## 32K x 8 LOW VOLTAGE CMOS STATIC RAM

## MARCH 2006

## FUNCTIONAL BLOCK DIAGRAM

## FEATURES

- High-speed access time: 20, 45 ns
- Automatic power-down when chip is deselected
- CMOS low power operation
- $17 \mu \mathrm{~W}$ (typical) CMOS standby
- 50 mW (typical) operating
- TTL compatible interface levels
- Single 3.3V power supply
- Fully static operation: no clock or refresh required
- Three-state outputs
- Industrial and Automotive temperatures available
- Lead-free available


## DESCRIPTION

The $I S S I$ IS62/65LV256AL is a very high-speed, low power, 32,768 -word by 8 -bit static RAM. It is fabricated power, 32,768 -word by 8 -bit static RAM. It is fabricated
using ISSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 15 ns maximum.

When $\overline{\text { CE }}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation is reduced to $150 \mu \mathrm{~W}$ (typical) with CMOS input levels.

Easy memory expansion is provided by using an active LOW Chip Enable ( $\overline{\mathrm{CE}}$ ). The active LOW Write Enable (WE) controls both writing and reading of the memory.

The IS62/65LV256AL is available in the JEDEC standard 28 -pin SOJ, 28 -pin SOP, and the 28 -pin 450 -mil TSOP package. .

PIN CONFIGURATION
28-Pin SOJ/ 28-pin SOP


## PIN DESCRIPTIONS

| AO-A14 | Address Inputs |
| :--- | :--- |
| $\overline{\mathrm{CE}}$ | Chip Enable Input |
| $\overline{\mathrm{OE}}$ | Output Enable Input |
| $\overline{\mathrm{WE}}$ | Write Enable Input |
| I/O0-I/O7 | Input/Output |
| VDD | Power |
| GND | Ground |

## PIN CONFIGURATION

## 28-Pin TSOP



TRUTH TABLE

| Mode | $\overline{\text { WE }}$ | $\overline{\mathbf{C E}}$ | $\overline{\mathbf{O E}}$ | I/O Operation | Vdd Current |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Not Selected <br> (Power-down) | X | H | X | High-Z | IsB1, IsB2 |
| Output Disabled | H | L | H | High-Z | Icc1, Icc2 |
| Read | H | L | L | Dout | Icc1, Icc2 |
| Write | L | L | X | Din | Icc1, Icc2 |

## ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

| Symbol | Parameter | Value | Unit |
| :--- | :--- | :---: | :---: |
| VTERM | Terminal Voltage with Respect to GND | -0.5 to +4.6 | V |
| TBIAS | Temperature Under Bias | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| TstG | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| PT | Power Dissipation | 0.5 | W |
| lout | DC Output Current (LOW) | 20 | mA |

## Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

| Part No. | Range | Ambient Temperature | VDD |
| :--- | :--- | :---: | :---: |
| IS62LV256AL | Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $3.3 \mathrm{~V}+10 \%$ |
| IS62LV256AL | Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $3.3 \mathrm{~V} \pm 10 \%$ |
| IS65LV256AL | Automotive | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3.3 \mathrm{~V} \pm 10 \%$ |

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

| Symbol | Parameter | Test Conditions |  | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vон | Output HIGH Voltage | $\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{IOH}=-2.0 \mathrm{~mA}$ |  | 2.4 | - | V |
| Vol | Output LOW Voltage | $\mathrm{VDD}=\mathrm{Min} ., \mathrm{loL}=4.0 \mathrm{~mA}$ |  | - | 0.4 | V |
| VIH | Input HIGH Voltage |  |  | 2.2 | VDD +0.3 | V |
| VIL | Input LOW Voltage ${ }^{(1)}$ |  |  | -0.3 | 0.8 | V |
| ILI | Input Leakage | $\mathrm{GND} \leq \mathrm{V}$ IN $\leq \mathrm{V}_{\mathrm{DD}}$ | Com. Ind. Auto. | $\begin{gathered} -1 \\ -2 \\ -10 \end{gathered}$ | $\begin{gathered} 1 \\ 2 \\ 10 \end{gathered}$ | $\mu \mathrm{A}$ |
| ILO | Output Leakage | GND $\leq$ Vout $\leq$ VDD, Outputs Disabled | Com. Ind. Auto. | $\begin{gathered} \hline-1 \\ -2 \\ -10 \end{gathered}$ | $\begin{gathered} 1 \\ 2 \\ 10 \end{gathered}$ | $\mu \mathrm{A}$ |

