

Vishay Siliconix

WWW.DZSG **Power MOSFET**

PRODUCT SUMMARY					
V _{DS} (V)	500				
$R_{DS(on)}\left(\Omega\right)$	V _{GS} = 10 V	0.52			
Q _g (Max.) (nC)	52				
Q _{gs} (nC)	13				
Q _{gd} (nC)	18				
Configuration	Single				

FEATURES

Ruggedness

- Low Gate Charge Q_g results in Simple Drive Requirement
- Improved Gate, Avalanche and Dynamic dV/dt RoHS COMPLIANT
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss Specified
- · Lead (Pb)-free Available

APPLICATIONS

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply
- High Speed Power Switching

TYPICAL SMPS TOPOLOGIES

- Two Transistor Forward
- · Half and Full Bridge
- · Power Factor Correction Boost

ORDERING INFORMATION					
Package	D ² PAK (TO-263)	D ² PAK (TO-263)	D ² PAK (TO-263)		
Lood (Dh) fron	IRFS11N50APbF	IRFS11N50ATRRPbFa	IRFS11N50ATRLPbFa		
Lead (Pb)-free	SiHFS11N50A-E3	SiHFS11N50ATR-E3a	SiHFS11N50ATL-E3ª		
SnPb	IRFS11N50A	EGG LEL	IRFS11N50ATRLa		
SIIPD	SiHFS11N50A	- W/9	SiHFS11N50ATL ^a		

Note

a. See device orientation.

PARAMETER Gate-Source Voltage			SYMBOL	LIMIT ± 30	UNIT	
			V_{GS}		V	
Continuous Drain Current	\/ at 10 \/	T _C = 25 °C		-11	COM	
Continuous Drain Current	V _{GS} at 10 V	T _C = 100 °C	ID	7.0	Α	
Pulsed Drain Current ^a			Ірм	44		
Linear Derating Factor				1.3	W/°C	
Single Pulse Avalanche Energy ^b		E _{AS}	275	mJ		
Repetitive Avalanche Current ^a	10 11		I _{AR}	11	Α	
Repetitive Avalanche Energy ^a	C.Com		E _{AR}	17	mJ	
Maximum Power Dissipation	T _C = 25 °C		P _D	170	W	
Peak Diode Recovery dV/dtc			dV/dt	6.9	V/ns	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	- °C	
Soldering Recommendations (Peak Temperature)	for 10 s		· ·	300 ^d		

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting T $_J$ = 25 °C, L = 19 mH, R $_G$ = 25 Ω , I $_{AS}$ = 5.5 A (see fig. 12). c. I $_{SD}$ ≤ 5.5 A, dI/dt ≤ 90 A/ μ s, V $_{DD}$ ≤ V $_{DS}$, T $_J$ ≤ 150 °C.

Po containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91286 www.vishav.com

Vishay Siliconix

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Maximum Junction-to-Case (Drain)	R _{thJC}	-	0.75		
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	-	°C/W	
Maximum Junction-to-Ambient	R _{thJA}	-	62		

