－Wide Operating Voltage Range of 2 V to 6 V
－High－Current Inverting Outputs Drive Up To 10 LSTTL Loads
－Low Power Consumption，80－$\mu \mathrm{A}$ Max Icc
－Typical $\mathrm{t}_{\mathrm{pd}}=14 \mathrm{~ns}$
－± 4－mA Output Drive at 5 V
－Low Input Current of $1 \mu \mathrm{~A}$ Max
－8－Bit Parallel－Out Storage Register

Performs Serial－to－Parallel Conversion With

 Storage－Asynchronous Parallel Clear
－Active－High Decoder
－Enable Input Simplifies Expansion
－Expandable for n－Bit Applications
－Four Distinct Functional Modes

description／ordering information

These 8－bit addressable latches are designed for general－purpose storage applications in digital systems．Specific uses include working registers， serial－holding registers，and active－high decoders or demultiplexers．They are multifunctional devices capable of storing single－line data in eight addressable latches and being a 1 －of－ 8 decoder or demultiplexer with active－high outputs．

SN54HC259 ．．．J OR W PACKAGE
 SN74HC259 ．．D D，N，NS，OR PW PACKAGE

 （TOP VIEW）

SN54HC259 ．．．FK PACKAGE
（TOP VIEW）

NC－No internal connection

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP－SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP－N	Tube of 25	SN74HC259N	SN74HC259N
	SOIC－D	Tube of 40	SN74HC259D	HC259
		Reel of 2500	SN74HC259DR	
		Reel of 250	SN74HC259DT	
	SOP－NS	Reel of 2000	SN74HC259NSR	HC259
	TSSOP－PW	Reel of 2000	SN74HC259PWR	HC259
		Reel of 250	SN74HC259PWT	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP－J	Tube of 25	SNJ54HC259J	SNJ54HC259J
	CFP－W	Tube of 150	SNJ54HC259W	SNJ54HC259W
	LCCC－FK	Tube of 55	SNJ54HC259FK	SNJ54HC259FK

\dagger Package drawings，standard packing quantities，thermal data，symbolization，and PCB design guidelines are available at www．ti．com／sc／package．

SN54HC259, SN74HC259

8-BIT ADDRESSABLE LATCHES

SCLS134E - DECEMBER 1982 - REVISED SEPTEMBER 2003

description/ordering information (continued)

Four distinct modes of operation are selectable by controlling the clear (CLR) and enable ($\overline{\mathrm{G}}$) inputs. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch follows the data input, with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, \bar{G} should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output follows the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

Function Tables

FUNCTION				
INPUTS OUTPUT OF ADDRESSED LATCH EACH OTHER OUTPUT FUNCTION $\overline{\text { CLR }}$ $\overline{\mathrm{G}}$ D Qio $_{\mathrm{iO}}$ Addressable latch H L Qio QiO Memory H H L L L D L 8-line demultiplexer L H L L Clear				

LATCH SELECTION

SELECT INPUTS			LATCHADDRESSED
S2	S1	S0	
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3
H	L	L	4
H	L	H	5
H	H	L	6
H	H	H	7

logic diagram

Pin numbers shown are for the $\mathrm{D}, \mathrm{J}, \mathrm{N}, \mathrm{NS}, \mathrm{PW}$, and W packages.

SN54HC259, SN74HC259

8-BIT ADDRESSABLE LATCHES

logic diagram, each internal latch (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right.$ or $\left.\mathrm{V}_{1}>\mathrm{V}_{\text {CC }}\right)$ (see Note 1)	$\pm 20 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$ (see Note 1)	$\pm 20 \mathrm{~mA}$
Continuous output current, $\mathrm{I}_{\mathrm{O}}\left(\mathrm{V}_{\mathrm{O}}=0\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$	$\pm 25 \mathrm{~mA}$
Continuous current through V_{CC} or GND	$\pm 50 \mathrm{~mA}$
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): D package	$73^{\circ} \mathrm{C} / \mathrm{W}$
N package	$67^{\circ} \mathrm{C} / \mathrm{W}$
NS package	$64^{\circ} \mathrm{C} / \mathrm{W}$
PW package	$108^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