## Notes:

1. $\mathrm{VIL}=-3.0 \mathrm{~V}$ for pulse width less than 10 ns .
2. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

POWER SUPPLY CHARACTERISTICS ${ }^{(1)}$ (Over Operating Range)

| Symbol | Parameter | Test Conditions |  | $-20 \mathrm{~ns}$ <br> Min. Max. | -45 ns <br> Min. Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Icc1 | Vdd Operating Supply Current | $\begin{aligned} & \text { VDD }=\text { Max., } \overline{\mathrm{CE}}=\mathrm{VIL} \\ & \text { Iout }=0 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | Com. Ind. Auto. | $\begin{array}{lc} \hline- & 4 \\ - & 5 \\ - & - \end{array}$ | $\begin{array}{ll} \hline- & 4 \\ - & 5 \\ - & 8 \end{array}$ | mA |
| Icc2 | Vdd Dynamic Operating Supply Current | $\begin{aligned} & \text { VDD }=\text { Max., } \overline{\mathrm{CE}}=\text { VIL } \\ & \text { lout }=0 \mathrm{~mA}, \mathrm{f}=\mathrm{f} \text { MAX } \end{aligned}$ | Com. <br> Ind. <br> Auto. <br> typ. ${ }^{(2)}$ | $\begin{array}{ll} - & 20 \\ - & 25 \\ - & - \\ \hline \end{array}$ | $\begin{array}{ll} - & 10 \\ - & 12 \\ -\quad & 20 \\ 7 \end{array}$ | mA |
| ISB1 | TTL Standby Current (TTL Inputs) | $\begin{aligned} & \text { VDD = Max., } \\ & \text { VIN }=\text { VIH or VIL } \\ & \overline{C E} \geq \text { VIH }, f=0 \end{aligned}$ | Com. Ind. Auto. | $\begin{array}{ll} - & 1.5 \\ - & 1.8 \\ - & - \end{array}$ | $\begin{array}{lc} - & 1.5 \\ - & 1.8 \\ - & 2 \end{array}$ | mA |
| ISB2 | CMOS Standby Current (CMOS Inputs) | $\begin{aligned} & \mathrm{VDD}=\mathrm{Max} ., \\ & \overline{\mathrm{CE}} \leq \mathrm{VDD}-0.2 \mathrm{~V}, \\ & \mathrm{~V} \text { IN }>\operatorname{VDD}-0.2 \mathrm{~V} \text {, or } \\ & \mathrm{VIN} \leq 0.2 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$ | Com. <br> Ind. <br> Auto. <br> typ. ${ }^{(2)}$ | $\begin{array}{ll} - & 15 \\ - & 20 \\ - & - \\ \hline \end{array}$ | $\begin{array}{ll} - & 15 \\ - & 20 \\ -\quad 50 \\ \hline \end{array}$ | $\mu \mathrm{A}$ |

## Note:

1. At $f=f m A x$, address and data inputs are cycling at the maximum frequency, $f=0$ means no input lines change.
2. Typical values are measured at $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and not $100 \%$ tested.

CAPACITANCE ${ }^{(1,2)}$

| Symbol | Parameter | Conditions | Max. | Unit |
| :--- | :--- | :---: | :---: | :---: |
| CIN | Input Capacitance | $\mathrm{VIN}=0 \mathrm{~V}$ | 6 | pF |
| Cout | Output Capacitance | Vout $=0 \mathrm{~V}$ | 5 | pF |

## Notes:

1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}$.

