A wake-up and interrupt methods can be con-

sidered as a continuation of normal execution. Each bit

in port A can be independently selected to wake-up the

device by mask option. Awakening from an I/O port stim-

ulus, the program will resume execution of the next in-

struction. If it awakens from an interrupt, two sequence

may occur. If the related interrupt is disabled or the inter-

rupt is enabled but the stack is full, the program will re-

sume execution at the next instruction. If the interrupt is

enabled and the stack is not full, the regular interrupt re-

sponse takes place. If an interrupt request flag is set to

�1� before entering the HALT mode, the wake-up func-

tion of the related interrupt will be disabled. Once a

wake-up event occurs, it takes 1024 tSYS (system clock

period) to resume normal operation. In other words, a

dummy period will be inserted after a wake-up. If the

wake-up results from an interrupt acknowledge signal,

the actual interrupt subroutine execution will be delayed

by one or more cycles. If the wake-up results in the next

instruction execution, this will be executed immediately

after the dummy period is finished.

To minimize power consumption, all the I/O pins should

be carefully managed before entering the HALT status.

Reset

Thereare fourways inwhicharesetcanoccur:

� RES reset during normal operation

� RES reset during HALT

� WDT time-out reset during normal operation

� USB reset

The WDT time-out during HALT is different from other

chip reset conditions, since it can perform a �warm re -

set� that resets only the program counter and SP, leav-

ing the other circuits in their original state. Some regis-

ters remain unchanged during other reset conditions.

Most registers are reset to the �initial condition� when

the reset conditions are met. By examining the PDF and

TO flags, the program can distinguish between different

�chip resets�.

TO PDF RESET Conditions

0 0 RESET reset during power-up

u u RESET reset during normal operation

0 1 RESET wake-up HALT

1 u WDT time-out during normal operation

1 1 WDT wake-up HALT

Note: �u� stands for �unchanged�

To guarantee that the system oscillator is started and

stabilized, the SST (System Start-up Timer) provides an

extra delay of 1024 system clock pulses when the sys-

tem resets (power-up, WDT time-out or RES reset) or

the system awakes from the HALT state.

When a system reset occurs, the SST delay is added

during the reset period. Any wake-up from HALT will en-

able the SST delay.

2 � �

� ' � ' �

Reset Circuit

� � 	
 % � � � � �

� � �

? � ! �

�
 &
� � � � �

� ' � ' �

� � � � �
 % � � � � �

� � �
�) 4 7 � � % � � � � & �

�
 � � � � 	
� � � �

Reset Configuration

� � � �
� ' �

2 � �

� � � % � �
 � 4
 � �

� " � � % % � � � � �

Reset Timing Chart

HT82A822R

Rev. 1.10 12 June 29, 2007

The functional unit chip reset status are shown below.

Program Counter 000H

Interrupt Disable

WDT Clear. After master reset, WDT begins counting

Timer/event Counter Off

Input/output Ports Input mode

Stack Pointer Points to the top of the stack

The registers status are summarized in the following table.

Register
Reset

(Power On)

WDT
Time-out
(Normal

Operation)

RES Reset
(Normal

Operation)

RES Reset
(HALT)

WDT
Time-Out
(HALT)*

USB-Reset
(Normal)

USB-Reset
(HALT)

MP0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

MP1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

ACC xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

Program

Counter
000H 000H 000H 000H 000H 000H 000H

TBLP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TBLH -xxx xxxx -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu

WDTS 0000 0111 0000 0111 0000 0111 0000 0111 uuuu uuuu 0000 0111 0000 0111

STATUS --00 xxxx --1u uuuu --uu uuuu --01 uuuu --11 uuuu --uu uuuu --01 uuuu

INTC0 -000 0000 -000 0000 -000 0000 -000 0000 -uuu uuuu -000 0000 -000 0000

TMR0H xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0L xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0C 00-0 1000 00-0 1000 00-0 1000 00-0 1000 uu-u uuuu 00-0 1000 00-0 1000

TMR1H xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR1L xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR1C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- 00-0 1--- 00-0 1---

PA 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PAC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PB 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PBC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PCC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

USC 1000 0000 uuxx uuuu 10xx 0000 10xx 0000 10xx uuuu 1000 0u00 1000 0u00

USR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 00uu 0000 00uu 0000

UCC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0u00 u000 0u00 u000

USF 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0uu0 00uu 0uu0 00uu

AWR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

STALL 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

SIES 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0u00 u000 0u00 u000

MISC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

SETIO xxxx x010 xxxx x010 xxxx x010 xxxx x010 xxxx x010 xxxx x010 xxxx x010

FIFO0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

HT82A822R

Rev. 1.10 13 June 29, 2007

Register
Reset

(Power On)

WDT
Time-out
(Normal

Operation)

RES Reset
(Normal

Operation)

RES Reset
(HALT)

WDT
Time-Out
(HALT)*

USB-Reset
(Normal)

USB-Reset
(HALT)

FIFO1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

FIFO2 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

DAC_LIMIT_L 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

DAC_LIMIT_H 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

DAC_WR 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

Note: �*� stands for �warm reset�
�u� stands for �unchanged�
�x� stands for �unknown�
�_� stands for �undefined�

Timer/Event Counter

Two timer/event counters (TMR0, TMR1) are imple-

mented in the microcontroller. The timer/event counter

0/1 contains a 16-bit programmable count-up counter

and the clock may come from an external source or an

internal clock source. An internal clock source comes

from fSYS/4. The external clock input allows the user to

count external events, measure time intervals or pulse

widths, or to generate an accurate time base. There are

six registers related to the Timer/Event Counter 0;

TMR0H (0CH), TMR0L (0DH), TMR0C (0EH) and the

Timer/Event Counter 1; TMR1H (0FH), TMR1L (10H),

TMR1C (11H). For 16-bit timer to write data to TMR0/1L

will only put the written data to an internal lower-order

byte buffer (8-bit) and writing TMR0/1H will transfer the

specified data and the contents of the lower-order byte

buffer to TMR0/1H and TMR0/1L registers. The

Timer/Event Counter 0/1 preload register is changed by

each writing TMR0/1H operations. Reading TMR0/1H

will latch the contents of TMR0/1H and TMR0/1L coun-

ters to the destination and the lower-order byte buffer,

respectively. Reading the TMR0/1L will read the con-

tents of the lower-order byte buffer. The TMR0/1C is the

Timer/Event Counter 0/1 control register, which defines

the operating mode, counting enable or disable and an

active edge.

