International IgR Rectifier

Reference Design

 IRDCiP1001－A
International Rectifier • 233 Kansas Street，El Segundo，CA 90245 USA

IRDCiP1001－A，200kHz，20A，3．3V ${ }_{\text {IN }}$ to $4.5 \mathrm{~V}_{\text {IN }}$ Single Phase Synchronous Buck Converter using iP1001

Overview

In this document，Table 1 and Figure 1 are provided to enable engineers to easily evaluate the iP1001 in a single phase configuration that is capable of providing up to 20A in a lab environment without airflow．Figures 3，4， 5 and 6 and the complete bill of materials in Table 2 are provided as a reference design to enable engineers to very quickly and easily design a single phase converter．In order to optimize this design to your specific requirements， refer to the iP1001 data sheet for guidelines on external component selection and user adjustable limits and specifications．Custom designs may require layout modifications．

Demoboard Quick Start Guide

Initial Settings：

－The output is set to 2 V ，but can be adjusted from 0.925 V to 2.0 V by setting SW1 according to the VID codes provided in Table 1．The output voltage can also be adjusted to allow up to $2.5 \mathrm{~V}_{\text {out }}$ for $3.3 \mathrm{~V}_{\text {IN }}$ ，by adding R 3 \＆ R 4 with the DAC set to $2 \mathrm{~V}_{\text {out }}$ ．Refer to equation 1 for R 3 \＆ R 4 values． R 4 should be removed for output voltages below 2 V ，and R 3 should be set to zero ohms（see Table 2）．
－The switching frequency is centered around 200 kHz for $<5 \mathrm{~V}_{\mathbb{N}}$ applications with the FREQ pin connected to V_{DD} ．
－The input voltage range can be increased to allow operation between $5 \mathrm{~V}_{\mathbb{N}}$ and $12 \mathrm{~V}_{\mathbb{N}}$ ．Refer to IRDCiP1001－B reference design documentation for direction on changing the configuration of the demo board．
Procedure for Connecting and Powering Up Demoboard：
1．Apply input voltage（ $3.3 \mathrm{~V}-4.5 \mathrm{~V}$ ）across $\mathrm{V}_{\mathbb{I N}}$ and PGND．Note that this demo board has a mini－boost circuit provided in order to provide the $5 \mathrm{~V}_{\mathrm{DD}}$ internal logic for the iP1001．This boost circuit can be used to provide power for up to $5 \times$ iP1001 devices simultaneously．
2．Apply load across VOUT pad and PGND pad．
3．Make sure Jumpers JP2 and JP3 are connected．
4．Remove jumper JP1 to turn on the boost circuit and pull iP1001 ENABLE pin high．The ENABLE pin is controlled via switch 8 on SW1．This pin is supplied in low state，once pulled high the output is enabled．
5．Adjust load accordingly．

IRDCiP1001－A Recommended Operating Conditions

（refer to the iP1001 datasheet for maximum operating conditions）
Input voltage：$\quad 3.3-4.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}\right.$ provided by mini boost circuit）
Output voltage：
Output current：
DAC selectable between $0.925 \mathrm{~V}-2.0 \mathrm{~V}$（with extended operating range to 3.3 V with R 3 \＆ R 4 ）
Switching Freq：
Up to 20A depending on duty factor（refer to recommended operating area Fig．1）．
200 kHz or 300 kHz selectable．

Fig. 1 - Recommended Operating Area

$\mathbf{D 4}$	D3	D2	D1	D0	Output Voltage $\mathbf{(V)}$	$\mathbf{D 4}$	$\mathbf{D} 3$	$\mathbf{D 2}$	$\mathbf{D 1}$	D0	Output Voltage (V)
0	0	0	0	0	2.00	1	0	0	0	0	1.275
0	0	0	0	1	1.95	1	0	0	0	1	1.250
0	0	0	1	0	1.90	1	0	0	1	0	1.225
0	0	0	1	1	1.85	1	0	0	1	1	1.200
0	0	1	0	0	1.80	1	0	1	0	0	1.175
0	0	1	0	1	1.75	1	0	1	0	1	1.150
0	0	1	1	0	1.70	1	0	1	1	0	1.125
0	0	1	1	1	1.65	1	0	1	1	1	1.100
0	1	0	0	0	1.60	1	1	0	0	0	1.075
0	1	0	0	1	1.55	1	1	0	0	1	1.050
0	1	0	1	0	1.50	1	1	0	1	0	1.025
0	1	0	1	1	1.45	1	1	0	1	1	1.000
0	1	1	0	0	1.40	1	1	1	0	0	0.975
0	1	1	0	1	1.35	1	1	1	0	1	0.950
0	1	1	1	0	1.30	1	1	1	1	0	0.925
0	1	1	1	1	Shutdown*	1	1	1	1	1	Shutdown

* Shutdown : Upon receipt of the shutdown code (per VID code table above), both FETs are turned OFF and the output is discharged as it enters UVP fault mode.

Table 1 - iP1001 VID Code

For output voltages above the DAC maximum setting of 2 V , refer to Equation 1 below to calculate the required resistor values for R3 \& R4 (needed in order to achieve the extended output voltage range).