READ CYCLE SWITCHING CHARACTERISTICS ${ }^{(1)}$ (Over Operating Range)

| Symbol | Parameter | -20 ns |  | -45 ns |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| tra | Read Cycle Time | 20 | - | 45 | - | ns |
| $t_{\text {A }}$ | Address Access Time | - | 20 | - | 45 | ns |
| tora | Output Hold Time | 2 | - | 2 | - | ns |
| tace | $\overline{\mathrm{CE}}$ Access Time | - | 20 | - | 45 | ns |
| tooe | $\overline{\text { OE Access Time }}$ | - | 10 | - | 25 | ns |
| tizoE ${ }^{(2)}$ | $\overline{\text { OE }}$ to Low-Z Output | 0 | - | 0 | - | ns |
| thzoE ${ }^{(2)}$ | $\overline{\text { OE }}$ to High-Z Output | - | 9 | 0 | 20 | ns |
| tIICEE ${ }^{(2)}$ | $\overline{\mathrm{CE}}$ to Low-Z Output | 3 | - | 3 | - | ns |
| thzce ${ }^{(2)}$ | $\overline{\text { CE }}$ to High-Z Output | - | 9 | 0 | 20 | ns |
| tpu ${ }^{(3)}$ | $\overline{\text { CE }}$ to Power-Up | 0 | - | 0 | - | ns |
| tpo ${ }^{(3)}$ | $\overline{\mathrm{CE}}$ to Power-Down | - | 18 | - | 30 | ns |

## Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading specified in Figure 1.
2. Tested with the load in Figure 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage. Not $100 \%$ tested.
3. Not $100 \%$ tested.

## AC TEST CONDITIONS

| Parameter | Unit |
| :--- | :---: |
| Input Pulse Level | OV to 3.0V |
| Input Rise and Fall Times | 3 ns |
| Input and Output Timing <br> and Reference Levels | 1.5 V |
| Output Load | See Figures 1 and 2 |

## AC TEST LOADS



Figure 1.


Figure 2.

## AC WAVEFORMS

READ CYCLE NO. $1^{(1,2)}$


READ CYCLE NO. $2^{(1,3)}$


## Notes:

1. WE is HIGH for a Read Cycle.
2. The device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{VIL}$.
3. Address is valid prior to or coincident with $\overline{\mathrm{CE}}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS ${ }^{(1,3)}$ (Over Operating Range)

| Symbol | Parameter | -20 ns |  | -45 ns |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| twc | Write Cycle Time | 20 | - | 45 | - | ns |
| tsce | $\overline{\mathrm{CE}}$ to Write End | 15 | - | 35 | - | ns |
| taw | Address Setup Time to Write End | 14 | - | 25 | - | ns |
| tha | Address Hold from Write End | 0 | - | 0 | - | ns |
| tsA | Address Setup Time | 0 | - | 0 | - | ns |
| tPWE ${ }^{(4)}$ | $\overline{\text { WE Pulse Width }}$ | 14 | - | 25 | - | ns |
| tsD | Data Setup to Write End | 13 | - | 20 | - | ns |
| thD | Data Hold from Write End | 0 | - | 0 | - | ns |
| tHZWE ${ }^{(2)}$ | $\overline{\text { WE LOW }}$ to High-Z Output | - | 8 | - | 20 | ns |
| tızwE ${ }^{(2)}$ | $\overline{\text { WE }}$ HIGH to Low-Z Output | 0 | - | 0 | - | ns |

## Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading specified in Figure 1.
2. Tested with the load in Figure 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage. Not $100 \%$ tested.
3. The internal write time is defined by the overlap of $\overline{C E}$ LOW and $\overline{W E}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
4. Tested with OE HIGH.

## AC WAVEFORMS

WRITE CYCLE NO. 1 ( $\overline{\text { WE }}$ Controlled) $)^{(1,2)}$


WRITE CYCLE NO. 2 ( $\overline{\text { CE Controlled })^{(1,2)}}$


## Notes:

1. The internal write time is defined by the overlap of $\overline{C E}$ LOW and $\overline{W E}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
2. I/O will assume the High-Z state if $\overline{\mathrm{OE}} \geq \mathrm{V} \mathrm{IH}$.

