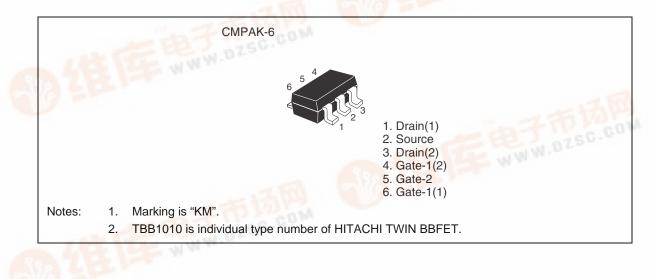


Twin Build in Biasing Circuit MOS FET IC VHF/VHF RF Amplifier


ADE-208-1607B (Z)

3rd. Edition Feb. 2003

Features

- Small SMD package CMPAK-6 built in twin BBFET; To reduce using parts cost & PC board space.
- High $|yfs|=29mS \times 2$
- Suitable for World Standard Tuner RF amplifier.
- Very useful for total tuner cost reduction.
- Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200 V at C = 200 pF, Rs = 0 conditions.
- Provide mini mold packages; CMPAK-6

Outline

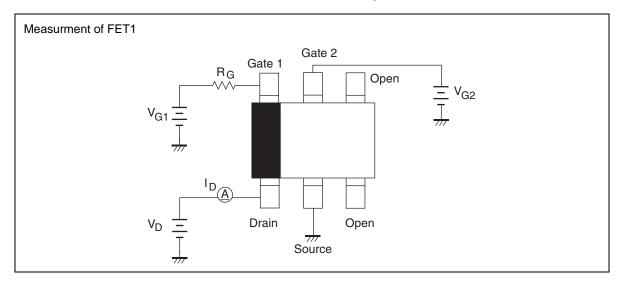
Absolute Maximum Ratings

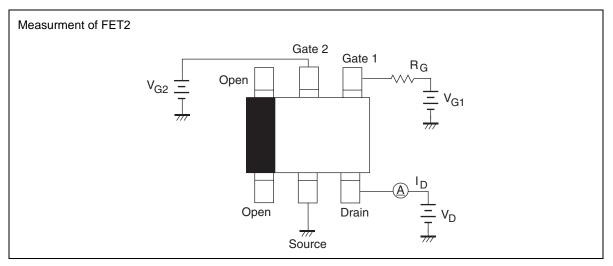
 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit	
Drain to source voltage	V _{DS}	6	V	
Gate1 to source voltage	V _{G1S}	+6 -0	V	
Gate2 to source voltage	V _{G2S}	+6 -0	V	
Drain current	Ι _D	30	mA	
Channel power dissipation	Pch ^{*3}	250	mW	
Channel temperature	Tch	150	°C	
Storage temperature	Tstg	-55 to +150	°C	

Notes: 3. Value on the glass epoxy board ($50mm \times 40mm \times 1mm$).

