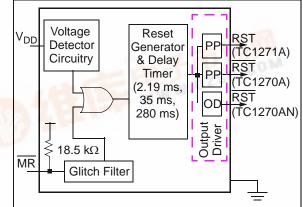

TC1270A/70AN/71A MICROCHIP

Voltage Supervisor with Manual Reset Input


Features:

- Precision voltage monitor
 - 2.63V, 2.93V, 3.08V, 4.38V and 4.63V trip points (Typical)
- Manual Reset input
- Reset Time-out Delay:
 - Standard: 280 ms (Typical)
 - Optional: 2.19 ms, and 35 ms (Typical)
- Power Consumption \leq 15 μ A max
- · No glitches on outputs during power-up
- · Active Low Output Options:
 - Push-Pull Output and Open-Drain Output
- Active High Output Option:
 - Push-Pull Output
- Replacement for (Specification compatible with):
 - TC1270, TC1271
 - TCM811, TCM812
- Fully static design
- Low voltage operation (1.0V)
- ESD protection:
 - ≥ 4 kV Human Body Model (HBM)
 - ≥ 400V Machine Model (MM)
- Extended (E) Temperature range: WWW.DZSC.COM
- -40°C to +125°C
- Package Options:
 - 4-lead SOT-143
 - 5-lead SOT-23
 - Pb-free Device

Device Features

Functional Block Diagram

	Outpu	Output		itput <u>ke () () ()</u>		ip (3)	e V)		GE "	WW.DZSU.
Device	Туре	Active Level	Reset Delay (ms) (Typ) ⁽³⁾	Reset Trip Point (V) ⁽³⁾	Voltage Range (V	Temperature Range	Packages	Comment		
TC1270A	Push-Pull	Low	250	-Con			SOT-143 ⁽²⁾ ,	Replaces TC1270 and		
100	1.	WW.	2.19,	4.63, 4.38,	1.0V	-40°C	SOT-23-5	TCM811		
TC1270AN	Open-Drain	Low	35,	3.08, 2.93,	to	to	SOT-23-5	New Option		
TC1271A	Push-Pull	High	280(1)	2.63 ⁽⁴⁾	5.5V	+125°C	SOT-143 ⁽²⁾ ,	Replaces TC1271 and		
							SOT-23-5	TCM812		

The 280 ms Reset Delay time-out is compatible with the TC1270, TC1271, TCM811, and TCM812 Note 1: devices.

2: 3: **4**·

The SOT-143 package is compatible with the TC1270, TC1271, TCM811, and TCM812 devices.

Custom Reset Trip Points and Reset Delays available, contact factory.

The TC1270/1 and TCM811/12 1.75V Trip Point Option is not supported.

1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings †

Supply Voltage (V _{DD} to V _{SS})+7.0V Input Current, V _{DD} 10 mA
Output Current, RESET, RESET10 mA
Voltage on all inputs and outputs
w.r.t. V _{SS} 0.6V to (V _{DD} + 1.0V)
Storage Temperature Range65°C to +150°C
Operating Temperature Range40°C to +125°C
Maximum Junction Temperature, T _S 150°C
ESD protection on all pins
Human Body Model $\geq 4 \ kV$ Machine Model $\geq 400V$

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratings only and functional operation of the device at those or any other conditions above those indicated in the operational listing of this specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise noted, $V_{DD} = 5V$ for L/M versions, $V_{DD} = 3.3V$ for T/S versions,
V_{DD} = 3V for R version, T_A = -40°C to +125°C. Typical values are at T_A = +25°C.

Parameter	Sym	Min	Typ ⁽¹⁾	Max	Units	Test Conditions
Operating Voltage Range	V _{DD}	1.0	_	5.5	V	
Supply Current	I _{DD}	—	7	15	μA	$V_{DD} > V_{TRIP}$, for L/M/R/S/T, $V_{DD} = 5.5V$
		—	4.75	10	μA	$V_{DD} > V_{TRIP}$, for R/S/T, $V_{DD} = 3.6V$
		—	10	15	μA	V _{DD} < V _{TRIP} , for L/M/R/S/T
Reset Trip Point	V _{TRIP}	4.54	4.63	4.72	V	TC127xAL: T _A = +25°C
Threshold ⁽³⁾		4.50	—	4.75	V	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$
		4.30	4.38	4.46	V	TC127xAM: T _A = +25°C
		4.25	—	4.50	V	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$
		3.03	3.08	3.14	V	TC127xAT: $T_A = +25^{\circ}C$
		3.00	_	3.15	V	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$
		2.88	2.93	2.98	V	TC127xAS: $T_A = +25^{\circ}C$
		2.85	—	3.00	V	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$
		2.72	2.77	2.82	V	TC127xA: ⁽⁵⁾ T _A = +25°C
		2.70	—	2.85	V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$
		2.58	2.63	2.68	V	TC127xAR: T _A = +25°C
		2.55	—	2.70	V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$

Note 1: Data in the Typical ("Typ") column is at 5V, +25°C, unless otherwise stated.

2: RST output for TC1270A, and TC1270AN, RST output for TC1271A.

- 3: TC127XA refers to either the TC1270A, TC1270AN or TC1271A device.
- 4: Hysteresis is within the V_{TRIP(MIN)} to V_{TRIP(MAX)} window.
- 5: Custom ordered Voltage Trip Point. Minimum order volume requirement.
- 6: This specification allows this device to be used in PIC® microcontroller applications that require the In-Circuit Serial Programming[™] (ICSP[™]) feature (see device-specific programming specifications for voltage requirements). The total time that the RST pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the RST pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to +70°C (+25°C preferred). For additional information, refer to Figure 2-41.

ELECTRICAL CHARACTERISTICS (CONTINUED)

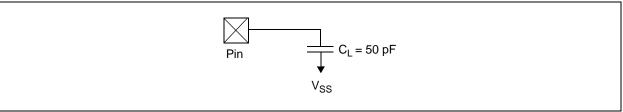
Electrical Characteristics: Unless otherwise noted, V _{DD} = 5V for L/M versions, V _{DD} = 3.3V for T/S versions,
V_{DD} = 3V for R version, T_A = -40°C to +125°C. Typical values are at T_A = +25°C.

$v_{DD} = 3 v I c$	or R version, I _A	$= -40^{-0}$ to) +125°C. T		liues are at	$I_A = +25$	·C.
Para	ameter	Sym	Min	Typ ⁽¹⁾	Max	Units	Test Conditions
Reset Threshold Tempco			—	±30	—	ppm/°C	
Reset Trip Point Hysteresis ⁽⁴⁾		V _{HYS}	—	0.3	—	%	Percentage of V _{TRIP} Voltage
MR Input H	igh Threshold	V _{IH}	2.3	_	—	V	$V_{DD} > V_{TRIP(MAX)}$, L/M only
			0.7 V _{DD}	—	—	V	$V_{DD} > V_{TRIP(MAX)}$, R/S/T only
MR Input Lo	ow Threshold	V _{IL}	—		0.8	V	$V_{DD} > V_{TRIP(MAX)}$, L/M only
			—	_	$0.25 V_{DD}$	V	$V_{DD} > V_{TRIP(MAX)}$, R/S/T only
MR Pull-up	Resistance		10	18.5	40	kΩ	
Open-Drain High Voltage on Output		V _{ODH}	_	_	13.5	V	Open-Drain Output pin only. $V_{DD} = 3.0V$, Time voltage > 5.5 applied $\leq 100s$. Current into pin limited to 2 mA +25°C operation recommended (Note 6)
Reset Output	TC1270A/ TC1270AN	V _{OL}	—	—	0.3	V	R/S/T only, $I_{SINK} = 1.2 \text{ mA}, V_{DD} = V_{TRIP(MIN)}$
Voltage Low ⁽²⁾	TC1271A		—	—	0.3	V	R/S/T only, I _{SINK} = 1.2 mA, V _{DD} = V _{TRIP(MAX)}
	TC1270A/ TC1270AN		_	—	0.4	V	L/M only, I _{SINK} = 3.2 mA, V _{DD} = V _{TRIP(MIN)}
	TC1271A		—	—	0.3	V	L/M only, I _{SINK} = 3.2 mA, V _{DD} = V _{TRIP(MAX)}
	TC1270A/ TC1270AN		—	_	0.3	V	L/M only, I _{SINK} = 50 μA, V _{DD} > 1.0V
Reset Output	TC1270A	V _{OH}	0.8 V _{DD}		_	V	R/S/T only, I _{SOURCE} = 500 μA, V _{DD} = V _{TRIP(MAX)}
Voltage High ⁽²⁾	TC1270A		V _{DD} - 1.5	—	—	V	L/M only, I _{SOURCE} = 800 µA, V _{DD} = V _{TRIP(MAX)}
	TC1271A		0.8 V _{DD}	—		V	$I_{\text{SOURCE}} = 500 \ \mu\text{A}, \ V_{\text{DD}} \leq V_{\text{TRIP}(\text{MIN})}$
Input Leaka	ige Current	١ _{IL}	_		±1	μA	$V_{PIN} = V_{DD}$
Open-Drain Leakage	RST Output	I _{OLOD}	_	_	1	μA	Open-Drain configuration only.
Capacitive I Specificatio Pins	Loading n on Output	C _{IO}	_		50	pF	

Note 1: Data in the Typical ("Typ") column is at 5V, +25°C, unless otherwise stated.