## DATA RETENTION SWITCHING CHARACTERISTICS

| Symbol | Parameter | Test Condition |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VDR | Vdd for Data Retention | See Data Retention Waveform |  | 2.0 |  | 3.6 | V |
| IDR | Data Retention Current | $\begin{aligned} & \mathrm{VDD}=2.0 \mathrm{~V}, \overline{\mathrm{CE}} \geq \mathrm{VDD}-0.2 \mathrm{~V} \\ & \mathrm{VIN} \geq \mathrm{VDD}-0.2 \mathrm{~V}, \text { or } \operatorname{VIN} \leq \mathrm{V} s s+0.2 \mathrm{~V} \end{aligned}$ | Com. Ind. Auto. typ. ${ }^{(1)}$ | — | $\frac{-}{2}$ | $\begin{aligned} & 15 \\ & 20 \\ & 50 \end{aligned}$ | $\mu \mathrm{A}$ |
| tsDR | Data Retention Setup Time | See Data Retention Waveform |  | 0 |  | - | ns |
| trdR | Recovery Time | See Data Retention Waveform |  | trc |  | - | ns |

## Note:

1. Typical Values are measured at $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and not $100 \%$ tested.

## DATA RETENTION WAVEFORM ( $\overline{\mathrm{CE}}$ Controlled)



ORDERING INFORMATION
Commercial Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

| Speed (ns) | Order Part No. | Package |
| :---: | :--- | :--- |
| 20 | IS62LV256AL-20T | 450-mil TSOP |
|  | IS62LV256AL-20TL | 450-mil TSOP, Lead-free |
|  | IS62LV256AL-20J | 300-mil Plastic SOJ |
|  | IS62LV256AL-20JL | 300-mil Plastic SOJ, Lead-free |
| 45 | IS62LV256AL-45T | 450-mil TSOP |
|  | IS62LV256AL--45TL | 450-mi TSOP, Lead-free |
|  | IS62LV256AL-45J | 300-mil Plastic SOJ |

Industrial Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Speed (ns) | Order Part No. | Package |
| :---: | :--- | :--- |
| 20 | IS62LV256AL-20TI | 450 -mil TSOP |
|  | IS62LV256AL-20TLI | 450-mil TSOP, Lead-free |
|  | IS62LV256AL-20JI | 300-mil Plastic SOJ |
|  | IS62LV256AL-20JLI | 300-mil Plastic SOJ, Lead-free |
| 45 | IS62LV256AL-45TI | 450 -mil TSOP |
|  | IS62LV256AL-45TLI | 450 -mil TSOP, Lead-free |
|  | IS62LV256AL-45JI | 300-mil Plastic SOJ |
|  | IS62LV256AL--45UI | 330--mil laastic SOP |
|  | IS62LV256AL-45ULI | 330-mil Plastic SOP, Lead-free |

Automotive Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

| Speed (ns) | Order Part No. | Package |
| :---: | :--- | :--- |
| 45 | IS65LV256AL-45TA3 | 450-mil TSOP |
|  | IS65LV256AL-45TLA3 | 450-mil TSOP, Lead-free |
|  | IS65LV256AL-45UA3 | 330-mil Plastic SOP |
|  | IS65LV256AL-45ULA3 | 330-mil Plastic SOP, Lead-free |

Plastic TSOP - 28-pins
Package Code: T (Type I)


| Plastic TSOP (T-Type I) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Millimeters |  |  |  | Inches |  |
| Symbol | Min | Max | Min | Max |  |
| Ref. Std. | 28 |  |  |  |  |
| No. Leads | 28 |  |  |  |  |
| A | 1.00 | 1.20 | 0.037 | 0.047 |  |
| A1 | 0.05 | 0.20 | 0.002 | 0.008 |  |
| B | 0.16 | 0.27 | 0.006 | 0.011 |  |
| C | 0.10 | 0.20 | 0.004 | 0.008 |  |
| D | 7.90 | 8.10 | 0.308 | 0.316 |  |
| E | 11.70 | 11.90 | 0.456 | 0.465 |  |
| H | 13.20 | 13.60 | 0.515 | 0.531 |  |
| e | 0.55 | BSC | 0.022 | BSC |  |
| L | 0.30 | 0.70 | 0.011 | 0.027 |  |
| $\alpha$ | $0^{\circ}$ | $5^{\circ}$ | $0^{\circ}$ | $5^{\circ}$ |  |
|  |  |  |  |  |  |