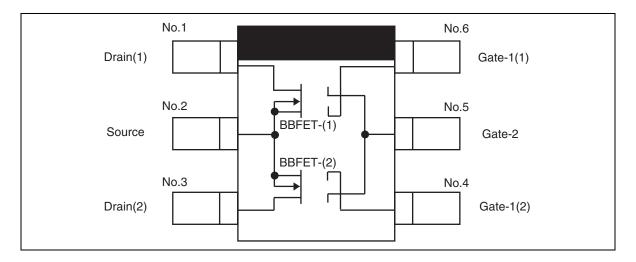
Electrical Characteristics


 $(Ta = 25^{\circ}C)$

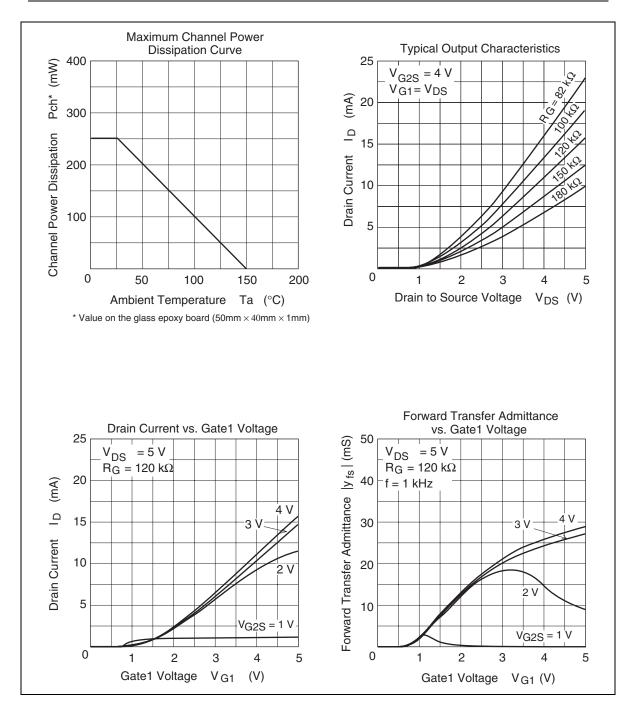

The below specification are applicable for FET1 and FET2 unit

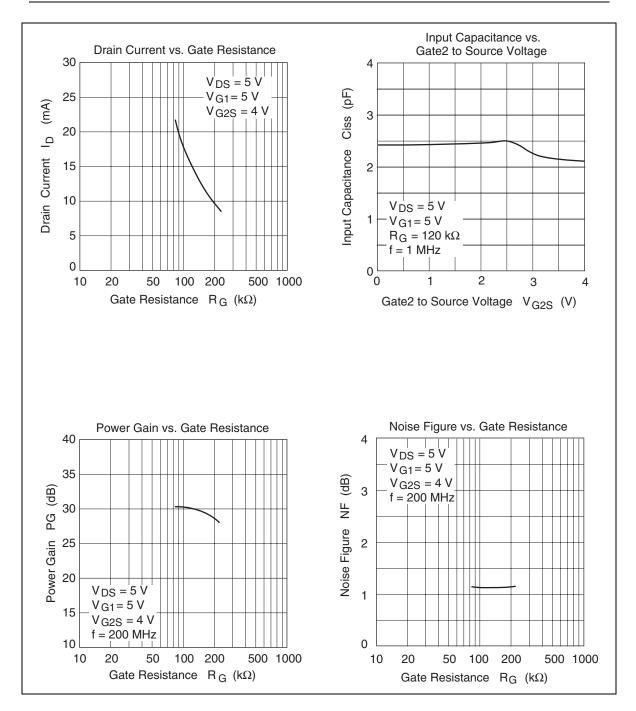
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	6	_	_	V	$I_D = 200 \ \mu\text{A}, \ V_{G1S} = V_{G2S} = 0$
Gate1 to source breakdown voltage	V _{(BR)G1SS}	+6	_	_	V	I_{G1} = +10 μ A, V_{G2S} = V_{DS} = 0
Gate2 to source breakdown voltage	V _{(BR)G2SS}	+6	_	_	V	I_{G2} = +10 μ A, V_{G1S} = V_{DS} = 0
Gate1 to source cutoff current	I _{G1SS}		—	+100	nA	V_{G1S} = +5 V, V_{G2S} = V_{DS} = 0
Gate2 to source cutoff current	I _{G2SS}		_	+100	nA	V_{G2S} = +5 V, V_{G1S} = V_{DS} = 0
Gate1 to source cutoff voltage	$V_{G1S(off)}$	0.6	_	1.1	V	$V_{DS} = 5 V, V_{G2S} = 4 V,$ $I_D = 100 \mu A$
Gate2 to source cutoff voltage	$V_{\text{G2S(off)}}$	0.6	_	1.1	V	$V_{DS} = 5 V, V_{G1S} = 5 V,$ $I_D = 100 \mu A$
Drain current	I _{D(op)}	12	16	20	mA	
Forward transfer admittance	y _{fs}	24	29	_	mS	
Input capacitance	Ciss	1.7	2.1	2.5	pF	$V_{DS} = 5 V, V_{G1} = 5 V$
Output capacitance	Coss	1.0	1.4	1.8	pF	V_{G2S} =4 V, R _G = 120 kΩ
Reverse transfer capacitance	Crss	—	0.03	0.05	pF	f = 1 MHz
Power gain	PG	25	30	_	dB	$V_{DS} = V_{G1} = 5 V, V_{G2S} = 4 V$
Noise figure	NF	_	1.1	1.8	dB	R_G = 120 k Ω , f = 200 MHz