- 2: RST output for TC1270A, and TC1270AN, RST output for TC1271A.
- 3: TC127XA refers to either the TC1270A, TC1270AN or TC1271A device.
- 4: Hysteresis is within the V_{TRIP(MIN)} to V_{TRIP(MAX)} window.
- 5: Custom ordered Voltage Trip Point. Minimum order volume requirement.

6: This specification allows this device to be used in PIC® microcontroller applications that require the In-Circuit Serial Programming[™] (ICSP[™]) feature (see device-specific programming specifications for voltage requirements). The total time that the RST pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the RST pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to +70°C (+25°C preferred). For additional information, refer to Figure 2-41.


1.1 AC CHARACTERISTICS

1.1.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

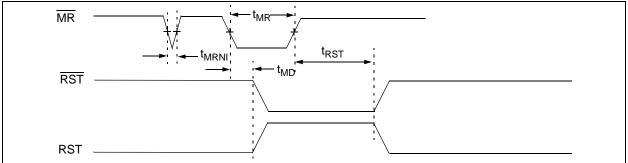
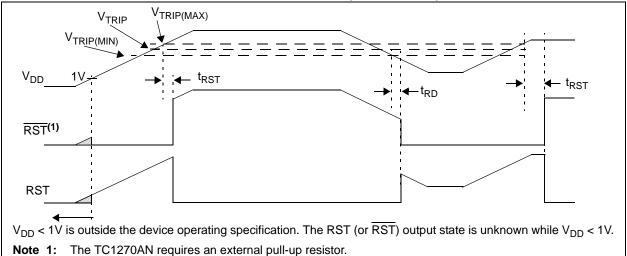

1. TppS2pp	bS	2. TppS				
Т						
F	Frequency	Т	Time			
E	Error					
Lowerca	se letters (pp) and their meanings:					
рр						
io	Input or Output pin	OSC	Oscillator			
rx	Receive	tx	Transmit			
bitclk	RX/TX BITCLK	RST	Reset			
drt	Device Reset Timer					
Upperca	se letters and their meanings:					
S						
F	Fall	Р	Period			
Н	High	R	Rise			
I	Invalid (High-impedance)	V	Valid			
L	Low	Z	High-impedance			

FIGURE 1-1: TEST LOAD CONDITIONS



1.1.2 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 1-2: MR PIN AND RESET PIN WAVEFORM

FIGURE 1-3: DEVICE VOLTAGE AND RESET PIN (ACTIVE LOW) WAVEFORM

TABLE 1-1: RESET AND DEVICE RESET TIMER REQUIREMENTS

Electrical Characteristics: Unless otherwise noted, $V_{DD} = 5V$ for L/M versions, $V_{DD} = 3.3V$ for T/S versions, $V_{DD} = 3V$ for R version, $T_A = -40^{\circ}$ C to +125°C. Typical values are at $T_A = +25^{\circ}$ C.									
Р	Sym	Min	Typ ⁽¹⁾	Max	Units	Test Conditions			
V _{DD} to Reset D	t _{RD}		50		μs	V _{DD} = V _{TRIP(MAX)} to V _{TRIP(MIN)} –125 mV			
Reset Active	TC127XAx B Vyy ⁽³⁾	t _{RST}	1.09	2.19	4.38	ms	$V_{DD} = V_{TRIP(MAX)}$		
Timeout	TC127XAx C Vyy ⁽³⁾		17.5	35	70	ms	$V_{DD} = V_{TRIP(MAX)}$		
Period	TC127XAxVyy ⁽³⁾		140	280	560	ms	$V_{DD} = V_{TRIP(MAX)}$		
MR Minimum	t _{MR}	10	—		μs				
MR Noise Imn	t _{MRNI}	_	0.1		μs				
MR to Reset F	Propagation Delay	t _{MD}	_	0.2	—	μs			

Note 1: Unless otherwise stated, data in the Typical ("Typ") column is at 5V, +25°C.

- 2: RST output for TC1270A, RST output for TC1271A.
- **3:** TC127XA refers to either the TC1270A, TC1270AN or TC1271A device. "x" indicated the selected Voltage Trip Point, while "yy" indicates the package code.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +1.0V$ to +5.5V, $V_{SS} = GND$.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Temperature Ranges									
Specified Temperature Range	Τ _Α	-40	—	+125	°C				
Operating Temperature Range	Τ _Α	-40	—	+125	°C				
Storage Temperature Range	T _A	-65	—	+150	°C				
Thermal Package Resistances									
Thermal Resistance, 5L-SOT-23	θ_{JA}	—	256	—	°C/W				
Thermal Resistance, 4L-SOT-143	θ_{JA}		426	_	°C/W				

2

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $T_A = -40^{\circ}C$ to +125°C.

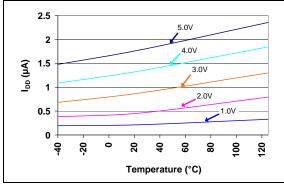


FIGURE 2-1: I_{DD} vs. Temperature (Reset Power-up Timer Inactive) (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

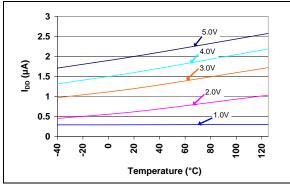


FIGURE 2-2:IDD vs. Temperature (ResetPower-up Timer Inactive)(TC1270AT, TC1270ANT, TC1271AT- 3.00V min. / 3.08V typ. / 3.15V max.).

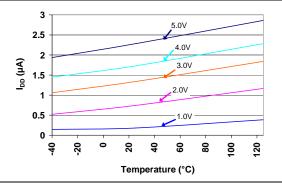


FIGURE 2-3: I_{DD} vs. Temperature (Reset Power-up Timer Inactive) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

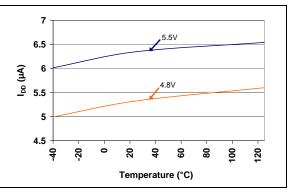


FIGURE 2-4: I_{DD} vs. Temperature (Reset Power-up Timer Active) (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

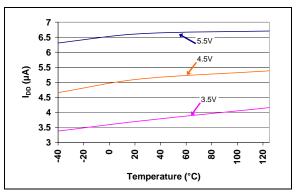


FIGURE 2-5: I_{DD} vs. Temperature (Reset Power-up Timer Active) (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

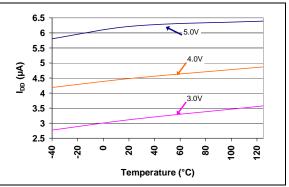
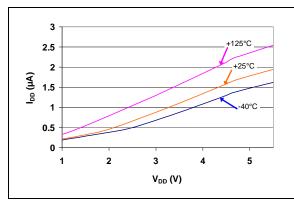
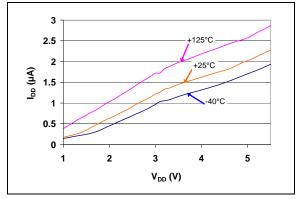
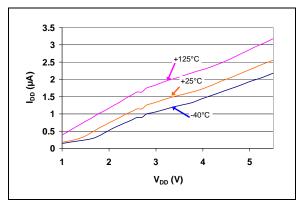


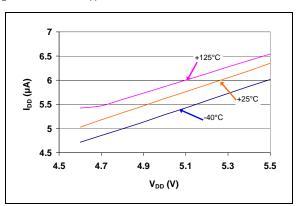
FIGURE 2-6: I_{DD} vs. Temperature (Reset Power-up Timer Active) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

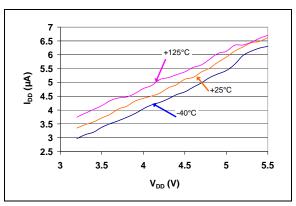
Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

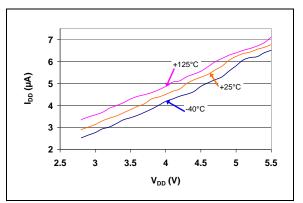



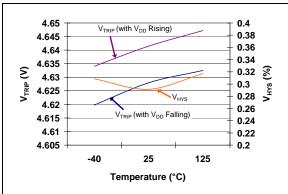

 FIGURE 2-7:
 I_{DD} vs. V_{DD} (Reset

 Power-up Timer Inactive)
 (TC1270AL, TC1270ANL, TC1271AL


 - 4.50V min. / 4.63V typ. / 4.75V max.).


FIGURE 2-8: I_{DD} vs. V_{DD} (Reset Power-up Timer Inactive) (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).


FIGURE 2-9: I_{DD} vs. V_{DD} (Reset Power-up Timer Inactive) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).


