查询IRFBF20ST RRPbF供应商		
	IRFBF20S，	
		Po
PRODUCT SUMMARY		
V_{DS}（V）	900	
$\mathrm{R}_{\mathrm{DS} \text {（on）}}(\Omega)$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	8.0
Q_{g}（Max．）（ nC ）	38	
$\mathrm{Q}_{\mathrm{gs}}(\mathrm{nC})$	4.7	
$\mathrm{Q}_{\mathrm{gd}}(\mathrm{nC})$	21	
Configuration	Single	

FEATURES

－Surface Mount（IRFBF20S／SiHFBF20S）
－Low－Profile Through－Hole（IRFBF20L／SiHFBF20L）

－Available in Tape and Reel RoHS＊ （IRFBF20S／SiHFBF20S）
－Dynamic dV／dt Rating
－ $150{ }^{\circ} \mathrm{C}$ Operating Temperature
－Fast Switching
－Fully Avalanche Rated
－Lead（Pb）－free Available

DESCRIPTION

Third generation Power MOSFETs form Vishay provide the designer with the best combination of fast switching， ruggedized device design，low on－resistance and cost－effectiveness．
The D²PAK is a surface mount power package capabel of the accommodating die sizes up to HEX－4．It provides the highest power capability and the lowest possible on－resistance in any existing surface mount package．The D^{2} PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2．0 W in a typical surface mount application．The through－hole version（IRFBF20L／SiHFBF20L）is available for low－profile applications．

ORDERING INFORMATION

Package	D²PAK（TO－263）	D²PAK（TO－263）	D²PAK（TO－263）	$1^{2} \mathrm{PAK}$（TO－262）
Lead（Pb）－free	IRFBF20SPbF	IRFBF20STRLPbFa	IRFBF20STRRPbFa	IRFBF20LPbF
	SiHFBF20S－E3	SiHFBF20STL－E3 ${ }^{\text {a }}$	SiHFBF20STR－E3 ${ }^{\text {a }}$	SiHFBF20L－E3
SnPb	IRFBF20S	IRFBF20STRL ${ }^{\text {a }}$	IRFBF20STRR ${ }^{\text {a }}$	IRFBF20L
	SiHFBF20S－E3	SiHFBF20STL ${ }^{\text {a }}$	SiHFBF20STR ${ }^{\text {a }}$	SiHFBF20L

Note

a．See device orientation．

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ，unless otherwise noted					
PARAMETER			SYMBOL	LIMIT	UNIT
Drain－Source Voltage ${ }^{\text {e }}$			V_{DS}	900	V
Gate－Source Voltage ${ }^{\text {e }}$			V_{GS}	± 20	
Continuous Drain Current	V_{GS} at 10 V	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	I_{D}	1.7	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		1.1	
Pulsed Drain Currenta，${ }^{\text {e }}$			I_{DM}	6.8	
Linear Derating Factor				0.43	W／${ }^{\circ} \mathrm{C}$
Single Pulse Avalanche Energy ${ }^{\text {b，e }}$			$\mathrm{E}_{\text {AS }}$	180	mJ
Repetitive Avalanche Current ${ }^{\text {a }}$			$\mathrm{I}_{\text {AR }}$	1.7	A
Repetitive Avalanche Energy ${ }^{\text {a }}$			$\mathrm{E}_{\text {AR }}$	5.4	mJ
Maximum Power Dissipation	$\mathrm{T}_{\mathrm{C}}=$	$5^{\circ} \mathrm{C}$	P_{D}	54	W
	$\mathrm{T}_{\text {A }}=$	$5^{\circ} \mathrm{C}$		3.1	
PeaR Diode Recovery dV／dtc，e			dV／dt	1.5	V／ns

Pb．containing terminations are not RoHS compliant，exemptions may apply
coscom

IRFBF20S, IRFBF20L, SiHFBF20S, SiHFBF20L

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted				
PARAMETER	SYMBOL	LIMIT	UNIT	
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150		
Soldering Recommendations (Peak Temperature)	for 10 s		300^{d}	
Mounting Torque	$6-32$ or M3 screw		10	N

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$; starting $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=117 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=1.7 \mathrm{~A}$ (see fig. 12).
c. $\mathrm{I}_{\mathrm{SD}} \leq 1.7 \mathrm{~A}, \mathrm{~d} / / \mathrm{dt} \leq 70 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$.
d. 1.6 mm from case.
e. Uses IRFBF20/SiHFBF20 data and test conditions.