The TM0 and TM1 bits define the operation mode. The

event count mode is used to count external events,

which means that the clock source is from an external

(TMR0, TMR1) pin. The timer mode functions as a nor-

mal timer with the clock source coming from the internal

clock source. Finally, the pulse width measurement

mode can be used to count the high level or low level du-

ration of the external signal (TMR0, TMR1), and the

counting is based on the internal clock source.

In the event count or timer mode, the timer/event coun-

ter starts counting at the current contents in the

timer/event counter and ends at FFFFH. Once an over-

flow occurs, the counter is reloaded from the timer/event

counter preload register, and generates an interrupt re-

quest flag (T0F; bit 5 of INTC0, T1F; bit 6 of INTC0). In

the pulse width measurement mode with the values of

the TON and TE bits equal to 1, after the TMR0 (TMR1)

has received a transient from low to high (or high to low if

the TE bit is �0�), it will start counting until the TMR0

(TMR1) returns to the original level and resets the TON.

The measured result remains in the timer/event counter

even if the activated transient occurs again. In other

words, only 1-cycle measurement can be made until the

TON is set. The cycle measurement will re-function as

long as it receives further transient pulse. In this opera-

tion mode, the timer/event counter begins counting not

according to the logic level but to the transient edges. In

the case of counter overflows, the counter is reloaded

from the timer/event counter register and issues an in-

terrupt request, as in the other two modes, i.e., event

and timer modes.

To enable the counting operation, the Timer ON bit

(TON; bit 4 of TMR0C or TMR1C) should be set to 1. In

the pulse width measurement mode, TON is automati-

cally cleared after the measurement cycle is completed.

But in the other two modes, the TON can only be reset

by instructions. The overflow of the Timer/Event Coun-

ter 0/1 is one of the wake-up sources. No matter what

the operation mode is, writing a 0 to ET0I or ET1I dis-

ables the related interrupt service.

In the case of timer/event counter OFF condition, writing

data to the timer/event counter preload register also re-

loads that data to the timer/event counter. But if the

timer/event counter is turn on, data written to the

timer/event counter is kept only in the timer/event coun-

ter preload register. The timer/event counter still contin-

ues its operation until an overflow occurs.

When the timer/event counter (reading TMR0/TMR1) is

read, the clock is blocked to avoid errors, as this may re-

sults in a counting error. Blocking of the clock should be

taken into account by the programmer.

HT82A822R

Rev. 1.10 14 June 29, 2007

Bit No. Label Function

0~2, 5 � Unused bit, read as �0�

3 TE

Defines the TMR active edge of the timer/event counter

In Event counter mode (TM1, TM0)=(0, 1):

1=count on falling edge;

0=count on rising edge

In Pulse width measurement mode (TM1, TM0)=(1, 1):

1=start counting on the rising edge, stop on the falling edge;

0=start counting on the falling edge, stop on the rising edge

4 TON Enable/disable the timer counting (0=disable; 1=enable)

6

7

TM0

TM1

Defines the operating mode

01=Event count mode (external clock)

10=Timer mode (internal clock)

11=Pulse width measurement mode

00=Unused

TMRC (11H) Register

� � �
� �)

� � �) (�

� '

� � �
� �)
� � �

� � & � � % � � � "
� � � � � 	 �
 � � �
�
 � % �
 � � 	
 &

� 6 % , � � �
� �
 � 	 (' A � � � % �
 � � � � 	
� 	 � &
 � % � � � � � � � 	

� � � � % , � �

� � &
 �

� A � 	 # &
 8
�
 % � � � � 	 	 � � �

� / � (0

� 6 % , � � �
� �
 � 	 (' A � � � % �
 � � � � 	

; � � �) (� <

� � �

Timer/Event Counter 0/1

Input/Output Ports

There are 24 bidirectional input/output lines in the mi-

cro-controller, labeled from PA to PC, which are mapped

to the data memory of [12H], [14H] or [16H], respec-

tively. All of these I/O ports can be used for input and

output operations. For input operation, these ports are

non-latching, that is, the inputs must be ready at the T2

rising edge of instruction �MOV A,[m]� (m=12H, 14H or

16H). For output operation, all the data is latched and re-

mains unchanged until the output latch is rewritten.

Each I/O line has its own control register (PAC, PBC or

PCC) to control the input/output configuration. With this

control register, CMOS output or Schmitt trigger input

with or without pull-high resistor structures can be re-

configured dynamically (i.e. on-the-fly) under software

control. To function as an input, the corresponding latch

of the control register must write �1�. The input source

also depends on the control register. If the control regis-

ter bit is �1� the input will read the pad state. If the control

register bit is �0� the contents of the latches will move to

the internal bus. The latter is possible in the

�Read-modify-write� instruction. For output function,

CMOS configurations can be selected. These control

registers are mapped to locations 13H, 15H or 17H.

After a chip reset, these input/output lines remain at high

levels or floating state (depending on the pull-high op-

tions). Each bit of these input/output latches can be set

or cleared by �SET [m].i� and �CLR [m].i� (m=12H, 14H

or 16H) instructions.