FIGURE 2-10: I_{DD} vs. V_{DD} (Reset Power-up Timer Active) (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

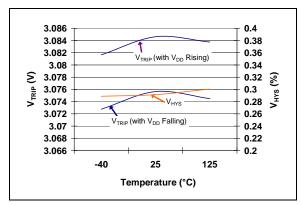

FIGURE 2-11: I_{DD} vs. V_{DD} (Reset Power-up Timer Active) (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

FIGURE 2-12: I_{DD} vs. V_{DD} (Reset Power-up Timer Active) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

FIGURE 2-13: V_{TRIP} and V_{HYS} vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

FIGURE 2-14: V_{TRIP} and V_{HYS} vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

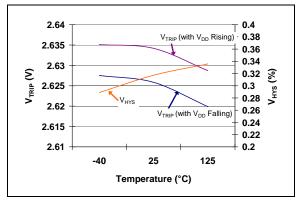


 FIGURE 2-15:
 V_{TRIP} and V_{HYST} vs.

 Temperature
 (TC1270AR, TC1270ANR, TC1271AR

 - 2.55V min. / 2.63V typ. / 2.70V max.).
 (TC1270AR, TC1270ANR, TC1271AR)

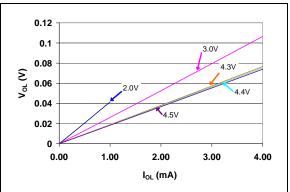
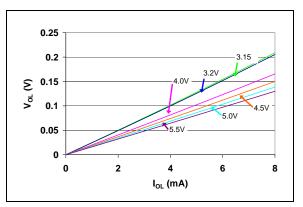



FIGURE 2-16: V_{OL} vs. I_{OL} (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

FIGURE 2-17: V_{OL} vs. I_{OL} (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

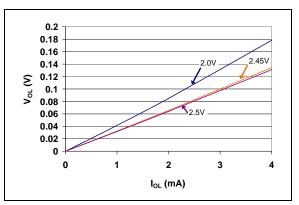
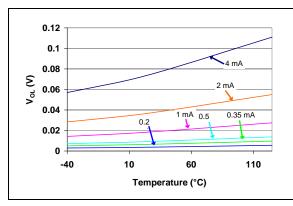



FIGURE 2-18: V_{OL} vs. I_{OL} (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $T_A = -40^{\circ}C$ to +125°C.

Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $T_A = -40^{\circ}C$ to +125°C.

FIGURE 2-19: V_{OL} vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.). @ V_{DD} = 4.5V).

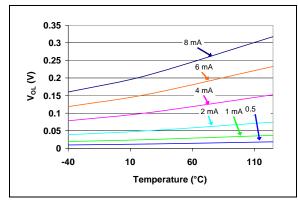


FIGURE 2-20: V_{OL} vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.). @ V_{DD} = 2.7V).

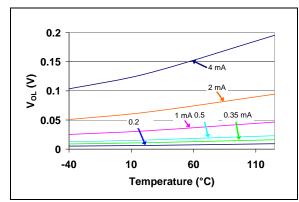
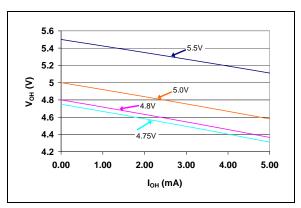



FIGURE 2-21: V_{OL} vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.). @ V_{DD} = 1.8V).

FIGURE 2-22: V_{OH} vs. I_{OL} (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.) @ +25°C).

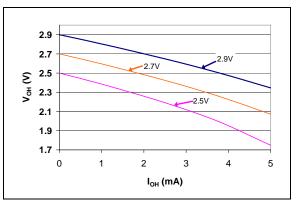
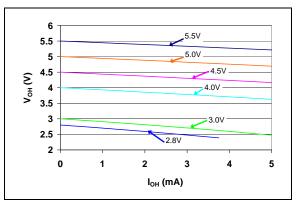
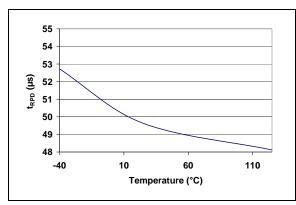




FIGURE 2-23: V_{OH} vs. I_{OH} (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.) @ +25°C).

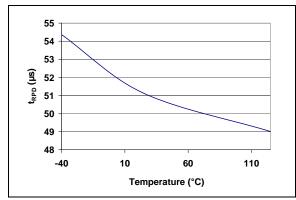
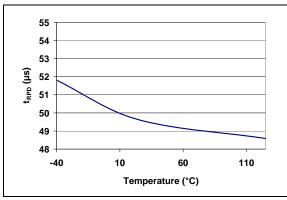


FIGURE 2-24: V_{OH} vs. I_{OH} (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.) @ +25°C).



Note: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, T_A = -40°C to +125°C.

FIGURE 2-25: V_{DD} Falling to Reset Propagation Delay (t_{RPD}) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

FIGURE 2-26: V_{DD} Falling to Reset Propagation Delay (t_{RPD}) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

FIGURE 2-27: V_{DD} Falling to Reset Propagation Delay (t_{RPD}) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

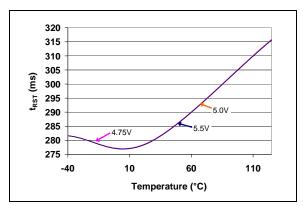
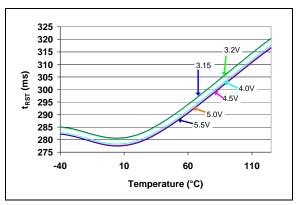



 FIGURE 2-28:
 Reset Timeout Period (t_{RST})

 vs. Temperature
 (TC1270AL, TC1270ANL, TC1271AL

 - 4.50V min. / 4.63V typ. / 4.75V max.).

FIGURE 2-29: Reset Timeout Period (t_{RST}) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

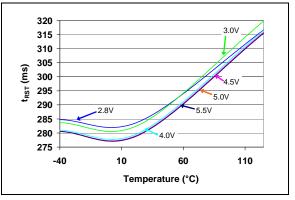
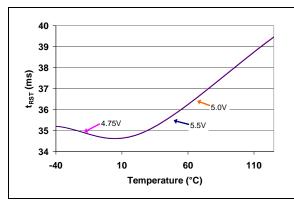
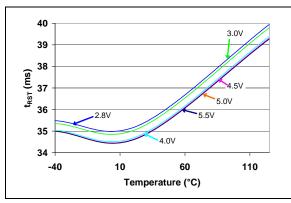
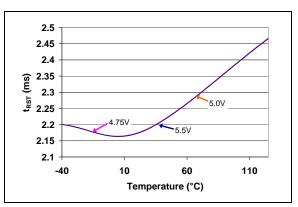
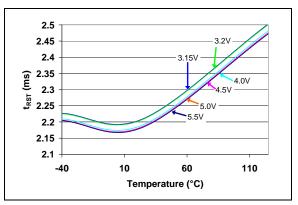


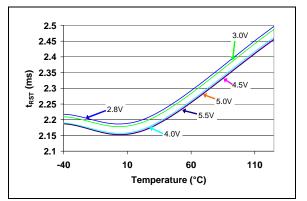
FIGURE 2-30: Reset Timeout Period (t_{RST}) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $T_A = -40^{\circ}C$ to +125°C.


FIGURE 2-31:Reset Timeout Period (t_{RST})(C timeout option) vs. Temperature(TC1270AL, TC1270ANL, TC1271AL- 4.50V min. / 4.63V typ. / 4.75V max.).


FIGURE 2-32: Reset Timeout Period (t_{RST}) (C timeout option) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).


FIGURE 2-33: Reset Timeout Period (t_{RST}) (C timeout option) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

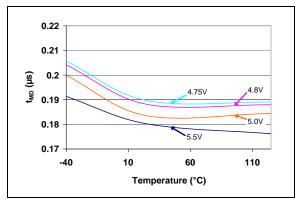

FIGURE 2-34: Reset Timeout Period (t_{RST}) (B timeout option) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

FIGURE 2-35: Reset Timeout Period (t_{RST}) (B timeout option) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

FIGURE 2-36: Reset Timeout Period (t_{RST}) (B timeout option) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

Note: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, T_A = -40°C to +125°C.

FIGURE 2-37: MR Low to Reset Propagation Delay (t_{MD}) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min. / 4.63V typ. / 4.75V max.).

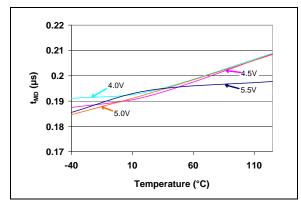
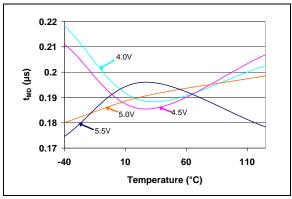
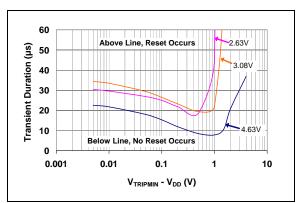




FIGURE 2-38: MR Low to Reset Propagation Delay (t_{MD}) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min. / 3.08V typ. / 3.15V max.).

FIGURE 2-39: MR Low to Reset Propagation Delay (t_{MD}) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min. / 2.63V typ. / 2.70V max.).

