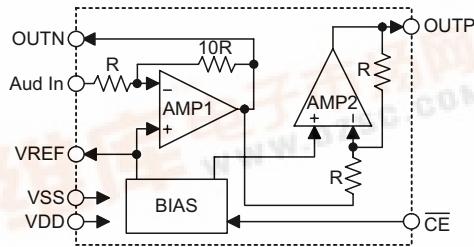


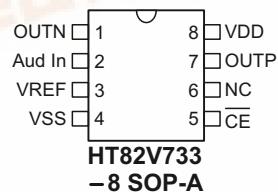
HT82V733

240mA Audio Power Amp

Features


- High signal-to-noise ratio
- High slew rate
- Low distortion
- Large output voltage swing
- Excellent power supply ripple rejection
- Low power consumption
- Short-circuit elimination
- Wide temperature operating range
- No switch ON/OFF clicks
- Low standby current
- Power off control
- Direct drive speaker
- 8-pin SOP package

General Description


HT82V733 is an integrated class AB mono speaker driver contained in an SOP-8 package. The device is

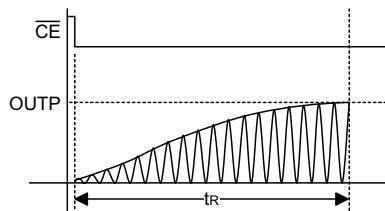
fabricated in a CMOS process and has been primarily developed for portable digital audio applications.

Block Diagram

Pin Assignment

Pin Description

Pin No.	Pin Name	I/O	Description
1	OUTN	O	Negative output
2	Aud In	I	Audio input
3	VREF	O	Speaker non-inverting input voltage reference
4	VSS	—	Negative power supply, ground
5	CE	I	Chip enable, low active
6	NC	—	Not connected
7	OUTP	O	Positive output
8	VDD	—	Positive power supply

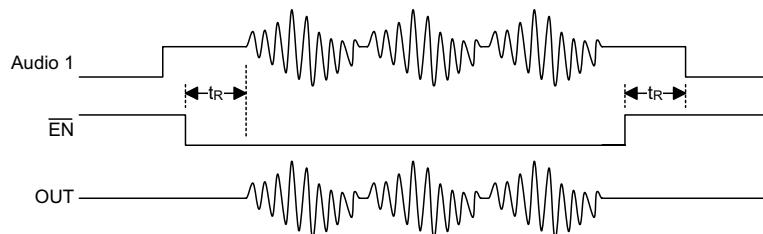

Electrical Characteristics
 $V_{SS}=0V, Ta=25^{\circ}C$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
Supplies							
V_{DD}	Supply Voltage	—	—	2.4	5.0	6.0	V
V_{SS}	Negative Supply Voltage	5V	—	—	0	—	V
I_{STB}	Standby Current	—	—	—	—	1	μA
I_{DD}	Operating Current	—	$V_i=0$, No load	2	4	10	mA
			$V_{P-P}=500mV, f_i=1kHz$ No load	4.8	12.3	23.5	
P_{tot}	Total Power Dissipation	—	$V_{P-P}=500mV, f_i=1kHz$ No load	15	60	140	mW
DC Characteristics							
$V_{I(OS)}$	Input Offset Voltage	5V	—	—	12	—	mV
		3V		—	2.5	—	
I_o	Maximum Output Current (THD+N)/S<1%	5V	Current	—	240	—	mA
		3V	Current	—	160	—	
V_o	Output Voltage Swing (THD+N)/S<1%	5V	$R_L=16\Omega$	1.2	—	4	V
			$R_L=8\Omega$	1.8	—	3.4	
			$R_L=4\Omega$	2.1	—	3	
		3V	$R_L=16\Omega$	0.6	—	2.3	V
			$R_L=8\Omega$	0.9	—	1.9	
			$R_L=4\Omega$	1.1	—	1.7	
PSRR	Power Supply Rejection Ratio	5V	$f_i=100Hz;$ $V_{ripple(p-p)}=100mV$	—	71	—	dB
		3V		—	62	—	
AC Characteristics							
(THD+N)/S	Total Harmonic Distortion Plus Noise-to-signal Ratio	5V	$V_{O(p-p)}=3.5V$ $R_L=8\Omega$	—	-48	—	dB
			—	3	—	—	
		3V	$V_{O(p-p)}=1.5V$ $R_L=8\Omega$	—	-30	—	dB
			—	3	—	—	
S/N	Signal-to-noise Ratio	5V	—	—	60	—	dB
		3V		—	58	—	