Some instructions first input data and then follow the

output operations. For example, �SET [m].i�, �CLR

[m].i�, �CPL [m]�, �CPLA [m]� read the entire port states

into the CPU, execute the defined operations

(bit-operation), and then write the results back to the

latches or the accumulator.

Each line of port A has the capability of waking-up the

device.

It is recommended that unused or not bonded out I/O

lines should be set as output pins by software instruction

to avoid consuming power under input floating state.

HT82A822R

Rev. 1.10 15 June 29, 2007

Low Voltage Reset � LVR (by ROM Code Option)

The LVR option is 3.0V.

The microcontroller provides low voltage reset circuit in

order to monitor the supply voltage of the device. If the

supply voltage of the device is within the range

0.9V~VLVR such as changing a battery, the LVR will au-

tomatically reset the device internally.

The LVR includes the following specifications:

� The low voltage (0.9V~VLVR) has to remain in their

original state to exceed 1ms. If the low voltage state

does not exceed 1ms, the LVR will ignore it and do not

perform a reset function.

� The LVR uses the �OR� function with the external

RESET signal to perform chip reset.

Suspend Wake-Up and Remote Wake-Up

If there is no signal on the USB bus for over 3ms, the

HT82A822R will go into a suspend mode. The Suspend

line (bit 0 of the USC) will be set to �1� and a USB inter-

rupt is triggered to indicate that the HT82A822R should

jump to the suspend state to meet the USB suspend cur-

rent spec.

In order to meet the suspend current, the firmware

should disable the USB clock by clearing the USBCKEN

(bit3 of the UCC) to �0�.

Also the user can further decrease the suspend current

by set the SUSP2 (bit4 of the UCC).

When the resume signal is sent out by the host, the

HT82A822R will wake-up the MCU by USB interrupt

and the Resume line (bit 3 of USC) is set. In order to

make HT82A822R work properly, the firmware must set

the USBCKEN (bit 3 of UCC) to 1 and clear the SUSP2

(bit4 of the UCC). Since the Resume signal will be

cleared before the Idle signal is sent out by the host and

the Suspend line (bit 0 of USC) is going to �0�. So when

the MCU is detecting the Suspend line (bit0 of USC), the

Resume line should be remembered and token into con-

sideration. The following is the timing diagram:

The device with remote wake up function can wake-up

the USB Host by sending a wake-up pulse through

RMWK (bit 1 of USC). Once the USB Host receive the

wake-up signal from HT82A822R, it will send a Resume

signal to device. The timing as follow:

2 � �

� �) * � � +
� ,) * � , +
� �)
� � � (� � �)
� � 1 (� � � �
� � 5 * � � +

�
�
�

� � � > % � � � �
 �

� � � % � � � � % � � � � � � � 	

�
 � � 	
 & % , � � � � & & 4 " � � "
� � � �
 �

� � � � % , � �

� 	 � � � % �
 � � 	
 & % � � � � � � � 	

� " � � % � � � � �

� � � % �
 � � 	
 & % � � � � � � � 	

� 	 � � � % � � � � % � � � � � � � 	

� � � � % , � �

� � � � �
 % � � > � 4 � � % ; � � %
 � & � <

� � �) % #
 	 % � � �
� � � � % #
 	 % � � 1

� D

� �
�

D

� D

� �
�

D

Input/Output Ports

� � � � ' � �

� � , % � � � �
 � % � � � � � &

� � , C � � �

� � � � ' � �

� � , % � � � �
 � % � � � � � &

� � , C � � �

� � � �

� � � - 1 - �
 �

� � � - % � % � � , % � ! �

HT82A822R

Rev. 1.10 16 June 29, 2007

USB Interface

The HT82A822R have 3 Endpoints (EP0 ~EP2). EP0 supports Control transfer. EP1 supports Interrupt transfer. EP2

supports Isochronous transfer.

These registers, including USC (20H), USR (21H), UCC (22H), AWR (23H), STALL (24H), SIES (25H), MISC (26H),

SETIO (27H), FIFO0 (28H), FIFO1 (29H), FIFO2 (2AH) used for the USB function.

The FIFO size of each FIFO is 8 byte (FIFO0), 8 byte (FIFO1), 384 byte (FIFO2), and total are 400 bytes.

URD (bit7 of USC) is USB reset signal control function definition bit.

Bit No. Label R/W Reset Functions

0 SUSP R 0

Read only, USB suspend indication. When this bit is set to �1� (set

by SIE), it indicates the USB bus enters suspend mode. The USB in-

terrupt is also triggered on changing from low to high of this bit.

1 RMWK R/W 0
USB remote wake-up command. It is set by MCU to force the USB

host leaving the suspend mode.

2 URST R/W 0

USB reset indication. This bit is set/cleared by USB SIE. This bit is

used to detect USB reset event on USB bus. When this bit is set to

�1�, this indicates an USB reset is occurred and an USB interrupt will

be initialized.

3 RESUME R 0

USB resume indication. When the USB leaves suspend mode, this

bit is set to �1� (set by SIE). When the RESUME is set by SIE, an in-

terrupt will be generated to wake-up the MCU. In order to detecting

the suspend state, MCU should set USBCKEN and clear SUSP2 (in

UCC register) to enable the SIE detecting function. The RESUME

will be cleared while the SUSP is going �0�. When MCU is detecting

the SUSP, the RESUME (causes MCU to wake-up) should be re-

membered and token into consideration.

4 V33O R/W 0 0/1: Turn-off/on V33O output

5~6 � � � Undefined bit, read as �0�.