FIGURE 2-40: V_{DD} Transient Duration vs. Reset Threshold Overdrive $(V_{TRIP} (minimum) - V_{DD}).$

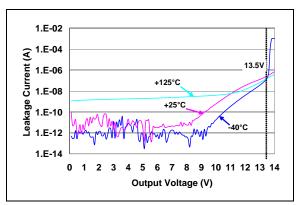


FIGURE 2-41: Open-Drain Leakage Current vs. Voltage Applied to RST Pin (TC1270AR, TC1270ANR, TC1271AR - 2.55V minimum).

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PINOUT DESCRIPTION

Pin Number								
(Push	270A n-Pull, e low)	TC1270AN (Open-Drain, active low)	(Pusł	271A n-Pull, e high)	Sym	I	Pin	Standard Function
SOT-23-5	SOT-143-4	SOT-23-5	SOT-23-5	SOT-143-4	-	Туре	Buffer / Driver	
5	1		5	1	V_{SS}		Power	Ground
4	2		l		RST	0	Push- Pull	 Reset output (Push Pull), active low H = V_{DD} > V_{TRIP}, Reset pin is inactive (after Reset Timer Delay completes) L = V_{DD} < V_{TRIP}, Reset pin is active Goes active (Low) if one of these conditions occurs: 1. If V_{DD} falls below the selected Reset voltage threshold. 2. If the MR pin is forced low. 3. During power-up.
_	—	4	_	_	RST	0	Open- Drain	 Reset output (Open-Drain), active low Float = V_{DD} > V_{TRIP}. Reset pin is inactive (after Reset Timer Delay completes) L = V_{DD} < V_{TRIP}. Reset pin is active Goes active (Low) if one of these conditions occurs: 1. If V_{DD} falls below the selected Reset voltage threshold. 2. If the MR pin is forced low. 3. During power-up.
_	—		4	2	RST	0	Push- Pull	 Reset output (Push Pull), active high H = V_{DD} < V_{TRIP}. Reset pin is active L = V_{DD} > V_{TRIP}. Reset pin is inactive (after Reset Timer Delay completes) Goes active (High) if one of these conditions occurs: 1. If V_{DD} falls below the selected Reset voltage threshold. 2. If the MR pin is forced low. 3. During power-up.

		Pin Number			-		-		
TC12 (Push active	-Pull,	TC1270AN (Open-Drain, active low)	(Push	271A n-Pull, e high)	Sym	I	Pin	Standard Function	
SOT-23-5	SOT-143-4	SOT-23-5	SOT-23-5	SOT-143-4	-	Туре	Buffer / Driver		
3	3		3	3	MR	I	ST ⁽¹⁾	Manual Reset input pin This input allows a push button switch to be directly connected to the TC1270A/70AN/71A's MR pin, which can then be used to force a system Reset. The input fil- ter (ignores) noise pulses that occur on the MR pin. H = Switch is open (internal pull-up resistor pulls signal high). State of the RST/RST pin determined by other system condi- tions. L = Switch is depressed (shorted to ground). This forces the RST/RST pin Active.	
2	4		2	4	V _{DD}	—	Power	Supply Voltage	
1	_	_	1	_	NC			No Connection	

TABLE 3-1: PINOUT DESCRIPTION (CONTINUED)

Note 1: The $\overline{\text{MR}}$ pin has an internal weak pull-up (18.5 k Ω typical).

3.1 Ground Terminal (V_{SS})

 ${\sf V}_{\rm SS}$ provides the negative reference for the analog input voltage. Typically, the circuit ground is used.

3.2 Supply Voltage (V_{DD})

 V_{DD} can be used for power supply monitoring or a voltage level that requires monitoring.

3.3 Reset Output (RST and RST)

There are three types of Reset output pins. These are:

- 1. Push-Pull active-low Reset
- 2. Push-Pull active-high Reset
- 3. Open-Drain active-low Reset, External pull-up resistor required.

3.3.1 ACTIVE-LOW (RST) - PUSH-PULL

The $\overline{\text{RST}}$ push-pull output remains low while V_{DD} is below the reset voltage threshold (V_{TRIP}). The time that the $\overline{\text{RST}}$ pin is held low after the device voltage (V_{DD}) returns to a high level (> V_{TRIP}) is typically 280 ms. After the Reset delay timer expires, the RST pin will be driven to the high state.

3.3.2 ACTIVE-HIGH (RST) - PUSH-PULL

The RST push-pull output remains high while V_{DD} is below the reset voltage threshold (V_{TRIP}). The time that the RST pin is held high after the device voltage (V_{DD}) returns to a high level (> V_{TRIP}) is typically 280 ms. After the Reset delay timer expires, the RST pin will be driven to the low state.

3.3.3 ACTIVE-LOW (RST) - OPEN-DRAIN

The RST open-drain output remains low while V_{DD} is below the reset voltage threshold (V_{TRIP}). The time that the RST pin is held low after the device voltage (V_{DD}) returns to a high level (> V_{TRIP}) depends on the Reset Timeout selected. After the Reset Delay Timer expires, the RST pin will float.

3.4 Manual Reset Input (MR)

The Manual Reset ($\overline{\text{MR}}$) input pin allows a push button switch to easily be connected to the system. When the push button is depressed, it forces a system Reset. This pin has circuitry that filters noise that may be present on the $\overline{\text{MR}}$ signal.

The $\overline{\text{MR}}$ pin is active-low and has an internal pull-up resistor.

4.0 DEVICE OPERATION

4.1 General Description

For many of today's microcontroller applications, care must be taken to prevent low-power conditions that can cause many different system problems. The most common causes are brown-out conditions, where the system supply drops below the operating level momentarily. The second most common cause is when a slowly decaying power supply causes the microcontroller to begin executing instructions without sufficient voltage to sustain volatile memory (RAM), thus producing indeterminate results.

The TC127XA family (TC1270A, TC1270AN, and TC1271A) are cost-effective voltage supervisor devices designed to keep a microcontroller in Reset until the system voltage has reached and stabilized at the proper level for reliable system operation. These devices also operate as protection from brown-out conditions when the system supply voltage drops below a safe operating level.

A Manual Reset input ($\overline{\rm MR}$ pin) is provided. This allows a push button switch to be directly connected to the TC127XA device, and is suitable for use as a push button Reset. This allows the system to easily be reset from the external control of the push button switch. No external components are required.

The Reset pin (RST or \overline{RST}) will be forced active, if any of the following occur:

- During device power up
- V_{DD} goes below the device threshold voltage
- The Manual Reset input (MR) goes low

Figure 4-1 shows a high level block diagram of the devices. The device can be described with three functional blocks. These are:

- Voltage Detect circuit
- Manual Reset with Glitch Filter circuit
- Reset Generator circuit

The Reset Generator circuit controls the reset delay time of the reset output signal.

There are three Reset Delay time options. Depending on the option, the reset signal (RST/RST pin) will be held active for a minimum of 1.09 ms, 17.5 ms, or 140 ms.

The TC1271A has an active-high RST output while the TC1270A and TC1270AN have an active-low $\overline{\text{RST}}$ output.

The TC1270A and TC1271A have a push-pull output driver, while the TC1270AN has an open-drain output.

Figure 4-2 shows a typical circuit for a push-pull device and Figure 4-3 shows a typical circuit for an open-drain device.

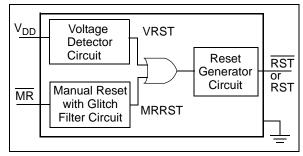


FIGURE 4-1: TC127XA High Level Block Diagram.

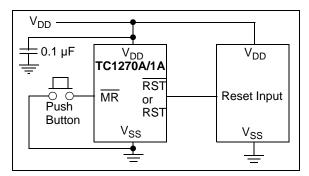


FIGURE 4-2: Typical Push-Pull Application Circuit.

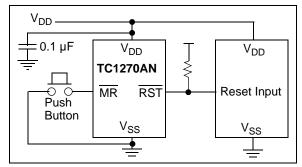


FIGURE 4-3: Typical Open-Drain Application Circuit.

The TC1270A and TC1271A devices are available in a 4-Pin SOT-143 package to maintain footprint compatibility with the TC1270, TC1271, TCM811, and TCM812 devices, and the SOT-23-5 package. The TC1270AN is only available in the SOT-23-5 package.

Low supply current makes these devices suitable for battery powered applications.

Device specific block diagrams are shown in Figure 4-4 through Figure 4-6.

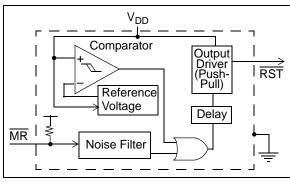


FIGURE 4-4:

TC1270A Block Diagram.

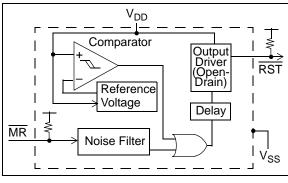
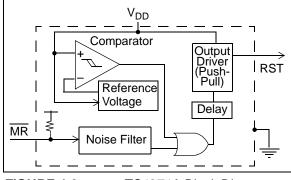



FIGURE 4-5:

TC1270AN Block Diagram.

TC1271A Block Diagram.