				54HC25			74HC25		
			MIN	NOM	MAX	MIN	NOM	MAX	
V CC	Supply voltage		2	5	6	2	5	6	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5			0.5	
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35			1.35	v
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8			1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	0		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000			1000	
$\Delta t / \Delta v$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500			500	ns
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400			400	
T_{A}	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54HC259, SN74HC259 8-BIT ADDRESSABLE LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC259		SN74HC259		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{l} \mathrm{OH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{IOH}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{IOH}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{IOL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{IOL}=4 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{IOL}=5.2 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \quad \mathrm{I} \mathrm{O}=0$		6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		3	10		10		10	pF	

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

				$\mathrm{T}_{\mathrm{A}}=$	$5^{\circ} \mathrm{C}$	SN54	C259	SN74	C259	
			VCC	MIN	MAX	MIN	MAX	MIN	MAX	
			2 V	80		120		100		
		$\overline{\text { CLR }}$ low	4.5 V	16		24		20		
			6 V	14		20		17		
$t^{\text {w }}$	se duration		2 V	80		120		100		
		$\overline{\mathrm{G}}$ low	4.5 V	16		24		20		
			6 V	14		20		17		
			2 V	75		115		95		
${ }^{\text {tsu }}$	Setup time, data or address before $\overline{\mathrm{G}} \uparrow$		4.5 V	15		23		19		ns
			6 V	13		20		16		
			2 V	5		5		5		
th	Hold time, data or address after $\overline{\mathrm{G}} \uparrow$		4.5 V	5		5		5		ns
			6 V	5		5		5		

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC259		SN74HC259		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPHL	$\overline{\mathrm{CLR}}$	Any Q	2 V		60	150		225		190	ns
			4.5 V		18	30		45		38	
			6 V		14	26		38		32	
${ }^{\text {tpd }}$	Data	Any Q	2 V		56	130		195		165	ns
			4.5 V		17	26		39		33	
			6 V		13	22		33		28	
	Address	Any Q	2 V		74	200		300		250	
			4.5 V		21	40		60		50	
			6 V		17	34		51		43	
	$\overline{\mathrm{G}}$	Any Q	2 V		66	170		255		215	
			4.5 V		20	34		51		43	
			6 V		16	29		43		37	
t_{t}		Any	2 V		28	75		110		95	ns
			4.5 V		8	15		22		19	
			6 V		6	13		19		16	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C $_{\text {pd }}$	Power dissipation capacitance per latch	No load	33

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms
www.ti.com
28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
85519012A	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
8551901EA	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
8551901FA	ACTIVE	CFP	W	16	1	None	Call TI	Level-NC-NC-NC
JM38510/65402BEA	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
SN54HC259J	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC
SN74HC259D	ACTIVE	SOIC	D	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74HC259DR	ACTIVE	SOIC	D	16	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74HC259DT	ACTIVE	SOIC	D	16	250	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74HC259N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74HC259NSR	ACTIVE	SO	NS	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74HC259PWLE	OBSOLETE	TSSOP	PW	16		None	Call TI	Call TI
SN74HC259PWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74HC259PWT	ACTIVE	TSSOP	PW	16	250	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SNJ54HC259FK	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
SNJ54HC259J	ACTIVE	CDIP	J	16	1	None	Call TI	Level-NC-NC-NC

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
None: Not yet available Lead (Pb-Free).
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J ($\mathrm{R}-\mathrm{GDIP}-\mathrm{T} * *$)
CERAMIC DUAL IN-LINE PACKAGE
14 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

4040180-3/D 07/03
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC M0-092AC

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length ($\operatorname{Dim} A$).
(D) The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

PIM PINS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