7 URD R/W 1

USB reset signal control function definition

1: USB reset signal will reset MCU

0: USB reset signal cannot reset MCU

USC (20H) Register

The USR (USB endpoint interrupt status register) register is used to indicate which endpoint is accessed and to select

serial bus (USB). The endpoint request flags (EP0F, EP1F, EP2F) are used to indicate which endpoints are accessed. If

an endpoint is accessed, the related endpoint request flag will be set to �1� and the USB interrupt will occur (if USB in-

terrupt is enabled and the stack is not full). When the active endpoint request flag is served, the endpoint request flag

has to be cleared to �0� by software.

Bit No. Label R/W Reset Functions

0 EP0F R/W 0

When this bit is set to �1� (set by SIE). It indicates the endpoint 0 is

accessed and an USB interrupt will occur. When the interrupt has

been served, this bit should be cleared by software.

1 EP1F R/W 0

When this bit is set to �1� (set by SIE). It indicates the endpoint 1 is

accessed and an USB interrupt will occur. When the interrupt has

been served, this bit should be cleared by software.

2 EP2F R/W 0

When this bit is set to �1� (set by SIE). It indicates the endpoint 2 is

accessed and an USB interrupt will occur. When the interrupt has

been served, this bit should be cleared by software.

3~7 � � � Undefined bit, read as �0�.

USR (21H) Register

HT82A822R

Rev. 1.10 17 June 29, 2007

There is a system clock control register implemented to select the clock used in the MCU. This register consists of USB

clock control bit (USBCKEN), second suspend mode control bit (SUSP2) and system clock selection (SYSCLK)

And to define which endpoint FIFO is select by EPS2, EPS1 and EPS0.

Bit No. Label R/W Reset Functions

0~2 EPS0~EPS2 R/W 0

Accessing endpoint FIFO selection, EPS2, EPS1, EPS0:

000: Select endpoint 0 FIFO

001: Select endpoint 1 FIFO

010: Select endpoint 2 FIFO

011: reserved for future expansion, cannot be used

100: reserved for future expansion, cannot be used

101: reserved for future expansion, cannot be used

110: reserved for future expansion, cannot be used

111: reserved for future expansion, cannot be used

If the selected endpoints are not existed, the related functions will be

absent.

3 USBCKEN R/W 0

USB clock control bit. When this bit is set to �1�, it indicates that the

USB clock is enabled.

Otherwise, the USB clock is turned-off.

4 SUSP2 R/W 0

This bit is used for reducing power consumption in suspend mode.

In normal mode, clean this bit to �0�
In HALT mode, set this bit to �1� for reducing power consumption.

5 fSYS24MHz R/W 0

This bit is used to define the MCU system clock comes form external

OSC or system clock comes PLL output 24MHz clock.

0: system clock comes from OSC

1: system clock comes from PLL output 24MHz

6 SYSCLK R/W 0

This bit is used to specify the system clock oscillator frequency used

by MCU.

If a 6MHz crystal oscillator or resonator is used, this bit should be set

to �1�.

If a 12MHz crystal oscillator or resonator is used. this bit should be

cleared to �0�.

UCC (22H) Register

Note: Isochronous endpoint 2 is implemented by hardware, so FIFO2 can not read/write by firmware.

AWR register contains current address and a remote wake up function control bit. The initial value of AWR is �00H�.

The address value extracted from the USB command has not to be loaded into this register until the SETUP stage be-

ing finished.

Bit No. Label R/W Power-on Functions

0 WKEN R/W 0 USB remote-wake-up enable/disable (1/0)

1~7 AD0~AD6 R/W 0 USB device address

AWR (23H) Register

STALL register shows where the corresponding endpoint works properly or not. As soon as the endpoint works improp-

erly, the related bit in the STALL has to be set to �1�. The STALL will be cleared by USB reset signal.

Bit No. Label R/W Power-on Functions

0~2 STL0~STL2 R/W 0
Set by users when related USB endpoints were stalled. They are

cleared by USB reset and Setup Token event.

3~7 STL3~STL7 � 0 Undefined bit, read as �0�.

STALL (24H) Register

HT82A822R

Rev. 1.10 18 June 29, 2007

Bit No. Label R/W Power-on Functions

0 ASET R/W 0

This bit is used to configure the SIE automatically change the device ad-

dress by the value stored in the AWR register. When this bit is set to �1�
by firmware, the SIE will update the device address by the value stored

in the AWR register after PC host is successfully read the data from de-

vice by IN operation. Otherwise, when this bit is cleared to �0�, the SIE

will update the device address immediately after an address is written to

the AWR register. So, in order to work properly, firmware has to clear

this bit after next valid SETUP token is received.

1 ERR R/W 0

This bit is used to indicate there are some errors occurred during the

FIFO0 is accessed. This bit is set by SIE and should be cleared by firm-

ware.

2 OUT R/W 0

This bit is used to indicate there are OUT token (except the OUT zero

length token) has been received. The firmware clears this bit after the

OUT data has been read. Also, this bit will be cleared by SIE after the

next valid SETUP token is received.

3 IN R 0
This bit is used to indicate the current USB receiving signal from PC host

is IN token.

4 NAK R 0
This bit is used to indicate the SIE is transmitted NAK signal to host in re-

sponse to PC host IN or OUT token.

5 CRCF R/W 0

Error condition failure flag include CRC, PID, no integrate token error,

CRCF will be set by hardware and the CRCF need to be cleared by firm-

ware.

6 EOT R 1 Token package active flag, low active.

7 NMI R/W 0

NAK token interrupt mask flag. If this bit set, when device sent a NAK to-

ken to host, the interrupt will not happen. Otherwise when this bit is

cleared, device sent a NAK token to host will enter the interrupt

sub-routine.

SIES (25H) Register

MISC register combines a command and status to control desired endpoint FIFO action and to show the status of

wanted endpoint FIFO. The MISC will be cleared by USB reset signal.

Bit No. Label R/W Power-on Functions

0 REQUEST R/W 0

After setting others status of desired one, FIFO can be requested by set-

ting this bit high active. After work has been done, this bit must be set

low.