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static							•
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		500	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference to 25 °C, I _D = 1 mA		-	0.060	-	V/°C
Gate-Source Threshold Voltage	$V_{GS(th)}$	V _{DS} = V _{GS} , I _D = 250 μA		2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 30 \text{ V}$	-	-	± 100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} :	V _{DS} = 500 V, V _{GS} = 0 V		-	25	μΑ
		V _{DS} = 400 V, V _{GS} = 0 V, T _J = 125 °C		-	-	250	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 6.6 A ^b	-	-	0.52	Ω
Forward Transconductance	9 _{fs}	V _{DS} = 50 V, I _D = 6.6 A		6.1	-	-	S
Dynamic		•					
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$ $f = 1.0 \text{ MHz, see fig. 5}$		-	1423	-	
Output Capacitance	Coss				208	-	
Reverse Transfer Capacitance	C _{rss}			-	8.1	-	
Output Capacitance	C _{oss}		V _{DS} = 1.0 V, f = 1.0 MHz		2000	-	- pF -
		V _{GS} = 0 V	V _{DS} = 400 V, f = 1.0 MHz	-	55	-	
Effective Output Capacitance	Coss eff.	1	V _{DS} = 0 V to 400 V ^c	-	97	-	
Total Gate Charge	Qg	V _{GS} = 10 V	= 10 V	-	-	52	nC
Gate-Source Charge	Q_{gs}			-	-	13	
Gate-Drain Charge	Q_{gd}		See lig. 0 and 13	-	-	18	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 250 V, I_D = 11 A R_G = 9.1 Ω , R_D = 22 Ω , see fig. 10 ^b			14	-	
Rise Time	t _r			-	35	-	
Turn-Off Delay Time	t _{d(off)}			-	32	-	ns _
Fall Time	t _f				28	-	
Drain-Source Body Diode Characteristic	s		<u> </u>				•
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	MOSFET symbol showing the		-	11	Α
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	44	^
Body Diode Voltage	V _{SD}	$T_J = 25 ^{\circ}\text{C}, I_S = 11 \text{A}, V_{GS} = 0 \text{V}^{\text{b}}$		-	-	1.5	V
Body Diode Reverse Recovery Time	t _{rr}	$T_J = 25 ^{\circ}\text{C}$, $I_F = 11 \text{A}$, $dI/dt = 100 \text{A}/\mu\text{s}^b$		-	510	770	ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	3.4	5.1	μС
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-		on is don	ninated by	ا د and I	D)

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width \leq 300 μ s; duty cycle \leq 2 %. c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising fom 0 to 80 % V_{DS} .