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient (PCB Mounted, steady-state)				
Maximum Junction-to-Case	$\mathrm{R}_{\text {thJA }}$	-	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note
a. When mounted on 1 " square PCB (FR-4 or G-10 material).

SPECIFICATIONS $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V_{DS}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		900	-	-	V
$V_{\text {DS }}$ Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{DS}} / \mathrm{T}_{\mathrm{J}}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		-	1.1	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		2.0	-	4.0	V
Gate-Source Leakage	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		-	-	± 100	nA
Zero Gate Voltage Drain Current	Idss	$\mathrm{V}_{\mathrm{DS}}=900 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		-	-	100	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=720 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		-	-	500	
Drain-Source On-State Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}^{\mathrm{b}}$	-	-	8.0	Ω
Forward Transconductance	g_{fs}	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}^{\mathrm{b}}$		0.6	-	-	S
Dynamic							
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, \\ V_{D S}=25 \mathrm{~V}, \\ f=1.0 \mathrm{MHz} \text {, see fig. } 5 \end{gathered}$		-	490	-	pF
Output Capacitance	$\mathrm{Cosss}^{\text {a }}$			-	55	-	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			-	18	-	
Total Gate Charge	Q_{g}	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\begin{gathered} I_{D}=1.7 \mathrm{~A}, V_{D S}=360 \mathrm{~V}, \\ \text { see fig. } 6 \text { and } 13^{b} \end{gathered}$	-	-	38	nC
Gate-Source Charge	Q_{gs}			-	-	4.7	
Gate-Drain Charge	Q_{gd}			-	-	21	
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=450 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A}, \\ \mathrm{R}_{\mathrm{G}}=18 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \text {, see fig. } 10^{\mathrm{b}} \end{gathered}$		-	8.0	-	ns
Rise Time	tr_{r}			-	21	-	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$			-	56	-	
Fall Time	t_{f}			-	32	-	

IRFBF20S, IRFBF20L, SiHFBF20S, SiHFBF20L
Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Drain-Source Body Diode Characteristics						
Continuous Source-Drain Diode Current	Is	MOSFET symbol showing the integral reverse $\mathrm{p}-\mathrm{n}$ junction diode	-	-	1.7	A
Pulsed Diode Forward Current ${ }^{\text {a }}$	$I_{\text {SM }}$		-	-	6.8	
Body Diode Voltage	V_{SD}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{S}=1.7 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}^{\mathrm{b}}$	-	-	1.5	V
Body Diode Reverse Recovery Time	t_{rr}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=1.7 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}^{\mathrm{b}}$	-	350	530	ns
Body Diode Reverse Recovery Charge	Q_{rr}		-	0.85	1.3	$\mu \mathrm{C}$
Forward Turn-On Time	$\mathrm{t}_{\text {on }}$	Intrinsic turn-on time is negligible (turn-on is dominated by L_{S} and L_{D})				

Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.
c. Uses IRFBF20/SiHFBF20 data and test conditions.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Fig. 1 - Typical Output Characteristics

IRFBF20S, IRFBF20L, SiHFBF20S, SiHFBF20L

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 8 - Maximum Safe Operating Area

Fig. 9 - Maximum Drain Current vs. Case Temperature

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

IRFBF20S, IRFBF20L, SiHFBF20S, SiHFBF20L

Vishay Siliconix

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Fig. 13a - Basic Gate Charge Waveform

Fig. 13b - Gate Charge Test Circuit

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91121.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