1 TX R/W 0

To represent the direction and transition end MCU accesses, When be-

ing set logic 1, MCU wants to write data to FIFO. After the work being

done, this bit must be set logic 0 before terminating request to represent

transition end. For reading action, this bit must be set logic 0 to represent

MCU want to read and must be set logic 1 after the work done.

2 CLEAR R/W 0

To represent MCU clear requested FIFO, even the FIFO is not ready. Af-

ter clearing the FIFO, USB interface will send force_tx_err to tell Host

that data under-run if Host want to read data.

3 � R 0 Undefined bit, read as �0�.

4 ISOEN- R/W 0 To enable the isochronous pipe interrupt.

5 SETCMD R/W 0
To show that the data in FIFO is setup command. This bit will last this

state until next one entering the FIFO.

6 READY R 0 To tell that the desired FIFO is ready to work.

7 LEN0 R 0
To tell that host sent a 0-sized packet to MCU. This bit must be cleared

by read action to corresponding FIFO.

USB MISC (26H) Register

HT82A822R

Rev. 1.10 19 June 29, 2007

Bit No. Label R/W Power-on Functions

0 DATATG* R/W 0 To toggle this bit, all the DATA token will send DATA0 first.

1 SETIO1** R/W 1 Set endpoint1 input or output pipe (1/0), default input pipe(1)

2 SETIO2** R/W 0 Set endpoint2 input or output pipe (1/0), default output pipe(0)

3~7 � � � Reserved

SETIO Register, USB Endpoint 1~Endpoint 2 Set IN/OUT Pipe Register

Note: *USB definition: when host send a �set Configuration�, the Data pipe should send the DATA0 (about the Data

toggle) first. So, when Device received a �set configuration� setup command, user need to toggle this bit for

next data will send a Data0 first.

**Only need to set the data pipe as a input pile or output pile. The purpose of this function is to avoid the host

sent a abnormal IN or OUT token and make the endpoint disability.

Bit No. Label R/W Power-on Functions

0 StartBit** R/W 0 Start load new iso data from FIFO, if ready the FullBit will be set

1 FullBit** R/W 0
If the FullBit is set to 1 by system represent the new iso data is load

to Bank1~Bank4

2 ModeSelect R/W 0

RAM Bank1~Bank4 data mode selector

0: Spectrum (R+L)/2

1: L/R

USF (1DH) Register

Reading RAM Bank1~Bank4 Flow Chart

Bit No. Label R/W Power-on Functions

0~6
USVC0~

USVC6
R/W 0 Volume control Bit0~Bit6

7 MUTE R/W 0 Mute control, low active.

USB Speaker Volume Control

� � � 	 � , � � E �

. � & & , � � E �

� � � 	 � , � � E)

� � � % � � � % , � � > � * , � � > 0

' �

/

�

HT82A822R

Rev. 1.10 20 June 29, 2007

� Bank1~Bank4 audio data format (16 bit
 8 bit)

15 14 13~2 1 0 Original 16 bit audio data (2�s complement)

�

15 13 12~9 8 7 Truncate 16 bit audio data to 8-bit

� ModeSelect=0 (Spectrum, (R+L)/2)

� ModeSelect=1 (L/R)

Result (dB) USVC Result (dB) USVC Result (dB) USVC Result (dB) USVC

6 000_1100 �2 111_1100 �10 110_1100 �24 101_1100

5.5 000_1011 �2.5 111_1011 �10.5 110_1011 �25 101_1011

5 000_1010 �3 111_1010 �11 110_1010 �26 101_1010

4.5 000_1001 �3.5 111_1001 �11.5 110_1001 �27 101_1001

4 000_1000 �4 111_1000 �12 110_1000 �28 101_1000

3.5 000_0111 �4.5 111_0111 �13 110_0111 �29 101_0111

3 000_0110 �5 111_0110 �14 110_0110 �30 101_0110

2.5 000_0101 �5.5 111_0101 �15 110_0101 �31 101_0101

2 000_0100 �6 111_0100 �16 110_0100 �32 101_0100

1.5 000_0011 �6.5 111_0011 �17 110_0011 � �

1 000_0010 �7 111_0010 �18 110_0010 � �

0.5 000_0001 �7.5 111_0001 �19 110_0001 � �

0 000_0000 �8 111_0000 �20 110_0000 � �

�0.5 111_1111 �8.5 110_1111 �21 101_1111 � �

�1 111_1110 �9 110_1110 �22 101_1110 � �

�1.5 111_1101 �9.5 110_1101 �23 101_1101 � �

Speaker mute control:

MUTE= 0: Mute speaker output.

MUTE= 1: Normal.

Registers R/W Power-on Functions

FIFO0~

FIFO2
R/W xxH

EPi accessing register (i = 0~2). When an endpoint is disabled, the corresponding

accessing register should be disabled.

USB Endpoint Accessing Registers Definitions

� 1 9 % , � � � �

� 1 9 % , � � � �

� 1 9 % , � � � �

� 1 9 % , � � � �

� � 1 % � �
 � & � �

� � � % , � � > �

� � � % , � � > 1

� � � % , � � > 5

� � � % , � � > 0

1 � 6 % ! � # � % � " � � � � & % � �
 � & � �
� � � % , � � > �

� � � % , � � > 1

� � � % , � � > 5

� � � % , � � > 0

� 1 9 % , � � � � F % ! � # � % � " � � � � &

� 1 9 % , � � � � F % ! � # � % � " � � � � &

� 1 9 % , � � � � F % � � � " � % � " � � � � &

� 1 9 % , � � � � F % � � � " � % � " � � � � &
1 � 6 % � � � " � % � " � � � � & % � �
 � & � �

HT82A822R

Rev. 1.10 21 June 29, 2007

DAC_Limit_L and DAC_Limit_H are used to define the 16-bit DAC output limit. DAC_Limit_L and DAC_Limit_H are un-

signed value. If the 16-bit data from Host over the range defined by DAC_Limit_L and DAC_Limit_H, the output digital

code to DAC will be clamp.

