

^{多邦,专业PCB打样工厂,24小时加急出货}IL612 IL610 IL611 IL612 IL613 IL614

Passive Input Digital Isolators

Functional Diagram

Features

- 40 Mbps Data Rate
- Very Wide Input Voltage Range
- Open Drain or CMOS Outputs
- Failsafe Output (Logic high output for zero coil current)
- Output Enable
- 3.3 V or 5 V Power Supply
- 2500 V_{RMS} Isolation (1 Minute)
- Low Power Dissipation
- -40°C to 85°C Temperature Range
- 20 kV/µs Typical Common Mode Rejection
- UL1577 & IEC61010 Approval (pending)
- Available in MSOP, SOIC, and PDIP Packages and as Bare Die

Applications

- CAN Bus/ Device Net
- General Purpose Opto Replacement
- Wired-OR Alarms
- SPI interface
- I^2C
- RS 485, RS422, RS232
- Digital Fieldbus
- Size critical multi-channel applications

Description

The IL600 series are isolated signal couplers with CMOS or open drain transistor outputs which can be used to replace opto-couplers in many standard isolation functions. The devices are manufactured with NVE's patented IsoLoop[®] GMR sensor technology giving exceptionally small size and low power dissipation.

A single resistor is used to set maximum input current for input voltages above 0.5 V. The devices are available in SOIC, PDIP and MSOP packages and as bare die.

NVE Corp., 11409 Valley View Road, Eden Prairie, MN 55344-3617, U.S.A. Telephone: 952-829-9217, Fax 952-829-9189, www.isoloop.com © 2005 NVE Corporation

Absolute Maximum Ratings⁽¹⁾

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Storage Temperature	Ts	-55		150	°C	
Ambient Operating Temperature	T _A	-55		125	°C	
Supply Voltage	V_{DD}	-0.5		7	V	
Input Current	I _{IN}	-25		25	mA	
Output Voltage	Vo	-0.5		V_{cc} +0.5	V	
Maximum Output Current	Io	-10		10	mA	
ESD			2		kV	HBM

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Ambient Operating Temperature	T _A	-40		85	°C	
Supply Voltage	V_{DD}	3.0		5.5	V	
Input Current	I _{IN}	0		10	mA	
Output Current	I _{OUT}	-4		4	mA	
Open Drain Reverse Voltage	V _{SD}	-0.5			V	
Open Drain Voltage	V _{DS}			6.5	V	
Open Drain Load Current	I _{OD}			4	mA	
Input Signal Rise and Fall Times	t_{IR}, t_{IF}			50	ms	
Common Mode Input Voltage	V_{CM}			400	V _{AC RMS}	

Insulation Specifications

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Creepage Distance (external)						
MSOP		3.010			mm	
0.15" SOIC		4.026			mm	
0.30'' SOIC		8.077			mm	
0.30'' PDIP		7.077			mm	
Internal Isolation Distance			9		μm	
Leakage Current			0.2		μA_{RMS}	240 V _{RMS} , 60 Hz
Barrier Impedance			$>10^{14}$ 7		$\Omega \parallel pF$	

Safety & Approvals

IEC61010-1

TUV Certificate Numbers:

Approval Pending

Classification

		Pollution	Material	Max. Working
Model	Package	Degree	Group	Voltage
IL610-1, IL610A-1, IL611-1, IL611A-1	MSOP	II	III	100 V _{RMS}
IL610-2, IL610A-2, IL611-2, IL611A-2, IL612-2, IL612A-2	PDIP	II	III	300 V _{RMS}
IL613, IL614	SOIC (0.3")	II	III	300 V _{RMS}
IL610-3, IL610A-3, IL611-3, IL611A-3, IL612-3, IL612A-3 IL613-3, IL614-3	SOIC (0.15")	Π	III	$150 V_{RMS}$

UL 1577

Component Recognition program. File #: Approval Pending Rated $2500V_{RMS}$ for 1 minute (SOIC, PDIP), $1000V_{RMS}$ for 1 minute (MSOP)

Electrostatic Discharge Sensitivity

This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, NVE recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

IL610	and IL	610A Pin Connections
1	NC	No internal connection
2	IN+	Coil connection
3	IN-	Coil connection
4	NC	No internal connection
5	GND	Ground return for V _{DD}
6	OUT	Data out
7	VOE	Output enable. Internally held low with
		100 kΩ
8	V _{DD}	Supply Voltage