4.2 Voltage Detect Circuit

The Voltage Detect Circuit monitors V_{DD}. The device's Reset voltage trip point (V_{TRIP}) is selected when the device is ordered. The voltage on the device's V_{DD} pin determines the output state of the \overline{RST}/RST pin.

 V_{DD} voltages above the $V_{TRIP(MAX)}$ force the \overline{RST}/RST pin inactive. V_{DD} voltages below the $V_{TRIP(MIN)}$ force the RST/RST pin active. The state of the RST/RST pin is unknown for V_{DD} voltages between $V_{TRIP(MAX)}$ and $V_{TRIP(MIN)}$. This is shown in Table 4-1

TABLE 4-1:	V _{DD} LEVELS TO RST/RST
	OUTPUT STATES

	Output State			
V _{DD} Voltage Level	RST	RST		
$V_{DD} \ge V_{TRIP(MAX)}$	H ^(1, 2)	L (1)		
$V_{TRIP(MIN)} < V_{DD} < V_{TRIP(MAX)}$	U	U		
$V_{DD} \leq V_{TRIP(MIN)}$	L	Н		
Leaend: H = Driven High	L = Driver	n Low		

.egend: H = Driven High L = Driven Low U = Unknown, driven either High or Low

Note 1: The \overline{RST}/RST pin will be driven inactive after the Reset Delay Timer (t_{RST}) times out.

2: The TC1270AN RST pin will be floated after the Reset Delay Timer (t_{RST}) times out.

The term V_{TRIP} will be used as the general term for the trip point voltage where the device actually trips.

In the case where V_{DD} is falling (for voltages starting above $V_{\text{TRIP}(\text{MAX})})$:

- Voltages above V_{TRIP(MAX)} will never cause the RST/RST output pin to be driven Active.
- Voltages below V_{TRIP(MIN)} will always cause the RST/RST output pin to be driven Active.

Now in the case where V_{DD} is rising (for voltages starting below $V_{TRIP(MIN)}$):

 <u>Voltages</u> above V_{TRIP(MAX)} will always cause the RST/RST output pin to be driven Inactive, (or floated - TC1270AN) after the Reset Delay Timer (t_{RST}), times out. Table 4-2 shows the various device trip point options and their $V_{TRIP(MAX)}$ and $V_{TRIP(MIN)}$ voltages. Also the negative percentage change from common regulated voltages is shown.

In the case where V_{DD} is falling from the regulated voltage, as the V_{DD} crosses the V_{TRIP} voltage the RST/RST pin is driven active. Now the desired circuitry is in reset, or the circuitry has the indication that the V_{DD} is below the selected V_{TRIP} .

In the case where V_{DD} is rising. As the V_{DD} crosses the V_{TRIP} voltage, the RST/RST pin is driven inactive after the Reset Delay Timer elapses. Now the desired circuitry is released from reset and will start to operate in its normal mode, or the circuitry has the indication that the V_{DD} is above the selected V_{TRIP} .

Trip Voltage	V _{TRIP(MAX)} ⁽¹⁾		- % From Ilated Voltage		
Selection	V _{TRIP(MIN)} ⁽²⁾	5.0V	3.3V	3.0V	
L	4.75V	5.0%	_	—	
	4.50V	10.0%		_	
М	4.50V	10.0%		-	
	4.25V	15.0%	-	—	
Т	3.15V		4.5%	_	
	3.00V	-	9.2%		
S	3.00V		9.2%	—	
	2.85V	_	13.7%	_	
R	2.70V	_	_	10.0%	
	2.55V	—	—	15.0%	

TABLE 4-2: SELECTING THE TRIP POINT

Note 1: Voltage regulator circuit must have tighter tolerance (%) than V_{TRIP(MAX)} % from regulated voltage.

 Circuitry being reset must have a wider tolerance (%) than V_{TRIP(MIN)} % from regulated voltage.

The TC1270A/TC1270AN/TC1271A devices are optimized to reject fast transient glitches on the V_{DD} line. If the low input signal (which is below V_{TRIP}) is not rejected, the Reset output is driven active within 50 μ s of V_{DD} falling through the Reset voltage threshold.

After the device exits the Reset condition, the delay circuitry will hold the \overline{RST}/RST pin active until the appropriate Reset delay time (t_{RST}) has elapsed.

During device power up, the input voltage is below the Trip Point voltage. The device must enter the valid operating range for the device to start operation.

4.2.1 HYSTERESIS

There is also a minimal hysteresis (V_{HYS}) on the trip point. This is so that small noise signals on the device voltage (V_{DD}) do not cause the Reset pin (RST/RST) to "jitter" (change between driving an active and inactive).

The characterization graphs shown in Figures 2-13 through 2-15 shows the device hysteresis as a percentage of the voltage trip point (V_{TRIP}).

The Reset Delay Timer (t_{RST}) gives a time based hysteresis for the system.

4.2.2 POWER-UP/RISING V_{DD}

As the device V_{DD} rises, the device's Reset circuit will remain active until the voltage rises above the "actual" trip point (V_{TRIP}).

Figure 4-7 shows a power-up sequence and the waveform of the RST and RST pins. As the device powers up, the voltage will start below the valid operating voltage of the device. At this voltage, the RST/RST output is not valid. Once the voltage is above the minimum operating voltage (1V) and below the selected V_{TRIP} the Reset output will be active.

Once the device voltage rises above the V_{TRIP} voltage, the Reset delay timer (t_{RST}) starts. When the Reset delay timer times out, the Reset output (RST/RST) is driven inactive.

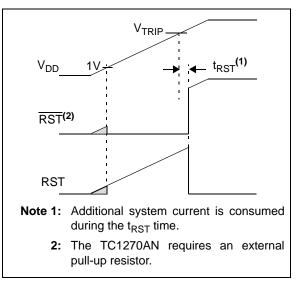


FIGURE 4-7: RST/RST pin Operation Power-up.

4.2.3 POWER-DOWN/BROWN-OUTS

As the device powers-down/brown-outs, the V_{DD} falls from a voltage above the devices trip point (V_{TRIP}). The device will trip at a voltage between the maximum trip point (V_{TRIP(MAX)}) and the minimum trip point (V_{TRIP(MIN)}). Once the <u>device</u> voltage (V_{DD}) goes below this voltage, the RST/RST pin will be forced to the active state.

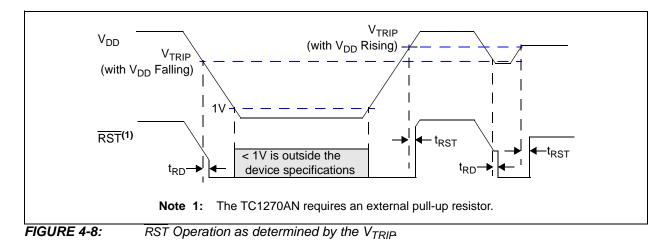

Figure 4-8 shows the waveform of the $\overline{\text{RST}}$ pin as determined by the V_{DD} voltage. As the V_{DD} voltage falls from the normal operating point, the device "enters" reset by crossing the V_{TRIP} voltage (between $V_{TRIP(MAX)}$ and $V_{TRIP(MIN)}$). Then when V_{DD} voltage rises, the device "exits" reset by crossing the V_{TRIP} voltage (below or at $V_{TRIP(MAX)}$). After the "exit" state has been detected, the Reset Delay Timer (t_{RST}) starts. Once the t_{RST} time completes, the Reset pin is driven inactive.

Table 4-3 shows the state of the RST or RST pins.

Device	State of	RST Pin when:	State of	RST Pin when:	Output Driver
Device	$V_{DD} < V_{TRIP}$	$V_{DD} > V_{TRIP}$ ⁽¹⁾	$V_{DD} < V_{TRIP}$	$V_{DD} > V_{TRIP}$ ⁽¹⁾	Output Driver
TC1270A	L	Н	—		Push-Pull
TC1271A			Н	L	Push-Pull

TABLE 4-3:RESET PIN STATES

Note 1: The RST/RST pin will be driven inactive after the Reset Delay Timer (t_{RST}) times out.

4.3 Negative Going V_{DD} Transients

The minimum pulse width (time) required to cause a Reset may be an important criteria in the implementation of a Power-on Reset (POR) circuit. This time is referred to as transient duration. The TC127XA devices are designed to reject a level of negative-going transients (glitches) on the power supply line.

Transient duration is the amount of time needed for these supervisory devices to respond to a drop in V_{DD}. The transient duration time (t_{TRAN}) is dependent on the magnitude of V_{TRIP} – V_{DD} (overdrive). Any combination of duration and overdrive that lies under the duration/overdrive curve will not generate a Reset signal. Generally speaking, the transient duration time decreases with an increase in the V_{TRIP} – V_{DD} voltage.

Figure 4-9 shows an example transient duration vs. Reset comparator overdrive. It shows that the farther below the trip point the transient pulse goes, the duration of the pulse required to cause a Reset gets shorter. So any combination of duration and overdrive that lays **under** the curve will **not** generate a Reset signal. Combinations **above** the curve are detected as a brown-out or power-down.

Transient immunity can be improved by adding a bypass capacitor (typically 0.1 $\mu F)$ as close as possible to the V_{DD} pin of the TC127XA device.