DAC_Limit_L DAC output limit low byte

DAC_Limit_H DAC output limit high byte

Setting DAC output limit value example:

;---

; DAC Limit POR Value=8000H

; Set DAC Limit Value=FF00H

;---

clr [02DH] ; Set DAC Limit low byte=00H

set [02EH] ; Set DAC Limit high byte=FFH

;---

In order to prevent the pop noise of speaker output, power amplifier should be output at the value of VDD/2 (send

8000H to DAC) during the initial power on state. If software set high then clear the bit DAC_WR_TRIG (bit 3 of

DAC_WR register), the value on the DAC_Limit_L and DAC_Limit_H registers will write to DAC.

Bit No. Label R/W Power-on Functions

0~2, 4~7 � R 0 Undefined bit, read as �0�.

3 DAC_WR_TRIG R/W 0 DAC write trigger bit

DAC_WR (2FH) Register

Example to avoid popping noise:

System_Initial:

;---

; Avoid Pop Noise

;---

mov a,WDTS

mov FIFO_TEMP,a ;Save WDTS value

mov a,01010000b

andm a,WDTS

mov a,01010000b

orm a,WDTS ;Enter DAC Write Data mode, high nibble of WDTS=0101b

clr [02DH] ;Set DAC data low byte=00H

mov a,80H

mov [02EH],a ;Set DAC data high byte=80H

nop

;Write 8000H to DAC

set [02FH].3

nop

clr [02FH].3

nop

;---

mov a,FIFO_TEMP ;Restore WDTS value

mov WDTS,a ;Quit DAC Write Data mode

;---

Note: At DAC write data mode (high nibble of WDTS register is 0101b), DAC_Limit_L and DAC_Limit_H registers will

be the 16-bit DAC input data register at falling edge of DAC_WR_TRIG. Otherwise, these two registers are

used to define the 16-bit DAC output limit.

Application Circuits

HT82A822R

Rev. 1.10 22 June 29, 2007

� ' � ' �

� � � � � � � � �

�) � .

� � 5

� � 1

� � �

� �)

� 2 � � 1

� � � �

! � � �

� 2 � � 1

� 2 � � �

, � � �

� 2 � � �

� 2 � � 5

� , +

� , 6

� , �

� , 0

� , 5

� , 1

� , �

� ,)

� � +

� � 6

� � �

� 2 � � 1

� � 0

� � �

� � 6

� � +

� 2 � � �

2 5 5 �

� � , � �

� � , � �

� 2 � � �

� ' � ' �

� � � �

� � � �

� �

� �

� �

� �

� �

� �

� �)

� � �

� � 1

� � 5

� � 0

� 2 � � 1

0 9

0 +

0 6

0 �

0 0

0 5

0 1

0 �

0)

5 :

5 9

5 +

5 6

5 �

5 0

5 5

5 1

5 �

5)

1 :

1 9

1 +

1 6

1 �

�

1

5

0

�

6

+

9

:

�)

� �

� 1

� 5

� 0

� �

� 6

� +

� 9

� :

1)

1 �

1 1

1 5

1 0

� 1 � ? B

) - � � . � � �
� � � � �

�)) > �
, � � % . � 	 	 � � �

, � � % . � 	 	 � � �

� 1

� 1

� �)

� � �

� � 1

� � 5

� � 0

� � 1

� � 5

� � 0

� � �

� � 6

� 1

� 1

� 1

�) � .) - � � ., � � % . � 	 	 � � �

� 2 � � �

� 2 � �

� 2 � �

� 1

�) � .) - � � ., � � % . � 	 	 � � �

� 2 � � 1� 2 � �

�

1

5

0

� � , 4 , % � � � �

0 + � ., � � 0 + � .

5 5 �

5 5 �

� � , � �
� � , � �

�) � .

2 5 5 �� - � > �

� 2 � �

�) � .) - � � .

5 5 �

) - � � .

� 2 � �

� 4

� 3

2 � �

� �

�)) � .

�)) � .

! � � �

� � � �

� 2 � � 1

�

1
5

� "
 � � G � � > % � � � 	 �

H �

H �

! 1

. , �

! 5

� �

1

� � 0

� � �

� � 6

� � +

� 2 � � �

2 5 5 �

� � , � �

� � , � �

� 2 � � �

� � � �

� � � �

� �

� �

� �

� �

� �

� �

� �)

� � �

� � 1

� � 5

� � 0

� 2 � � 1

� � 5

� � 1

� � �

� �)

� 2 � � 1

� � � �

! � � �

� 2 � � 1

� 2 � � �

, � � �

� 2 � � �

� 2 � � 5

� , +

� , 6

� , �

� , 0

� , 5

� , 1

� , �

� ,)

� � +

� � 6

� � �

� 2 � � 1

/ �

! �

! 6

! 0

� 1

�) � .) - � � ., � � % . � 	 	 � � �

� 2 � � 0� 2 � �
! +

0 - + � . + 6 > �

2 � 2 .

� �
 � �
 � �

�

1

5

0

�

6

+

9

:

�)

� �

� 1

� 5

� 0

� �

� 6

� +

� 9

� :

1)

1 �

1 1

1 5

1 0

1 �

1 6

1 +

1 9

1 :

5)

5 �

? � �
2 � ! ' � �

2 � � '

� 2 � � 0

2 � �

� � ' .

� � �

2 � � H

� 2 � � 0

2 .