IL611 and IL611A Pin Connections

IN ₁ +	Channel 1 coil connection
IN ₁ -	Channel 1 coil connection
IN ₂ +	Channel 2 coil connection
IN ₂ -	Channel 2 coil connection
GND	Ground return for V _{DD}
OUT ₂	Data out channel 2
OUT ₁	Data out channel 1
V _{DD}	Supply Voltage
	$\frac{IN_{1}}{IN_{2}+}$ $\frac{IN_{2}-}{GND}$ OUT_{2} OUT_{1}

IL612 and IL612A Pin Connections

1	IN ₁	Data in, channel 1
2	V _{DD1}	Supply Voltage 1
3	OUT ₂	Data out, channel 2
4	GND ₁	Ground return for V _{DD1}
5	GND ₂	Ground return for V _{DD2}
6	IN ₂	Data in, channel 2
7	V _{DD2}	Supply Voltage 2
8	OUT ₁	Data out, channel 1

IL613 Pin Connections

IN ₁ +	Channel 1 coil connection
*	Internally connected to pin 8
IN ₁ -	Channel 1 coil connection
IN ₂ +	Channel 2 coil connection
IN ₂ -	Channel 2 coil connection
IN ₃ +	Channel 3 coil connection
IN ₃ -	Channel 3 coil connection
*	Internally connected to pin 2
GND	Ground return for V _{DD} (Internally
	connected to pin 15)
OUT ₃	Data out channel 3
NC	No connection
V _{DD}	Supply Voltage. Pin 12 and pin 16 must be
	connected externally
OUT ₂	Data out channel 2
OUT ₁	Data out channel 1
GND	Ground return for V _{DD} (Internally
	connected to pin 9)
V _{DD}	Supply Voltage. Pin 12 and pin 16 must be
	connected externally
	IN ₁ + * IN ₂ - IN ₂ + IN ₂ - IN ₃ + IN ₃ - * GND OUT ₃ NC V _{DD} OUT ₂ OUT ₁ GND

NC 1 IN+ 2

** Pins 9 and 15 internally connected

IL614 Pin Connections

1	V _{DD1}	Supply Voltage 1
2	GND ₁	Ground return for V _{DD1} (Internally
		connected to pin 8)
3	OUT ₁	Data out channel 1
4	RE	Channel 1 data output enable. Internally
		held low with 100 k Ω
5	IN ₂	Data in channel 2
6	V _{coil}	Supply connection for channel 2 and
		channel 3 coils
7	IN ₃	Data in channel 3
8	GND_1	Ground return for V _{DD1} (Internally
		connected to pin 2)
9	GND ₂	Ground return for V _{DD2} (Internally
		connected to pin 15)
10	OUT ₃	Data out channel 3
11	NC	No connection
12	V _{DD2}	Supply Voltage 2
13	OUT ₂	Data out channel 2
14	IN ₁ +	Coil connection
15	GND ₂	Ground return for V _{DD2} (Internally
		connected to pin 9)
16	IN ₁ -	Coil connection

** Pins 9 and 15 internally connected

Electrical Specifications Electrical Specifications are T_{min} to T_{max} unless otherwise stated.