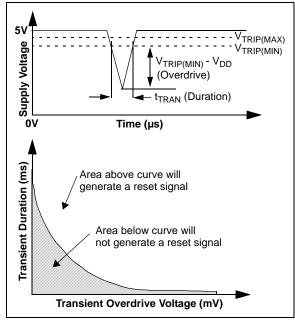


FIGURE 4-9: Example of Typical Transient Duration Waveform.

4.4 Manual Reset with Glitch Filter Circuit

The Manual Reset input pin ($\overline{\text{MR}}$) allows the Reset pins (RST/RST) to be manually forced to their active states. The $\overline{\text{MR}}$ pin has circuitry to filter noise pulses that may be present on the pin. Figure 4-10 shows a block diagram for using the TC127XA with a push button switch. To minimize the required external components, the $\overline{\text{MR}}$ input has an internal pull-up resistor.

A mechanical push button or active logic signal can drive the $\overline{\text{MR}}$ input.

Once $\overline{\text{MR}}$ has been low for a time, t_{MD} (the Manual Reset delay time), the Reset output pins are forced active. The Reset output pins will remain in their active states for the Reset delay timer time out period (t_{RST}).

Figure 4-11 shows a waveform for the Manual Reset switch input and the Reset pins output.

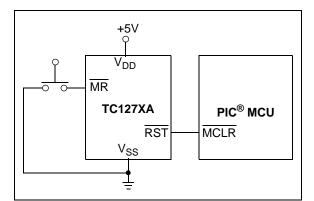


FIGURE 4-10: Push Button Reset.

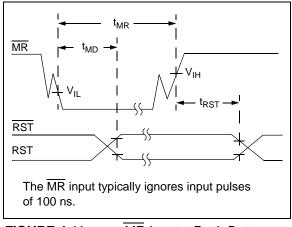


FIGURE 4-11: MR Input – Push Button.

4.4.1 NOISE FILTER

The noise filter filters out noise spikes (glitches) on the Manual Reset pin (\overline{MR}) . Noise spikes less than 100 ns (typical) are filtered.

4.5 Reset Generator Circuit

The output signals from the Voltage Detect Circuit and the Manual Reset with Glitch Filter Circuit are OR'd together and is used to activate the Reset Generator Module.

After the reset conditions have been removed (the $\overline{\text{MR}}$ pin is no longer forced low and the input voltage is greater than the Trip Point voltage), the Reset Generator circuit determines the reset delay timeout required.

There are three options for the delay circuit. These are:

- 2.19 ms (typical) delay
- 35 ms (typical) delay
- 280 ms (typical) delay

4.5.1 RESET DELAY TIMER

The Reset delay timer ensures that the TC127XA device will "hold" the embedded system in Reset until the system voltage has stabilized. The Reset delay timer time out is shown in Table 4-4.

The Reset Delay Timer starts once the Voltage Detector Circuit output AND the Manual Reset with Glitch Filter Circuit output become inactive. While the Reset Delay Timer is active, the RST or RST pin is driven to the active state. Once the Reset Delay Timer times-out, the RST or RST pin is driven inactive.

The Reset delay timer (t_{RST}) starts after the device voltage rises above the "actual" trip point (V_{TRIP}). When the Reset delay timer times out, the Reset output pin (RST/RST) is driven inactive.

The Reset Delay Timer is cleared, if either (or both) the Voltage Detector Circuit output OR the Manual Reset with Glitch Filter Circuit output become active. The RST or RST pin continues to be driven to the active state.

Figure 4-12 illustrates when the Reset Delay Timer (t_{RST}) is active or inactive.

4.5.2 EFFECT OF TEMPERATURE ON RESET POWER-UP TIMER (t_{RPU})

The Reset delay timer time out period (t_{RST}) determines how long the device remains in the Reset condition. This time out is affected by both the device V_{DD} and temperature. Typical responses for different V_{DD} values and temperatures are shown in Figures 2-28, 2-29 and 2-30.

TABLE 4-4: RESET DELAY TIMER TIME OUTS

	t _{RST}		Units
Min	Тур	Мах	Units
1.09	2.19	4.38	ms
17.5	35	70	ms
140	280	560	ms
↑		\uparrow	
This is the minimum time that the Reset Delay Timer will "hold" the Reset pin active after V _{DD} rises above V _{TRIP}		This is the maximum time that the Reset Delay Timer will "hold" the Reset pin active after V _{DD} rises above V _{TRIP}	

Note 1: Shaded rows are custom ordered time outs.

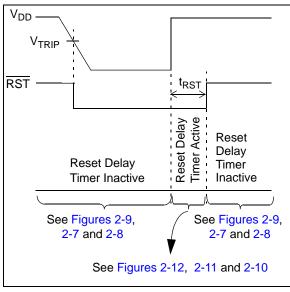


FIGURE 4-12: Reset Power-up Timer Waveform.

5.0 APPLICATION INFORMATION

This section shows application related information that may be useful for your particular design requirements.

5.1 Supply Monitor Noise Sensitivity

The TC127XA devices are optimized for fast response to negative-going changes in V_{DD}. Systems with an inordinate amount of electrical noise on V_{DD} (such as systems using relays) may require a 0.01 μ F or 0.1 μ F bypass capacitor to reduce detection sensitivity. This capacitor should be installed as close to the TC127XA as possible to keep the capacitor lead length short.

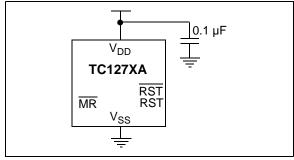


FIGURE 5-1: Typical Application Circuit with Bypass Capacitor.

5.2 Conventional Voltage Monitoring

Figure 5-2 and Figure 5-3 show the TC127XA in conventional voltage monitoring applications.

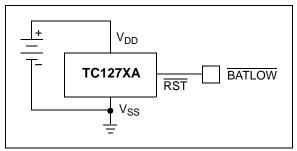
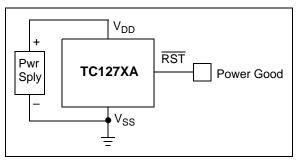
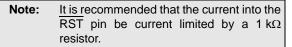
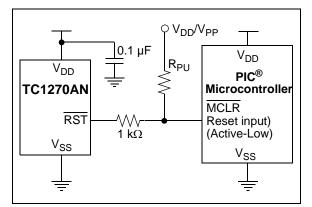


FIGURE 5-2:

Battery Voltage Monitor.




FIGURE 5-3:


Power Good Monitor.

5.3 Using in PIC[®] Microcontroller, ICSP[™] Applications

Note: This operation can only be done using the device with the Open-Drain RST pin (TC1270AN).

Figure 5-4 shows the typical application circuit for using the TC1270AN for voltage supervisory function when the PIC microcontroller will be programmed via the In-Circuit Serial ProgrammingTM (ICSPTM) feature. Additional information is available in TB087, *"Using Voltage Supervisors with PICmicro[®] Microcontroller Systems which Implement In-Circuit Serial ProgrammingTM"*, DS91087.

FIGURE 5-4: Typical Application Circuit for PIC^{\circledast} Microcontroller with the $ICSP^{TM}$ Feature.

5.4 Modifying The Trip Point, V_{TRIP}

Although the TC127XA device has a fixed voltage trip point (V_{TRIP}), it is sometimes necessary to make custom adjustments. This can be accomplished by connecting an external resistor divider to the TC127XA V_{DD} pin. This causes the V_{SOURCE} voltage to be at a higher voltage than when the TC127XA input equals it's V_{TRIP} voltage (Figure 5-5).

To maintain detector accuracy, the bleeder current through the divider should be significantly higher than the 15 μ A maximum operating current required by the TC127XA. A reasonable value for this bleeder current is 1 mA (67 times the 10 μ A required by the TC127XA). For example, if V_{TRIP} = 2V and the desired trip point is 2.5V, the value of R₁ + R₂ is 2.5 k Ω (2.5V/1 mA). The value of R₁ + R₂ can be rounded to the nearest standard value and plugged into the equation of Figure 5-5 to calculate values for R₁ and R₂. 1% tolerance resistors are recommended.

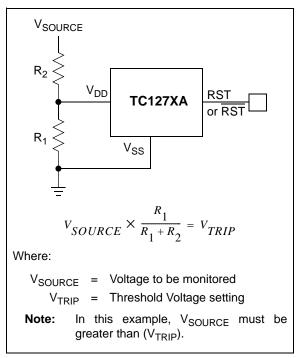


FIGURE 5-5: Modify Trip-Point using External Resistor Divider.

5.5 MOSFET Low-Drive Protection

Low operating power and small physical size make the TC1270AN series ideal for many voltage detector applications. Figure 5-6 shows a low-voltage gate drive protection circuit that prevents overheating of the logic-level MOSFET due to insufficient gate voltage. When the input signal is below the threshold of the TC1270AN, its output grounds the gate of the MOSFET.

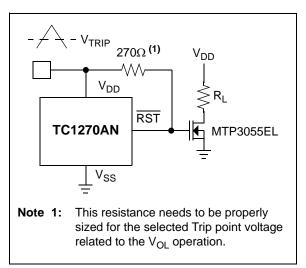


FIGURE 5-6: MOSFET Low-Drive Protection.