2 �

� , +

� , 6

� , �

� , 0

� , 5

� , 1

� , �

� ,)

� 2 � � 0

2 � �

� �

� 2 � � 0

� �)

� � �

� � 1

� � 5

� � 0

� 2 � � 0

2 � �

� 2 � � 0

� 2 � � 0

0 + > �

� 2 � � 0

5 5 �

! �

� � �

2 � ! ' � � % % � 1 2

�)) � .) - � � .

�) � .

� - 1 0 22 � � H

0 +) > �

� � > �

� �
� 5

� � ? � � � � / % � � � � '
; � � � 1 <

�
5

0

Configuration Options

The following table shows all kinds of OTP option in the microcontroller. All of the OTP options must be defined to en-

sure proper system functioning.

No. Options

1 PA0~PA7 pull-high resistor enabled or disabled (by bit)

2 LVR enable or disable

3 WDT enable or disable

4 WDT clock source: fSYS/4 or WDTOSC

5 CLRWDT instruction(s): 1 or 2

6 PA0~PA7 wake-up enabled or disabled (by bit)

7 PB0~PB7 pull-high resistor enabled/disabled (by nibble)

8 PC0~PC7 pull-high resistor enabled/disabled (by nibble)

9 TBHP enable or disable (default disable)

HT82A822R

Rev. 1.10 23 June 29, 2007

Instruction Set

Introduction

Central to the successful operat ion of any

microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to

perform certain operations. In the case of Holtek

microcontrollers, a comprehensive and flexible set of

over 60 instructions is provided to enable programmers

to implement their application with the minimum of pro-

gramming overheads.

For easier understanding of the various instruction

codes, they have been subdivided into several func-

tional groupings.

Instruction Timing

Most instructions are implemented within one instruc-

tion cycle. The exceptions to this are branch, call, or ta-

ble read instructions where two instruction cycles are

required. One instruction cycle is equal to 4 system

clock cycles, therefore in the case of an 8MHz system

oscillator, most instructions would be implemented

within 0.5�s and branch or call instructions would be im-

plemented within 1�s. Although instructions which re-

quire one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instruc-

tions, it is important to realize that any other instructions

which involve manipulation of the Program Counter Low

register or PCL will also take one more cycle to imple-

ment. As instructions which change the contents of the

PCL will imply a direct jump to that new address, one

more cycle will be required. Examples of such instruc-

tions would be �CLR PCL� or �MOV PCL, A�. For the

case of skip instructions, it must be noted that if the re-

sult of the comparison involves a skip operation then

this will also take one more cycle, if no skip is involved

then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program

is one of the most frequently used operations. Making

use of three kinds of MOV instructions, data can be

transferred from registers to the Accumulator and

vice-versa as well as being able to move specific imme-

diate data directly into the Accumulator. One of the most

important data transfer applications is to receive data

from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and

data manipulation is a necessary feature of most

microcontroller applications. Within the Holtek

microcontroller instruction set are a range of add and

subtract instruction mnemonics to enable the necessary

arithmetic to be carried out. Care must be taken to en-

sure correct handling of carry and borrow data when re-

sults exceed 255 for addition and less than 0 for

subtraction. The increment and decrement instructions

INC, INCA, DEC and DECA provide a simple means of

increasing or decreasing by a value of one of the values

in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR

and CPL all have their own instruction within the Holtek

microcontroller instruction set. As with the case of most

instructions involving data manipulation, data must pass

through the Accumulator which may involve additional

programming steps. In all logical data operations, the

zero flag may be set if the result of the operation is zero.

Another form of logical data manipulation comes from

the rotate instructions such as RR, RL, RRC and RLC

which provide a simple means of rotating one bit right or

left. Different rotate instructions exist depending on pro-

gram requirements. Rotate instructions are useful for

serial port programming applications where data can be

rotated from an internal register into the Carry bit from

where it can be examined and the necessary serial bit

set high or low. Another application where rotate data

operations are used is to implement multiplication and

division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to

specified locations using the JMP instruction or to a sub-

routine using the CALL instruction. They differ in the

sense that in the case of a subroutine call, the program

must return to the instruction immediately when the sub-

routine has been carried out. This is done by placing a

return instruction RET in the subroutine which will cause

the program to jump back to the address right after the

CALL instruction. In the case of a JMP instruction, the

program simply jumps to the desired location. There is

no requirement to jump back to the original jumping off

point as in the case of the CALL instruction. One special

and extremely useful set of branch instructions are the

conditional branches. Here a decision is first made re-

garding the condition of a certain data memory or indi-

vidual bits. Depending upon the conditions, the program

will continue with the next instruction or skip over it and

jump to the following instruction. These instructions are

the key to decision making and branching within the pro-

gram perhaps determined by the condition of certain in-

put switches or by the condition of internal data bits.

HT82A822R

Rev. 1.10 24 June 29, 2007

Bit Operations

The ability to provide single bit operations on Data Mem-

ory is an extremely flexible feature of all Holtek

microcontrollers. This feature is especially useful for

output port bit programming where individual bits or port

pins can be directly set high or low using either the �SET

[m].i� or �CLR [m].i� instructions respectively. The fea-

ture removes the need for programmers to first read the

8-bit output port, manipulate the input data to ensure

that other bits are not changed and then output the port

with the correct new data. This read-modify-write pro-

cess is taken care of automatically when these bit oper-

ation instructions are used.

Table Read Operations

Data storage is normally implemented by using regis-

ters. However, when working with large amounts of

fixed data, the volume involved often makes it inconve-

nient to store the fixed data in the Data Memory. To over-

come this problem, Holtek microcontrollers allow an

area of Program Memory to be setup as a table where

data can be directly stored. A set of easy to use instruc-

tions provides the means by which this fixed data can be

referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range

of other instructions also exist such as the �HALT� in-

struction for Power-down operations and instructions to

control the operation of the Watchdog Timer for reliable

program operations under extreme electric or electro-

magnetic environments. For their relevant operations,

refer to the functional related sections.