Equation 1: Vout $=V_{F} \cdot\{1+R 3 / R 4\}$
where V_{F} is equal to the DAC setting and $R 4$ is recommended to be $\sim 1 \mathrm{k} \Omega$

International

IOR Rectifier
IRDCiP1001-A

Fig. 2 - Typical Efficiency vs. Current

Refer to the following application notes for detailed guidelines and suggestions when implementing iPOWIR Technology products:

AN-1028: Recommended Design, Integration and Rework Guidelines for International Rectifier's iPOWIR Technology BGA Packages

This paper discusses the assembly considerations that need to be taken when mounting iPOWIR BGA's on printed circuit boards. This includes soldering, pick and place, reflow, inspection, cleaning and reworking recommendations.

AN-1029: Optimizing a PCB Layout for an iPOWIR Technology Design

This paper describes how to optimize the PCB layout design for both thermal and electrical performance. This includes placement, routing, and via interconnect suggestions.

AN-1030: Applying iPOWIR Products in Your Thermal Environment
This paper explains how to use the Power Loss and SOA curves in the data sheet to validate if the operating conditions and thermal environment are within the Safe Operating Area of the iPOWIR product.

Fig. 3 - Reference Design Schematic

Fig. 4 - Component Placement (Top View)

Fig. 5 - Component Placement (Bottom View)

IRDCiP1001-A (For operation $<4.5 \mathrm{~V}_{\text {IN }}$)

Designator	Value	Part Type	Footprint	Mfr.	Mfr. P/N
C1, C3, C5	100uF	Capacitor, 6.3V, 20\%, X5R	1812	TDK	C4532X5R0J107MT
C2, C4, C6, C7, C8, C9, C10, C15	-	Not Installed	-	-	-
C11, C12, C13, C14	470uF	Capacitor, 6.3V, 20\%, Tantalum	7343	Sanyo	6TPB470M
C16, C19	0.100uF	Capacitor, 50V, 10\%, X7R	1206	Novacap	1206B104K500N
C17, C18	10.0uF	Capacitor, 16V, 10\%, X5R	1210	TDK	C3225X5R1C106KT
C20	1.00uF	Capacitor, 10V, 10\%, X7R	0805	MuRata	GRM40X7R105K010
C21	47.0pF	Capacitor, 50V, 5\%, C0G	1206	MuRata	GRM42-6C0G470J050A
D1	40 V	Schottky Diode, 40V, 2.1A	D-64	International Rectifier	10MQ040N
JP1, JP2, JP3	-	Test Point	-	Samtec	TSW-102-07-LS
JP1-1, JP2-1, JP3-1	-	Shunt	-	Samtec	SNT-100-BKT
L1	1.06 uH	Inductor, 16A, 20\%, Ferrite	SMT	Panasonic	ETQP6F1R1BFA
L2	22 uH	Inductor, 0.68A, 20\%, Ferrite	SMT	Sumida	CR43-220
R1	0Ω	Resistor, 0Ω Jumper	2716	Isotek Corp	SMT-R000
R2	-	For <2Vout, Not installed For >2 Vout, Resistor, 0Ω Jumper	SMT	-	-
R3	-	For <2Vout, Resistor, 0Ω Jumper For >2 Vout see formula for value	SMT	-	-
R4	-	$\begin{aligned} & \text { For <2Vout, Not installed } \\ & \text { For }>2 \text { Vout recommend } 1 \mathrm{k} \Omega \\ & \text { see formula for detail } \end{aligned}$	SMT	-	-
R5	-	For <2Vout, Resistor, 0Ω Jumper For >2 Vout, Not installed	1206	Panasonic	ERJ-8GEY0R00
R6	0Ω	Resistor, 0Ω Jumper	1206	-	-
R7	$340 \mathrm{k} \Omega$	Resistor, $340 \mathrm{k} \Omega$, 1\% $340 \mathrm{k} \Omega$ sets for 20A limit. See ILIM formula for other values	1206	ROHM	MCR18EZHF3403
R8	100k Ω	Resistor, 100k $2,5 \%$	1206	ROHM	MCR18EZHJ104
R9	91k Ω	Resistor, 91k 2 , 5\%	1206	ROHM	MCR18EZHJ913
SW1	-	8 -position DIP switch	SMT	C\&K Components	SD08H0SK
TP1, TP3	-	Not Installed	-	-	-
TP2, TP4, TP5	-	Test Point	-	Keystone	1502-2
U1	-	Power Block	SSBGA $14 \mathrm{~mm} \times 14 \mathrm{~mm}$	International Rectifier	iP1001
U2	-	IC, Step-Up DC-DC Converter, 0.5A	8uMAX	Maxim	MAX1675EUA

Table 2 - Reference Design Bill of Materials

Adjusting the Current Limit

Fig. 6 Current Limit Adjustment using $\mathbf{R}_{\text {LIM }}$
Use of this design for any application should be fully verified by the customer. International Rectifier cannot guarantee suitability for your applications, and is not liable for any result of usage for such applications including, without limitation, personal or property damage or violation of third party intellectual property rights.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: ++ 13102527105

