ITC1100 1000 WATT, 50V, Pulsed Avionics 1030 MHz ### **GENERAL DESCRIPTION** The ITC1100 is a common base bipolar transistor. It is designed for pulsed interrogator systems in the frequency band of 1030 MHz. The device has gold thin-film metallization for proven high MTTF. The transistor includes input returns for improved output rise time . Low thermal resistance package reduces junction temperature which extends the life time of the product. ## CASE OUTLINE 55SW, Style 1 Common Base ### ABSOLUTE MAXIMUM RATINGS ### **Power Dissipation** Device Dissipation 1 @25°C (P_{d}) 3400 W Thermal Resistance 1 (θ_{JC}) .08°C/W ### **Voltage and Current** Collector-Base Voltage 65V Emitter-Base Voltage 3.5V Collector Current 80A ### **Temperatures** Storage Temperature -40 to +150°C Operating Junction Temperature¹ +200°C #### **ELECTRICAL CHARACTERISTICS @ 25°C** | SYMBOL | CHARACTERISTICS | TEST
CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------|--------------------------------------|--------------------|-----|-----|-----|-------| | BVebo ² | Emitter-Base Breakdown(open) | Ie=50mA | 3.5 | | | V | | BVces | Collector-Emitter Breakdown(shorted) | Ic=30mA | 65 | | | V | | BVceo ² | Collector-Emitter Breakdown (open) | Ic=30mA | 30 | | | V | | $h_{\rm FE}^{-2}$ | DC Current Gain | Ic=5A, Vce=5V | 20 | | 100 | β | #### FUNCTIONAL CHARACTERISTICS @ 25°C | G_{PB} | Common Base Power Gain | V _{cc} = 50V, F = 1030MHz,
P _{out} =1000W Peak Min, PW=1µS, DF=1% | 10 | 10.5 | | dB | |------------------|--|--|--------------|------|-----|----| | η_c | Collector Efficiency | $V_{cc} = 50V, F = 1030MHz,$ $P_{out} = 1000W Peak Min, PW = 1\mu S, DF = 1\%$ | 45 | 50 | | % | | t _r | Rise Time | $V_{cc} = 50V, F = 1030MHz,$ | | 50 | 80 | nS | | | The second with the contract of o | P _{out} =1000W Peak Min, PW=1µS, DF=1% | | | | | | VSWR | Output Load Mismatch | $V_{cc} = 50V, F = 1030MHz,$
$P_{out}=1000W Peak Min, PW=1\mu S, DF=1\%$ | | | 4:1 | Ψ | | $Z_{ m in}$ | Series Input Impedance (Circuit source impedance @ test cond.) | $V_{cc} = 50V, F = 1030MHz,$ $P_{out} = 1000W \ Peak \ Min, \ PW = 1\mu S, DF = 1\%$ | 0.89 - j2.3 | | Ω | | | Z _{out} | Series Output Impedance (Circuit load impedance @ test cond.) | $V_{cc} = 50V, F = 1030MHz, \\ P_{out} = 1000W Peak Min, PW = 1\mu S, DF = 1\%$ | 0.54 - j2.64 | | | Ω | At rated output power and pulse conditions Not measurable due to EB Returns