Instruction Set Summary

The following table depicts a summary of the instruction

set categorised according to function and can be con-

sulted as a basic instruction reference using the follow-

ing listed conventions.

Table conventions:

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

HT82A822R

Rev. 1.10 25 June 29, 2007

Mnemonic Description Cycles Flag Affected

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note
None

None

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note
None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the �CLR WDT1� and �CLR WDT2� instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both �CLR WDT1� and

�CLR WDT2� instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC
 ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m]
 ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC
 ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC
 ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m]
 ACC + [m]

Affected flag(s) OV, Z, AC, C

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �AND� [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC
 ACC �AND� x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m]
 ACC �AND� [m]

Affected flag(s) Z

HT82A822R

Rev. 1.10 26 June 29, 2007

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack
 Program Counter + 1

Program Counter
 addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m]
 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i
 0

Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

HT82A822R

Rev. 1.10 27 June 29, 2007

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m]
 [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC
 [m]

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m]
 ACC + 00H or

[m]
 ACC + 06H or

[m]
 ACC + 60H or

[m]
 ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m]
 [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC
 [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO
 0

PDF
 1

Affected flag(s) TO, PDF

HT82A822R

Rev. 1.10 28 June 29, 2007

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m]
 [m] + 1

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC
 [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter
 addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC
 [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC
 x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m]
 ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC
 ACC �OR� [m]

Affected flag(s) Z

HT82A822R

Rev. 1.10 29 June 29, 2007

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �OR� x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m]
 ACC �OR� [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the re-

stored address.

Operation Program Counter
 Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter
 Stack

ACC
 x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the enable master (global) interrupt bit (bit 0; register INTC). If an in-

terrupt was pending when the RETI instruction is executed, the pending Interrupt routine

will be processed before returning to the main program.

Operation Program Counter
 Stack

EMI
 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1)
 [m].i; (i = 0~6)

[m].0
 [m].7

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1)
 [m].i; (i = 0~6)

ACC.0
 [m].7

Affected flag(s) None

HT82A822R

Rev. 1.10 30 June 29, 2007

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1)
 [m].i; (i = 0~6)

[m].0
 C

C
 [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1)
 [m].i; (i = 0~6)

ACC.0
 C

C
 [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i
 [m].(i+1); (i = 0~6)

[m].7
 [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i
 [m].(i+1); (i = 0~6)

ACC.7
 [m].0

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i
 [m].(i+1); (i = 0~6)

[m].7
 C

C
 [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i
 [m].(i+1); (i = 0~6)

ACC.7
 C

C
 [m].0

Affected flag(s) C

HT82A822R

Rev. 1.10 31 June 29, 2007

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result

of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or

zero, the C flag will be set to 1.

Operation ACC
 ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m]
 ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m]
 [m] � 1

Skip if [m] = 0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC
 [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m]
 FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i
 1

Affected flag(s) None

HT82A822R

Rev. 1.10 32 June 29, 2007

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m]
 [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC
 [m] + 1

Skip if ACC = 0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC
 ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m]
 ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC
 ACC � x

Affected flag(s) OV, Z, AC, C

HT82A822R

Rev. 1.10 33 June 29, 2007

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0
 [m].7 ~ [m].4

ACC.7 ~ ACC.4
 [m].3 ~ [m].0

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC
 [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m]
 program code (low byte)

TBLH
 program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m]
 program code (low byte)

TBLH
 program code (high byte)

Affected flag(s) None

HT82A822R

Rev. 1.10 34 June 29, 2007

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �XOR� [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m]
 ACC �XOR� [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC
 ACC �XOR� x

Affected flag(s) Z

HT82A822R

Rev. 1.10 35 June 29, 2007

Package Information

48-pin SSOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 395 � 420

B 291 � 299

C 8 � 12

C� 613 � 637

D 85 � 99

E � 25 �

F 4 � 10

G 25 � 35

H 4 � 12

� 0� � 8�

HT82A822R

Rev. 1.10 36 June 29, 2007

0 9

�

1 �

1 0

� ,

�

�

.

� I
$

?

�
'

Product Tape and Reel Specifications

Reel Dimensions

SSOP 48W

Symbol Description Dimensions in mm

A Reel Outer Diameter 330�1

B Reel Inner Diameter 100�0.1

C Spindle Hole Diameter
13+0.5

�0.2

D Key Slit Width 2�0.5

T1 Space Between Flange
32.2+0.3

�0.2

T2 Reel Thickness 38.2�0.2

HT82A822R

Rev. 1.10 37 June 29, 2007

� �,

� �

� 1
�

Carrier Tape Dimensions

SSOP 48W

Symbol Description Dimensions in mm

W Carrier Tape Width 32�0.3

P Cavity Pitch 16�0.1

E Perforation Position 1.75�0.1

F Cavity to Perforation (Width Direction) 14.2�0.1

D Perforation Diameter 2 Min.

D1 Cavity Hole Diameter 1.5+0.25

P0 Perforation Pitch 4�0.1

P1 Cavity to Perforation (Length Direction) 2�0.1

A0 Cavity Length 12�0.1

B0 Cavity Width 16.2�0.1

K1 Cavity Depth 2.4�0.1

K2 Cavity Depth 3.2�0.1

t Carrier Tape Thickness 0.35�0.05

C Cover Tape Width 25.5

HT82A822R

Rev. 1.10 38 June 29, 2007

�� �

� ��)
�

'

.

�

� 1

,)

�)

�

� �

�

HT82A822R

Rev. 1.10 39 June 29, 2007

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 86-21-6485-5560
Fax: 86-21-6485-0313
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District,
Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752
Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 86-28-6653-6590
Fax: 86-28-6653-6591

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

Copyright � 2007 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life

due to malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.