Functional Description

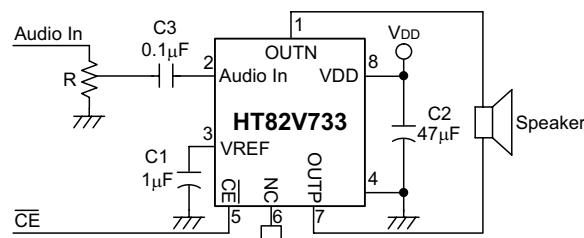
OUTP rising time (t_R)

When \overline{CE} active low, the HT82V733 need rising time to output fully on OUTP pin. However, the rising time depends on C1. (*see the application circuits)

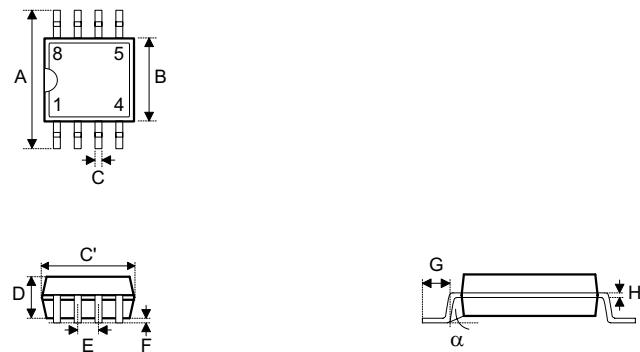


Capacitor t_R	0.1 μ F	1 μ F	4.7 μ F	10 μ F
Voltage				
2.2V	15ms	30ms	90ms	185ms
3V	15ms	30ms	90ms	185ms
4V	15ms	30ms	90ms	185ms

For battery based applications, power consumption is a key issue, therefore the amplifier should be turned off when in the standby state. In order to eliminate any speaker sound bursts while turning the amplifier on, the application circuit, which will incorporate a capacitance value of C1, should be adjusted in accordance with the speaker's audio frequency response. A greater value of C1 will improve the noise burst while turning on the amplifier. The recommended operation sequence is:

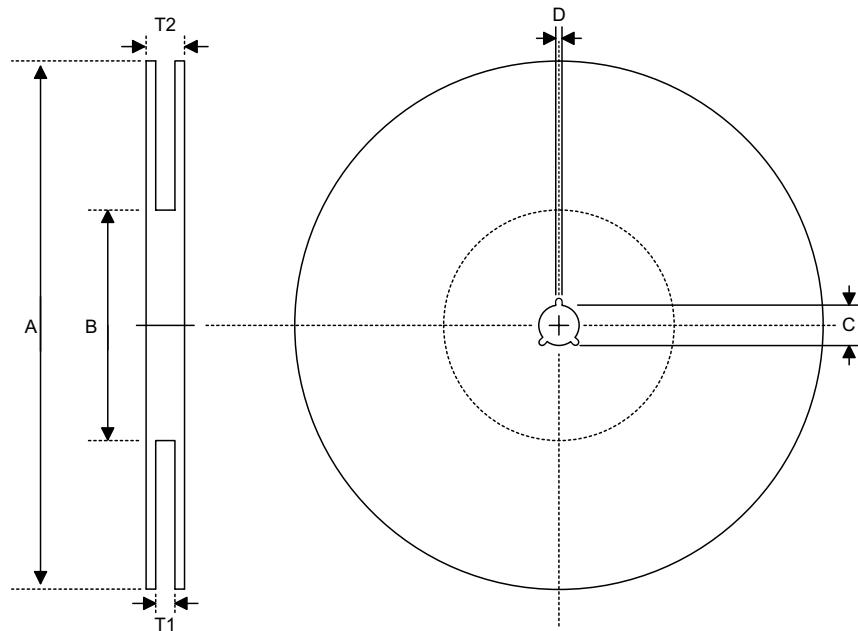

Turn On: audio1 signal standby (1/2 VDD) → enable amplifier → wait t_R for amplifier ready → audio1 output

Turn Off: audio1 signal finished → disable amplifier → wait t_R for amplifier off → audio1 signal off

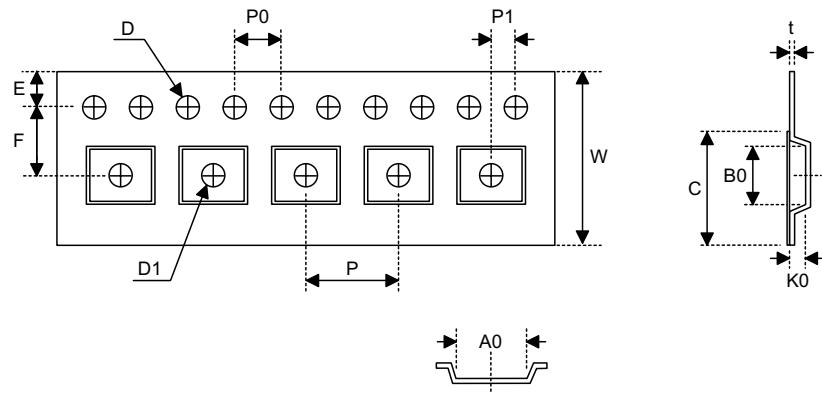

If the application is not powered by batteries and there is no problem with amplifier On/Off issue, a capacitor value of 0.1 μ F for C1 is recommended.

Application Circuits

Package Information


8-pin SOP (150mil) outline dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	228	—	244
B	149	—	157
C	14	—	20
C'	189	—	197
D	53	—	69
E	—	50	—
F	4	—	10
G	22	—	28
H	4	—	12
α	0°	—	10°


Product Tape and Reel Specifications

Reel dimensions

SOP 8N

Symbol	Description	Dimensions in mm
A	Reel Outer Diameter	330 \pm 1.0
B	Reel Inner Diameter	62 \pm 1.5
C	Spindle Hole Diameter	13.0 \pm 0.5 -0.2
D	Key Slit Width	2.0 \pm 0.15
T1	Space Between Flange	12.8 \pm 0.3 -0.2
T2	Reel Thickness	18.2 \pm 0.2

Carrier tape dimensions

SOP 8N

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	12.0+0.3 -0.1
P	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	5.5±0.1
D	Perforation Diameter	1.55±0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.4±0.1
B0	Cavity Width	5.20±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.3±0.05
C	Cover Tape Width	9.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
<http://www.holtek.com.tw>

Holtek Semiconductor Inc. (Sales Office)

11F, No.576, Sec. 7 Chung Hsiao E. Rd., Taipei, Taiwan
Tel: 886-2-2782-9635
Fax: 886-2-2782-9636
Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Shanghai) Inc.

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China
Tel: 021-6485-5560
Fax: 021-6485-0313
<http://www.holtek.com.cn>

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong
Tel: 852-2-745-8288
Fax: 852-2-742-8657

Holmate Semiconductor, Inc.

48531 Warm Springs Boulevard, Suite 413, Fremont, CA 94539
Tel: 510-252-9880
Fax: 510-252-9885
<http://www.holmate.com>

Copyright © 2002 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at <http://www.holtek.com.tw>.