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Coil Input Impedance	Z _{COIL}	47 8	55 9	67 10	Ω∥nH	$T_{AMB} = 25^{\circ}C$
Temperature Coeff of Coil Resistance	TC R _{COIL}		0.16	0.165	Ω/°C	
Input Threshold for Logic High	I IN _H			2	mA	
Input Threshold for Logic Low	I IN _L	10			mA	
Quiescent Current	IL610, I _{DD1}			0	μA	$V_{DD} = 5 V, I_{IN} = 0$
	IL610, I _{DD2}		2	3	mA	
	IL611, I _{DD1}			0	μΑ	
	IL611, I _{DD2}		4	6	mA	
	IL612, I _{DD1}		2	3	mA	
	IL612, I _{DD2}		2	3	mA	
	IL613, I _{DD1}			0	μΑ	
	IL613, I _{DD2}		6	9	mA	
	IL614, I _{DD1}		2	3	mA	
	IL614, I _{DD2}		4	6	mA	
Quiescent Current	IL610, I _{DD1}			0	μΑ	V_{DD} = 3.3 V, I_{IN} =0
	IL610, I _{DD2}		1.3	2	mA	
	IL611, I _{DD1}			0	μΑ	
	IL611, I _{DD2}		2.6	4	mA	
	IL612, I _{DD1}		1.3	2	mA	
	IL612, I_{DD2}		1.3	2	mA	
	IL613, I _{DD1}			0	μΑ	
	IL613, I _{DD2}		4	6	mA	
	IL614, I _{DD1}		1.3	2	mA	
	IL614, I _{DD2}		2.6	4	mA	
Logic High Output Voltage ⁽⁴⁾	V _{OH}	V _{DD} -0.1	V _{DD}		V	$I_0 = -20 \ \mu A$
		V _{DD}	V _{DD} -0.5			$I_0 = -4 \text{ mA}$
Logic Low Output Voltage	V _{OL}		0	0.1	V	$I_0 = 20 \ \mu A$
			0.5	0.8		$I_0 = 4 \text{ mA}$
Logic Output Current	I _O	4	7		mA	
	Switchin		is CMOS Out	puts	T	1
Data Rate		40			Mbps	50% Duty Cycle
Minimum Pulse Width	PW	25			ns	50% Points, Vo
Propagation Delay Input to Output (High to Low)	t_{PHL}		20	25	ns	$C_{L} = 15 \text{ pF},$ $I_{COIL} = 10 \text{ mA}$
Propagation Delay Input to Output	t _{PLH}		20	25	ns	$C_{L} = 15 \text{ pF},$
(Low to High)	4PLH		20	25	115	$I_{\text{COIL}} = 10 \text{ mA}$
Average Propagation Delay Drift			50			ps/°C
Pulse Width Distortion $ t_{PHL}-t_{PLLH} ^{(2)}$	PWD		7	10	ns	$C_L = 15 \text{ pF}$
Propagation Delay Skew ⁽³⁾	t _{PSK}		10	20	ns	$C_L = 15 \text{ pF}$
Output Rise Time (10-90%)	t _R		2	4	ns	$C_L = 15 \text{ pF}$
Output Fall Time (10-90%)	t _F		2	4	ns	$C_L = 15 \text{ pF}$
Common Mode Transient Immunity	$ CM_{\rm H} , CM_{\rm L} $	15	20	·	kV/µs	$V_T = 300 V_{peak}$
common front fransiont minimum y			Open Drain O	utnuts	π γ/μ5	r 500 r peak
Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Data Rate	Symbol	10	Typ.	WIAA .	Mbps	50% Duty Cycle,
		10			10005	$R_{pullup} = 1 \ k\Omega$
Minimum Pulse Width	PW	100			ns	50% Duty Cycle,
	T AA	100			115	$R_{pullup} = 1 \ k\Omega$
Propagation Delay Input to Output	tn		20	25	ns	
(High to Low)	t _{PHL}		20	23	115	$C_L = 2 k\Omega 15 pF$
Propagation Delay Input to Output	t _{PLH}		50	75	ns	$C_L = 2 k\Omega 15 pF$
(Low to High)						

Notes:

- 1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not guarantee performance.
- 2. PWD is defined as $|t_{PHL} t_{PLH}|$. %PWD is equal to the PWD divided by the pulse width.
- 3. t_{PSK} is equal to the magnitude of the worst case difference in t_{PHL} and/or t_{PLH} that will be seen between units at 25°C.
- 4. The term V_{DD} refers to the supply voltage on the output side of the isolated channel.

Operation

The IL600 series are current mode devices. Changes in current flow into the input coil result in logic state changes at the output. One of the great advantages of the passive coil input is that both single ended and differential inputs can be handled without the need for reverse bias protection. The internal GMR sensor switches the output to logic low if current flows from (In-) to (In+). Only a single resistor is required to limit the input coil to the recommended 10 mA. This allows large input voltages to be used since there is no semiconductor structure on the input.

The absolute maximum current through the coil of the IL600 series is 25 mA DC. However, it is important to limit input current to levels well below this in all applications. The worst case logic threshold current is 10 mA. While typical threshold currents are substantially less than this, NVE recommends designing a 10 mA logic threshold current in each application. In all cases, the current must flow from Into In+ in the coil to switch the output low. This is true regardless of true or inverted data configurations. Output logic high is the zero input current state.

