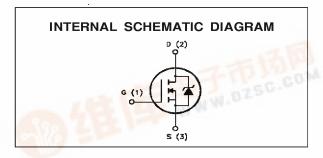


IRF630FI

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR

PRELIMINARY DATA


TYPE	V _{DSS}	R _{DS(on)}	lp
IRF630	200 V	< 0.4 Ω	10 A
IRF630FI	200 V	< 0.4 Ω	6 A

- TYPICAL R_{DS(on)} = 0.25Ω
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- APPLICATION ORIENTED CHARACTERIZATION

APPLICATIONS

- HIGH SPEED SWITCHING
- UNINTERRUPTIBLE POWER SUPPLY (UPS)
- MOTOR CONTROL, AUDIO AMPLIFIERS
- INDUSTRIAL ACTUATORS
- DC-DC & DC-AC CONVERTERS FOR TELECOM, INDUSTRIAL AND CONSUMER ENVIRONMENT
- PARTICULARLY SUITABLE FOR ELECTRONIC FLUORESCENT LAMP BALLASTS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Val	ue	Unit
	W.W.	IRF630	IRF630FI	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	20	0	V
V _{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	20	0	V
V_{GS}	Gate-source Voltage	± 2	20	V
I_D	Drain Current (continuous) at T _c = 25 °C	10	6	Α
I_D	Drain Current (continuous) at T _c = 100 °C	6	3	Α
I _{DM} (•)	Drain Current (pulsed)	40	40	Α
P _{tot}	Total Dissipation at T _c = 25 °C	100	35	W
	Derating Factor	0.8	0.28	W/°C
V _{ISO}	Insulation Withstand Voltage (DC)	_	2000	V
T _{stg}	Storage Temperature	-65 to	150	°C
Tj	Max. Operating Junction Temperature	150		°C

(•) Pulse width limited by safe operating area

November 1996 1/7

IRF630/FI

THERMAL DATA

			TO-220	ISOWATT220	
R _{thj-case}	Thermal Resistance Junction-case	Max	1.25	3.57	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62	2.5	°C/W
R _{thc-sink}	Thermal Resistance Case-sink	Тур	0	.5	°C/W
T_I	Maximum Lead Temperature For Soldering Po	urpose	30	00	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, $\delta < 1\%$)	10	А
Eas	Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 25 V)	60	mJ
EAR	Repetitive Avalanche Energy (pulse width limited by T_j max, $\delta < 1\%$)	15	mJ
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 ^{\circ}\text{C}, \text{pulse width limited by } T_j \text{max}, \delta < 1\%)$	6	Α

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu\text{A}$ $V_{GS} = 0$	200			٧
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating x 0.8 T_c = 125 °C$			10 100	μ Α μ Α
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20 \text{ V}$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V I _D = 5 A		0.25	0.4	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	10			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 5 A$	3	7		s
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}$ f = 1 MHz $V_{GS} = 0$		1100 160 30	1500 250 50	pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	$V_{DD} = 100 \text{ V}$ $I_D = 5 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 3)		40 80	60 120	ns ns
(di/dt) _{on}	Turn-on Current Slope	$V_{DD} = 200 \text{ V}$ $I_D = 10 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 5)		250		A/μs
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 200 \text{ V}$ $I_D = 10 \text{ A}$ $V_{GS} = 10 \text{ V}$		40 8 10	60	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 200 \text{ V}$ $I_D = 10 \text{ A}$		50	80	ns
tf	Fall Time	$R_G = 50 \Omega$ $V_{GS} = 10 V$		30	50	ns
tc	Cross-over Time	(see test circuit, figure 5)		80	130	ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				10 40	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 10 A V _{GS} = 0			1.5	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 10 \text{ A}$ $di/dt = 100 \text{ A}/\mu\text{s}$ $V_{DD} = 100 \text{ V}$ $T_i = 150 ^{\circ}\text{C}$		300		ns
Q_{rr}	Reverse Recovery Charge	(see test circuit, figure 5)		3		μC
I _{RRM}	Reverse Recovery Current			20		Α

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

(•) Pulse width limited by safe operating area

Fig. 1: Unclamped Inductive Load Test Circuits

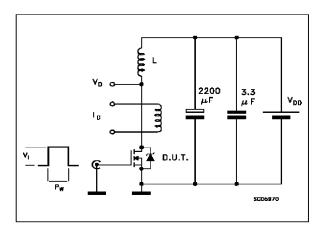
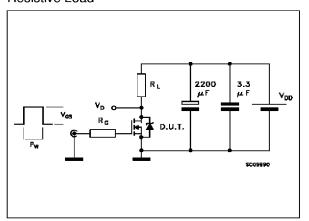



Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Reverse Recovery Time

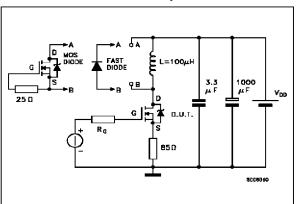
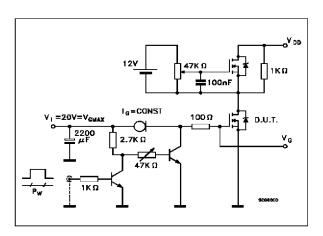



Fig. 2: Unclamped Inductive Waveforms

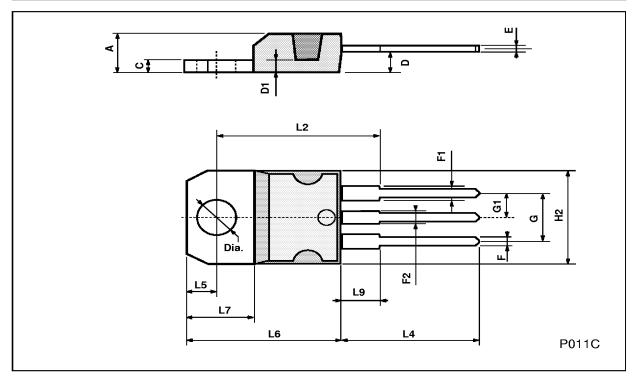
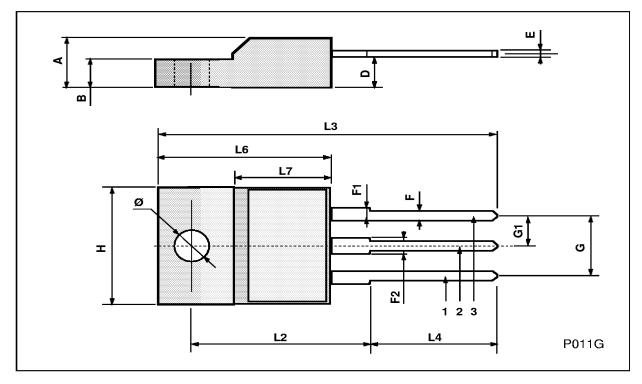


Fig. 4: Gate Charge Test Circuit


TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

ISOWATT220 MECHANICAL DATA

DIM		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.4		0.7	0.015		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