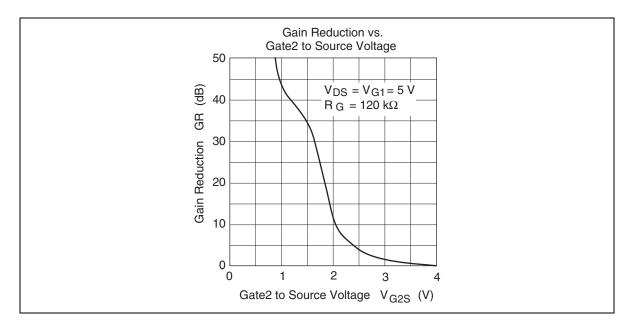
Test Circuits


• DC Biasing Circuit for Operating Characteristic Items (I_{D(op)}, |yfs|, Ciss, Coss, Crss, NF, PG)

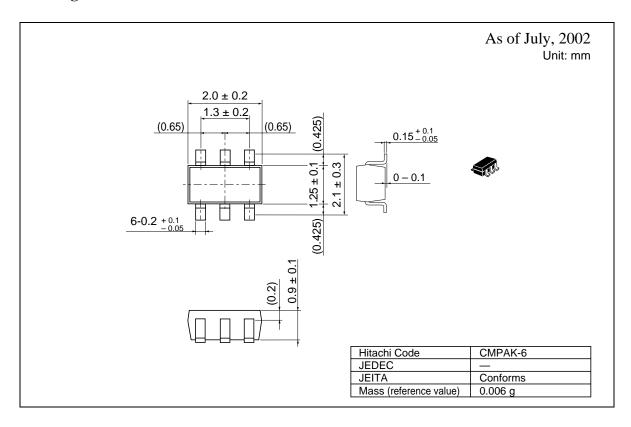



• Equivalent Circuit


• 200 MHz Power Gain, Noise Figure Test Circuit


RENESAS

?ENIESAS



RENESAS

Package Dimensions

Rev.2, Feb. 2003, page 9 of 10

Disclaimer

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Sales Offices

ITAC

Hitachi. Ltd.

Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109

URL http://www.hitachisemiconductor.com/

For further information write to:

Hitachi Semiconductor Hitachi Europe Ltd. (America) Inc. 179 East Tasman Drive San Jose, CA 95134 Tel: <1> (408) 433-1990 Maidenhead

Electronic Components Group Whitebrook Park Lower Cookham Road Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Europe GmbH Electronic Components Group Dornacher Str 3 D-85622 Feldkirchen Postfach 201, D-85619 Feldkirchen Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel: <1> (408) 433-1990 Maidenhead Tel: <65>-6538-6533/6538-8577 Fax: <1>(408) 433-0223 Berkshire SL6 8YA, United Kingdom Fax: <65>-6538-6933/6538-3877 URL : http://semiconductor.hitachi.com.sg

> Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://semiconductor.hitachi.com.tw

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F North Tower World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : <852>-2735-9218 Fax : <852>-2730-0281 URL · http://semiconductor hitachi com hk

Copyright © Hitachi, Ltd., 2003. All rights reserved. Printed in Japan. Colophon 7.0