Figure 1 shows the response of the IL600 series. The GMR bridge structure is designed such that the output of the isolator is logic high when no field signal is present. The output will switch to the low state with 10 mA of coil current and the output will switch back to the high state when the input current falls below 2 mA. This allows glitch-free interface with low slew rate signals.

Coil Current (mA)

Figure 1. IL600 Series Transfer Function

To calculate the value of the protection resistor (R1) required, use Ohm's law as shown in the examples below. It

should be noted that we are concerned only with the magnitude of the voltage across the coil. The absolute values of V_{in} High and V_{in} Low are arbitrary.

Figure 2. Series Resistor Calculation Equivalent Circuit.

Example 1. In this case, $T_{nom} = 25^{\circ}$ C, V_{in} High is 24 V, V_{in} Low is 1.8 V, and I_{coil} minimum is specified as 10 mA. Total loop resistance is

 $(R1 + R_{coil}) = \frac{(V_{in} High - V_{in} Low)}{I_{coil}} = \frac{22.2}{0.01} \Omega = 2220 \Omega$ Therefore, $R1 = (2220 - 55) \Omega = 2145 \Omega$

Example 2. At a maximum operating temperature of 85°C, $T_{max} = 85^{\circ}C$, $T_{nom} = 25^{\circ}C$, V_{in} High = 5 V, V_{in} Low = 0 V, and nominal $R_{coil} = 55 \Omega$. At $T_{max} = 85^{\circ}C$ $R_{coil} = 55 + (T_{max} - T_{min}) \times TCR_{coil}$ $= 55 + (85 - 25) \times 0.165 = 55 + 9.9 = 65 \Omega$

Therefore, the recommended series resistor is

$$R1 = \frac{(VinHigh - VinLow)}{I_{coil}} - R_{coil}$$
$$= \frac{5 - 0}{0.01} - 65 = 435 \Omega$$

Allowance should also be made for the temperature coefficient of the current limiting resistor to ensure that I_{coil} is 10 mA at maximum operating temperature.

Power Supplies

It is recommended that 47 nF ceramic capacitors be used to decouple the power supplies. The capacitors must be placed as close as possible to V_{DD} for proper operation.

Application Diagrams

CAN Bus

RS232

I²C

Single Phase Power Control

Inverting and Non-Inverting Circuits

Non-inverting

Inverting

Differential to Single Ended Conversion

Package drawings, dimensions and specifications

8-pin MSOP Package

8-pin SOIC Package

8-pin PDIP Package

0.15" 16-pin SOIC

listed above are

available in the

Lead Free (E) packages.

IL614-3TR7

IL614-3TR13

Ordering information and valid part numbers.

About NVE

An ISO 9001 Certified Company

NVE Corporation is a high technology components manufacturer having the unique capability to combine leading edge Giant Magnetoresistive (GMR) materials with integrated circuits to make high performance electronic components. Products include Magnetic Field Sensors, Magnetic Field Gradient Sensors (Gradiometer), Digital Magnetic Field Sensors, Digital Signal Isolators and Isolated Bus Transceivers.

NVE is a leader in GMR research and in 1994 introduced the world's first products using GMR material, a line of GMR magnetic field sensors that can be used for position, magnetic media, wheel speed and current sensing.

NVE is located in Eden Prairie, Minnesota, a suburb of Minneapolis. Please visit our Web site at www.nve.com or call 952-829-9217 for information on products, sales or distribution.

NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217 Fax: (952) 829-9189 Internet: www.nve.com e-mail: isoinfo@nve.com

The information provided by NVE Corporation is believed to be accurate. However, no responsibility is assumed by NVE Corporation for its use, nor for any infringement of patents, nor rights or licenses granted to third parties, which may result from its use. No license is granted by implication, or otherwise, under any patent or patent rights of NVE Corporation. NVE Corporation does not authorize, nor warrant, any NVE Corporation product for use in life support devices or systems or other critical applications. The use of NVE Corporation's products in such applications is understood to be entirely at the customer's own risk.

Specifications shown are subject to change without notice.

ISB-DS-001-IL600-A January 28, 2005