5.6 Controllers and Processors With Bidirectional I/O Pins

Some microcontrollers have bidirectional Reset pins. Depending on the current drive capability of the controller pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k Ω resistor in series with the output of the TC127XA (Figure 5-7). If there are other components in the system that require a Reset signal, they should be buffered so as not to load the Reset line. If the other components are required to follow the Reset I/O of the microcontroller, the buffer should be connected as shown with the solid line.

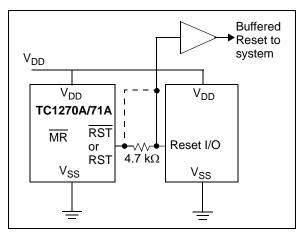


FIGURE 5-7: Interfacing the TC1270A or TC1271A Push-Pull Output to a Bidirectional Reset I/O pin.

5.7 Migration Paths

Figure 5-8 shows the 5-pin SOT-23 footprint of the TC1270A, TC1270AN and TC1271A devices. Devices that are in the 3-pin SOT-23 package could be used in that circuit with the loss of the Manual Reset functionality. Examples of compatible footprint devices in the SOT-23-3 package are the MCP111, MCP112, TC54, and TC51 devices. This allows the system to be designed to offer a "base" functionality and a higher end system with the "enhanced" functionality, which includes a manual reset.

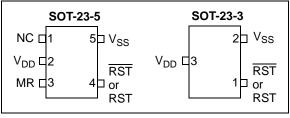
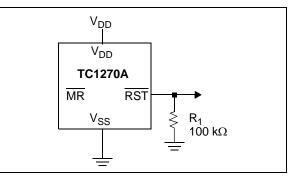
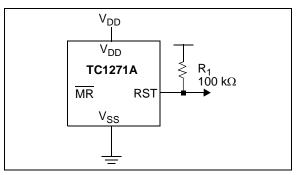


FIGURE 5-8: SOT-23 5-pin to 3-pin Comparison.


5.8 Reset Signal Integrity During Power-Down

The TC1270A and TC1271A reset output is valid down to $V_{DD} = 1.0V$. Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the Microcontroller will be floating at an undetermined voltage. Most digital systems are completely shut down well above this voltage. However, in situations where the Reset signal must be maintained valid to $V_{DD} = 0V$, external circuitry is required.


For devices where the Reset signal is active-low, a pull-down resistor must be connected from the TC1270A RST pin to ground to discharge stray capacitances and hold the output low (Figure 5-9).

Similarly for devices where the Reset signal is active-high, a pull-up resistor to V_{DD} is required to ensure a valid high RST signal for V_{DD} below 1.0V (Figure 5-10).

This resistor value, though not critical, should be chosen such that it does not appreciably load the Reset pin under normal operation (100 k Ω will be suitable for most applications).

FIGURE 5-9: Ensuring a valid active-low Reset pin output state as V_{DD} approaches 0V.

FIGURE 5-10: Ensuring a valid active-high Reset pin output state as V_{DD} approaches 0V.

6.0 STANDARD DEVICES

Table 6-1 shows the standard devices and their order number that are available and their respective configuration.

TABLE 6-1:STANDARD VERSIONS

The configuration includes the:

- Voltage Trip Point (V_{TRIP})
- Reset Time Out (t_{RST})

	Rese	t Thre	shold	(V)	Re	set Tir	ne Ou	t (ms)			
Device	Minimum	Typical	Maximum	Code	Minimum	Typical	Maximum	Code ⁽¹⁾	Package	Order Number	Replaces
									SOT-23-5	TC1270ALVCTTR	—
TC1270A	4.50	4.63	4.75	L	140	280	560	"blank"	SOT-143	TC1270ALVRCTR	TC1270LERC / TCM811LERC
									SOT-23-5	TC1270AMVCTTR	—
TC1270A	4.25	4.38	4.50	М	140	280	560	"blank"	SOT-143	TC1270AMVRCTR	TC1270MERC / TCM811MERC
									SOT-23-5	TC1270ATVCTTR	—
TC1270A	3.00	3.08	3.15	Т	140	280	560	"blank"	SOT-143	TC1270ATVRCTR	TC1270TERC / TCM811TERC
									SOT-23-5	TC1270ASVCTTR	—
TC1270A	2.85	2.93	3.00	S	140	280	560	"blank"	SOT-143	TC1270ASVRCTR	TC1270SERC / TCM811SERC
									SOT-23-5	TC1270ARVCTTR	—
TC1270A	2.55	2.63	2.70	R	140	280	560	560 "blank"	SOT-143	TC1270ARVRCTR	TC1270RERC / TCM811RERC
TC1270AN	4.50	4.63	4.75	L	140	280	560	"blank"	SOT-23-5	TC1270ANLVCT	—
TC1270AN	4.25	4.38	4.50	М	140	280	560	"blank"	SOT-23-5	TC1270ANMVCT	—
TC1270AN	3.00	3.08	3.15	Т	140	280	560	"blank"	SOT-23-5	TC1270ANTVCT	—
TC1270AN	2.85	2.93	3.00	S	140	280	560	"blank"	SOT-23-5	TC1270ANSVCT	—
TC1270AN	2.55	2.63	2.70	R	140	280	560	"blank"	SOT-23-5	TC1270ANRVCT	—
									SOT-23-5	TC1271ALVCTTR	—
TC1271A	4.50	4.63	4.75	L	140	280	560	"blank"	SOT-143	TC1271ALVRCTR	TC1271LERC / TCM812LERC
									SOT-23-5	TC1271AMVCTTR	—
TC1271A	4.25	4.38	4.50	М	140	280	560	"blank"	SOT-143	TC1271AMVRCTR	TC1271MERC / TCM812MERC
									SOT-23-5	TC1271ATVCTTR	
TC1271A	3.00	3.08	3.15	Т	140	280	560	"blank"	SOT-143	TC1271ATVRCTR	TC1271TERC / TCM812TERC
									SOT-23-5	TC1271ASVCTTR	—
TC1271A	2.85	2.93	3.00	S	140	280	560	"blank"	SOT-143	TC1271ASVRCTR	TC1271SERC / TCM812SERC
									SOT-23-5	TC1271ARVCTTR	—
TC1271A	2.55	2.63	2.70	R	140	280	560	"blank"	SOT-143	TC1271ARVRCTR	TC1271RERC / TCM812RERC

Note 1: "A" timeout delay options are only standard in the SOT-23-5 package. SOT-143 package is a custom request.

7.0 CUSTOM CONFIGURATIONS

The following Custom Reset Trip Point is available (see Table 7-1).

TABLE 7-1: CUSTOM TRIP POINT

Trip Voltage	V _{TRIP(MAX)} /	- % From Regulated Voltage		
Selection	V _{TRIP(MIN)}	3.0V		
(1)	2.85V	5.0%		
	2.70V	10.0%		

Note 1: Contact factory for additional information.

Table 7-2 shows the codes that specify the desired Reset time out (t_{RST}) for custom devices

TABLE 7-2: DELAY TIME OUT ORDERING CODES

Code	Reset Delay Time (Typ) (ms)	Comment
В	2.19	Note 1
С	35	Note 1
"blank"	280	Delay timings for standard device offerings

Note 1: This delay timing option is not the standard offering. For information on ordering devices with these delay times, contact your local Microchip sales office. Minimum purchase volumes are required.

8.0 DEVELOPMENT TOOLS

8.1 Evaluation/Demonstration Boards

The SOT-23-5/6 Evaluation Board (VSUPEV2) can be used to evaluate the characteristics of the TC127XA devices.

This blank PCB has footprints for:

- Pull-up Resistor
- Pull-down Resistor
- Loading Capacitor
- In-line Resistor

There is also a power supply filtering capacitor.

For evaluating the TC127XA devices, the selected device should be installed into the Option A footprint.

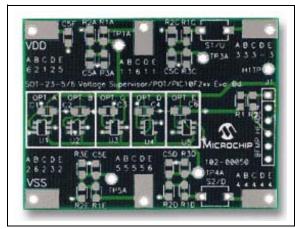


FIGURE 8-1: SOT-23-5/6 Voltage Supervisor Evaluation Board (VSUPEV2).

The SOIC14-EV (102-00094) board has a SOT-23-6 footprint, that can be jumpered into any portion of the circuit. This will allow any footprint that the TC1270A requires in the SOT-23-5 package.