Notes:

1. Controlling dimension: millimeters, unless otherwise specified.
2. $B S C=$ Basic lead spacing between centers.
3. Dimensions D and E do not include mold flash protrusions and should be measured from the bottom of the package.
4. Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

## 300-mil Plastic SOJ <br> Package Code: J



MILLIMETERS
INCHES

| Sym. | Min. | Typ. | Max. | Min. | Typ | . Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. Leads |  | 24/26 |  |  |  |  |
| A | - | - | 3.56 | - | - | 0.140 |
| A1 | 0.64 | - | - | 0.025 | - | - |
| A2 | 2.41 | - | 2.67 | 0.095 | - | 0.105 |
| b | 0.41 | - | 0.51 | 0.016 | - | 0.020 |
| B | 0.66 | - | 0.81 | 0.026 | - | 0.032 |
| C | 0.20 | - | 0.25 | 0.008 | - | 0.010 |
| D | 17.02 | - | 17.27 | 0.670 | - | 0.680 |
| E | 8.26 | - | 8.76 | 0.325 | - | 0.345 |
| E1 | 7.49 | - | 7.75 | 0.295 | - | 0.305 |
| E2 | 6.27 | - | 7.29 | 0.247 | - | 0.287 |
| e | 1.27 BSC |  |  | 0.050 BSC |  |  |

Notes:

1. Controlling dimension: inches, unless otherwise specified.
2. $B S C=$ Basic lead spacing between centers.
3. Dimensions D and E1 do not include mold flash protrusions and should be measured from the bottom of thepackage.
4. Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.
[^0]
## 300-mil Plastic SOJ

Package Code: J

|  | MILLIMETERS |  |  | INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sym. | Min. | Typ. | Max. | Min. | Typ | Max. |
| N0. |  |  |  |  |  |  |
| A | - | - | 3.56 | - | - | 0.140 |
| A1 | 0.64 | - | - | 0.025 | - | - |
| A2 | 2.41 | - | 2.67 | 0.095 | - | 0.105 |
| b | 0.41 | - | 0.51 | 0.016 | - | 0.020 |
| B | 0.66 | - | 0.81 | 0.026 | - | 0.032 |
| C | 0.20 | - | 0.25 | 0.008 | - | 0.010 |
| D | 18.29 | - | 18.54 | 0.720 | - | 0.730 |
| E | 8.26 | - | 8.76 | 0.325 | - | 0.345 |
| E1 | 7.49 | - | 7.75 | 0.295 | - | 0.305 |
| E2 | 6.27 | - | 7.29 | 0.247 | - | 0.287 |
| e | 1.27 BSC |  |  | 0.050 BSC |  |  |

## MILLIMETERS

## INCHES

Sym. Min. Typ. Max. Min. Typ. Max.
NO.
Leads 32

| A | - | - | 3.56 | - | - | 0.140 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 0.64 | - | - | 0.025 | - | - |
| A2 | 2.41 | - | 2.67 | 0.095 | - | 0.105 |
| b | 0.41 | - | 0.51 | 0.016 | - | 0.020 |
| B | 0.66 | - | 0.81 | 0.026 | - | 0.032 |
| C | 0.20 | - | 0.25 | 0.008 | - | 0.010 |
| D | 20.83 | - | 21.08 | 0.820 | - | 0.830 |
| E | 8.26 | - | 8.76 | 0.325 | - | 0.345 |
| E1 | 7.49 | - | 7.75 | 0.295 | - | 0.305 |
| E2 | 6.27 | - | 7.29 | 0.247 | - | 0.287 |
| e | 1.27 BSC |  |  | 0.050 BSC |  |  |

330-mil Plastic SOP
Package Code: U (28-pin)


Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.


[^0]:    Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