Document Number: 91286 www.vishay.com

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

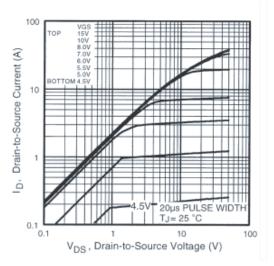


Fig. 1 - Typical Output Characteristics

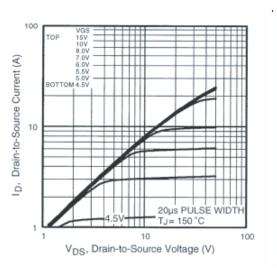


Fig. 2 - Typical Output Characteristics

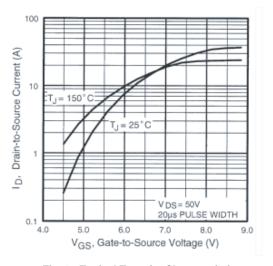


Fig. 3 - Typical Transfer Characteristics

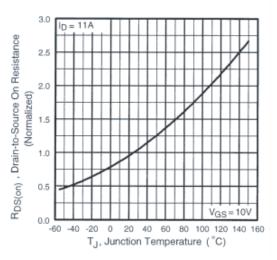


Fig. 4 - Normalized On-Resistance vs. Temperature

Document Number: 91286 www.vishay.com

Vishay Siliconix

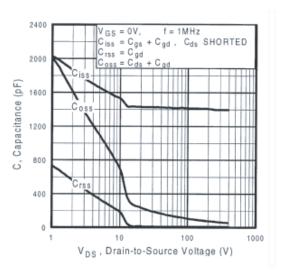


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

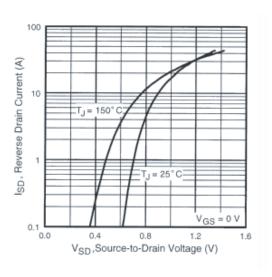


Fig. 7 - Typical Source-Drain Diode Forward Voltage

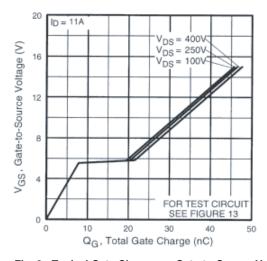


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

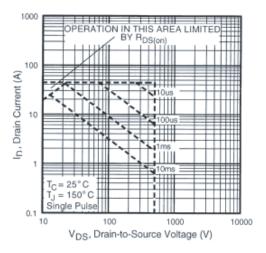


Fig. 8 - Maximum Safe Operating Area

www.vishay.com Document Number: 91286

Vishay Siliconix

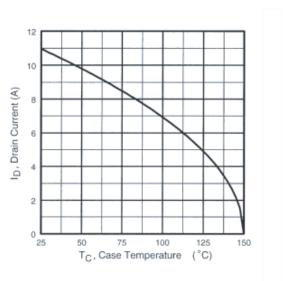


Fig. 9 - Maximum Drain Current vs. Case Temperature

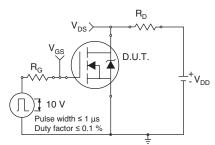


Fig. 10a - Switching Time Test Circuit

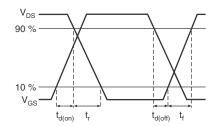


Fig. 10b - Switching Time Waveforms

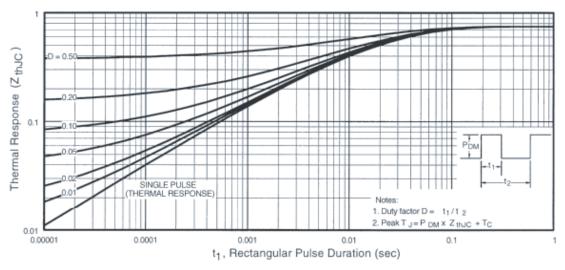


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

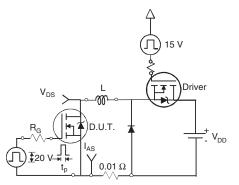


Fig. 12a - Unclamped Inductive Test Circuit

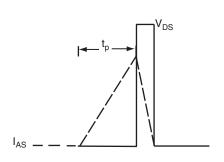


Fig. 12b - Unclamped Inductive Waveforms

Document Number: 91286 www.vishay.com

Vishay Siliconix

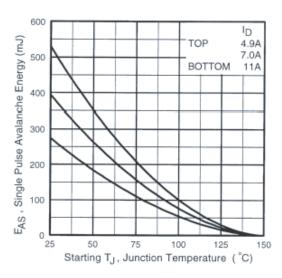


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

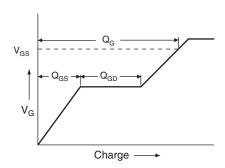


Fig. 13a - Basic Gate Charge Waveform

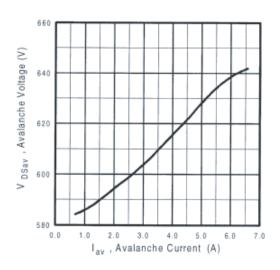


Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current

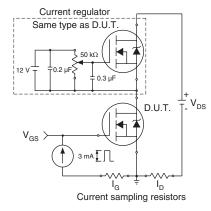
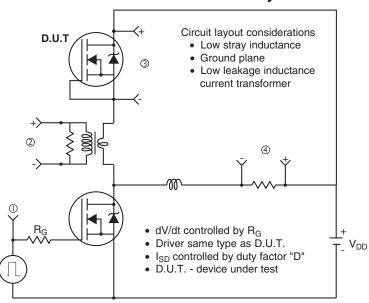



Fig. 13b - Gate Charge Test Circuit

www.vishay.com Document Number: 91286

Vishay Siliconix

Peak Diode Recovery dV/dt Test Circuit

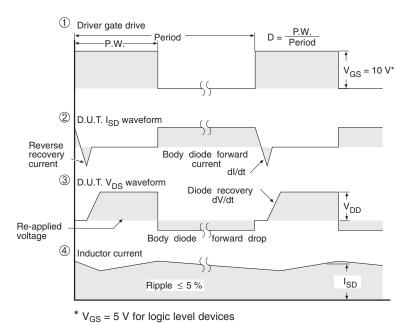


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91286.

Document Number: 91286 www.vishay.com

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com