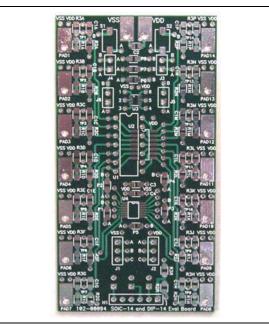
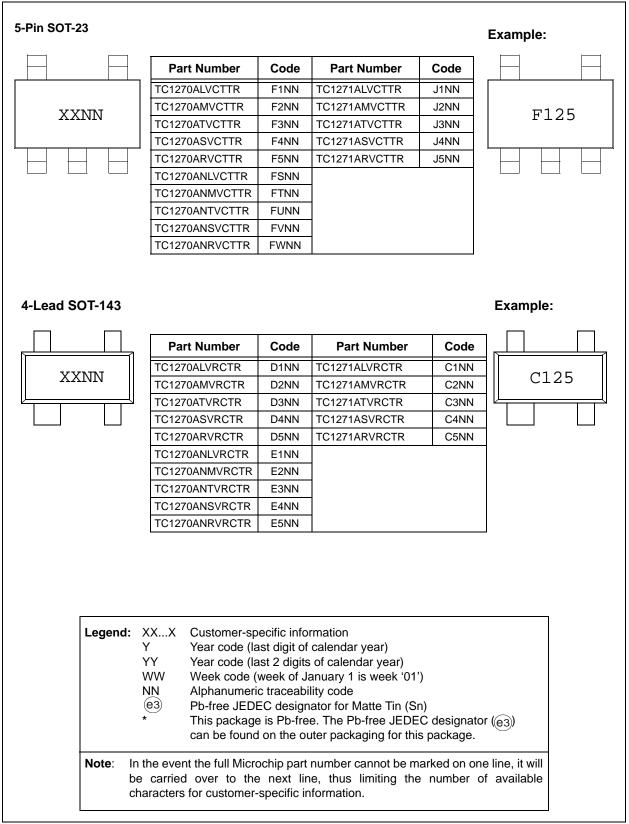
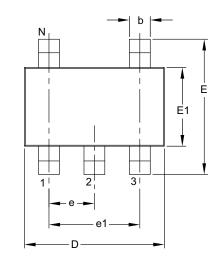
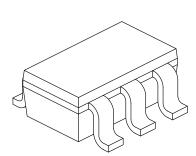
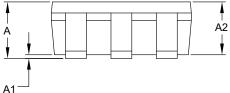



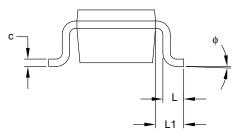
FIGURE 8-2: SOIC-14 Evaluation Board (SOIC14EV).

These boards may be purchased directly from the Microchip web site at www.microchip.com.


9.0 PACKAGING INFORMATION


9.1 Package Marking Information



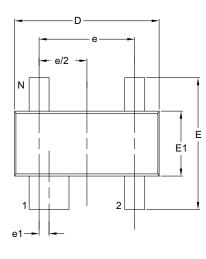

5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

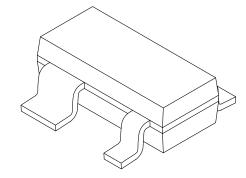
	Units		MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		5			
Lead Pitch	е		0.95 BSC			
Outside Lead Pitch	e1		1.90 BSC			
Overall Height	A	0.90	-	1.45		
Molded Package Thickness	A2	0.89	-	1.30		
Standoff	A1	0.00	-	0.15		
Overall Width	E	2.20	-	3.20		
Molded Package Width	E1	1.30	-	1.80		
Overall Length	D	2.70	-	3.10		
Foot Length	L	0.10	-	0.60		
Footprint	L1	0.35	-	0.80		
Foot Angle	φ	0°	-	30°		
Lead Thickness	С	0.08	-	0.26		
Lead Width	b	0.20	-	0.51		

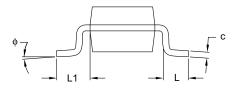
Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.


2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-091B


4-Lead Plastic Small Outline Transistor (RC) [SOT-143]

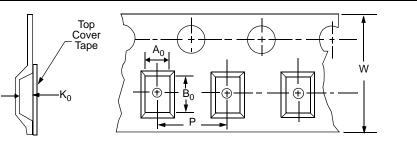
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX
Number of Pins	N		4	
Pitch	е		1.92 BSC	
Lead 1 Offset	e1		0.20 BSC	
Overall Height	А	0.80	-	1.22
Molded Package Thickness	A2	0.75	0.90	1.07
Standoff §	A1	0.01	-	0.15
Overall Width	E	2.10	-	2.64
Molded Package Width	E1	1.20	1.30	1.40
Overall Length	D	2.67	2.90	3.05
Foot Length	L	0.13	0.50	0.60
Footprint	L1	0.54 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	с	0.08	-	0.20
Lead 1 Width	b1	0.76	-	0.94
Leads 2, 3 & 4 Width	b	0.30	-	0.54

Notes:

- 1. § Significant Characteristic.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

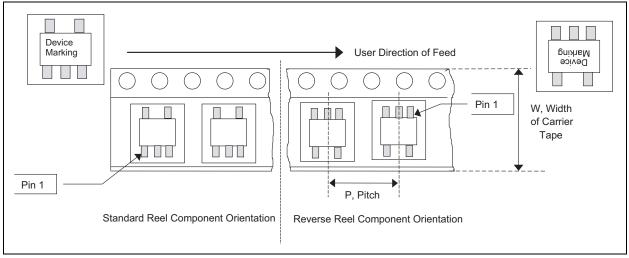
3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-031B

9.2 Product Tape and Reel Specifications


FIGURE 9-1: EMBOSSED CARRIER DIMENSIONS (8 MM TAPE ONLY)

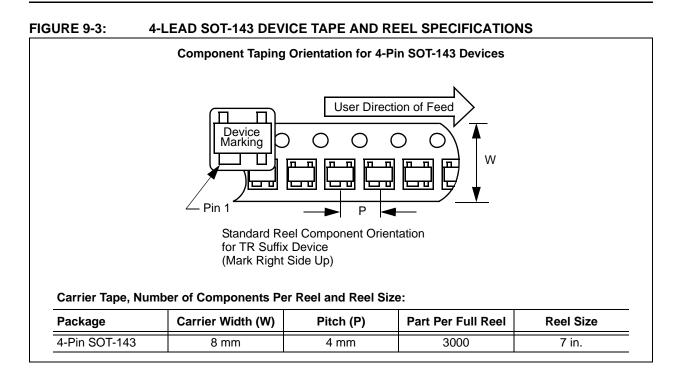


TABLE 1: CARRIER TAPE/CAVITY DIMENSIONS

Case	Case Package Outline Type			Carrier Dimensions		Cavity imensio	าร	Output Quantity	Reel Diameter in
Outline			W mm	P mm	A0 mm	B0 mm	K0 mm	Units	mm
ОТ	SOT-23	5L	8	4	3.2	3.2	1.4	3000	180
RC	SOT-143	4L	8	4	3.1	2.69	1.3	3000	180

FIGURE 9-2: 5-LEAD SOT-23 DEVICE TAPE AND REEL SPECIFICATIONS

2

NOTES:

APPENDIX A: REVISION HISTORY

Revision B (June 2007)

- Added new options:
 - Open-Drain output
 - New Reset Delay timeouts.
- Updated Package Outline Drawings
- Updated Revision History
- Added new options to Product Identification
 System

Revision A (March 2007)

• Original Release of this Document.

2

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. XX	¥	¥	<u>xx</u>	¥	Ex	amples:
Device V _{TRIP} Options		Temperature Range	Package	Tape/Reel Option	a)	TC1270ASVCTTR: 2.85V min. / 2.93V typ. / 3.00V max. voltage trip point, Push-pull active low reset,
Device:	TC1270AN: \	/oltage Supervis /oltage Supervis /oltage Supervis	or with Mar	ual Reset	b)	Reset Delay Timer = 280 ms, 5-LD SOT-23, Tape and Reel, -40°C to +125°C TC1270ALVRCTR: 4.50V min. / 4.63V typ. / 4.75V max.
V _{TRIP} Options:	S = 2.85V T = 3.00V M = 4.25V	(min.) / 2.63V (t (min.) / 2.93V (t (min.) / 3.08V (t (min.) / 4.38V (t (min.) / 4.63V (t	yp.) / 3.00V yp.) / 3.15V yp.) / 4.50V	(max.) (max.) (max.)	c)	voltage trip point, Push-pull active low reset, Reset Delay Timer = 280 ms, 4-LD SOT-143, Tape and Reel, -40°C to +125°C TC1270ANMBVCTTR:
Time Out Options:	C = t	_{RST} = 2.19 ms (t _{RST} = 35 ms (typ _{RST} = 280 ms (ty	o)			4.25V min. / 4.38V typ. / 4.50V max. Open-drain active low reset, Reset Delay Timer = 2.19 ms, 5-Lead SOT-23, Tape and Reel, -40°C to +125°C
Temperature Range:	V = -40°C	to +125°C			d)	TC1270ANLCVCT: 4.50V min. / 4.63V typ. / 4.75V max. Open-drain active low reset,
Package:		c Small Outline T c Small Outline T				Reset Delay Timer = 35 ms, 5-Lead SOT-23, -40°C to +125°C
Tape/Reel Option:	TR = Tap	e and Reel			e)	TC1271ARVCTTR: 2.55V min. / 2.63V typ. / 2.70V max. voltage trip point, Push-pull active high reset, Reset Delay Timer = 280 ms, 5-LD SOT-23, Tape and Reel, -40°C to +125°C
					f)	TC1271ATVRCTR: 3.00V min. / 3.08V typ. / 3.15V max. voltage trip point, Push-pull active high reset, Reset Delay Timer = 280 ms, 4-LD SOT-143, Tape and Reel, -40°C to +125°C

2

NOTES:

Ē

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820