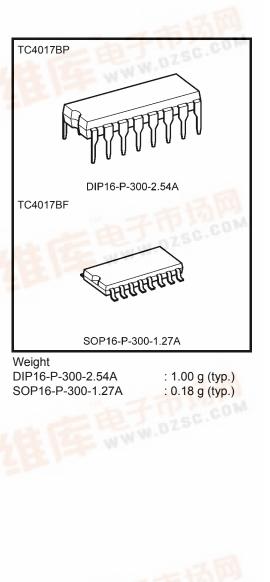
查询TC4017BP_07供应商 TOSHIBA

TC4017BP/BF

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC4017BP,TC4017BF

TC4017BP/TC4017BF Decade Counter/Divider


TC4017BP/BF is decimal Johnson counter consisting of 5 stage D-type flip-flop equipped with the decoder to convert the output to decimal.

Depending on the number of count pulses fed to CLOCK or CLOCK INHIBIT one output among 10 output lines "Q0" through "Q9" becomes "H" level.

The counter advances its state at rising edge of CLOCK (CLOCK INHIBIT = "L") or falling edge of CLOCK INHIBIT (CLOCK = "H"). RESET input to "H" level resets the counter to Q0 = "H" and Q1 through Q9 = "L" regardless of CLOCK and CLOCK INHIBIT.

Pin Assignment

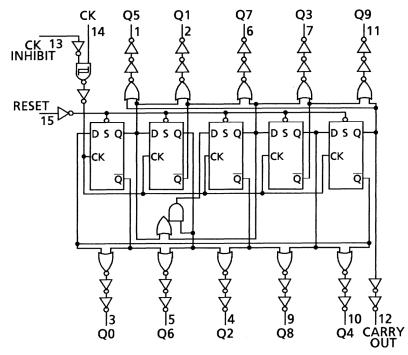
Q5 1	16	V _{DD}
	H 10	V DD
Q1 2 [] 15	RESET
Q0 3[14	CLOCK
Q2 4] 13	CLOCK
Q6 5	112	CARRY OUT
And State and State	6	
Q7 6 🛛	µ 11	Q9
Q3 7 🕻	1 10	Q4
Vss 8	1 9	Q8
(TOP V	IEW)	

Truth Table

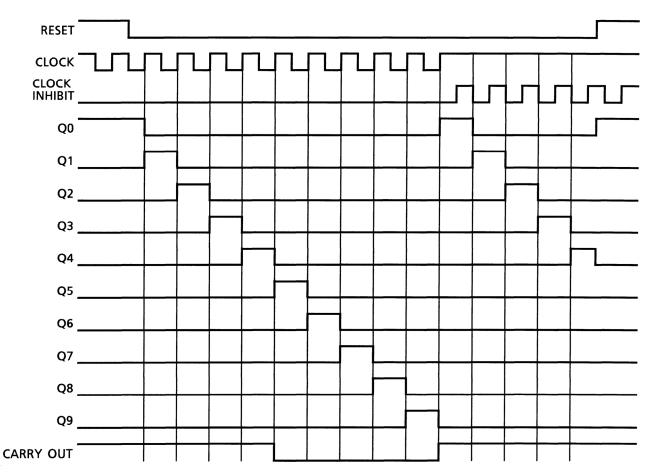
-	Selected				
	CLOCK INHIBITA	RESET	Output		
*	*	Н	Q0		
*	Н	L	Qn (NC)		
L	*	L	Qn (NC)		
	L	L	Qn + 1		
\rightarrow	L	L	Qn (NC)		
Н		L	Qn (NC)		
Н		L will	Qn + 1		

∆: Level change

*: Don't care


NC: No change

carry out "H".....Q0~Q4 = "H"


"L" Q5~Q9 = "H"

2007-10-01

Logic Diagram

Timing Chart

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V _{DD}	$V_{SS}-0.5V_{SS}+20$	V
Input voltage	V _{IN}	V _{SS} – 0.5~V _{DD} + 0.5	V
Output voltage	V _{OUT}	V _{SS} – 0.5~V _{DD} + 0.5	V
DC input current	I _{IN}	±10	mA
Power dissipation	PD	300 (DIP)/180 (SOIC)	mW
Operating ambient temperature range	T _{opr}	-40~85	°C
Storage temperature range	T _{stg}	-65~150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (V_{SS} = 0 V) (Note)

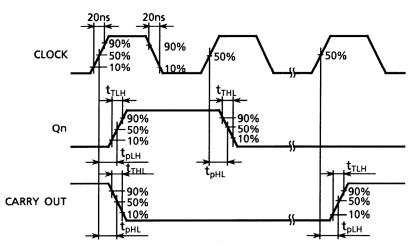
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V _{DD}	_	3	_	18	V
Input voltage	V _{IN}		0	_	V _{DD}	V

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{DD} or V_{SS} .

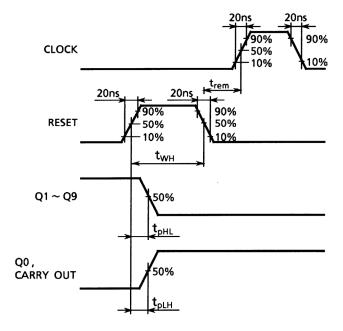
Static Electrical Characteristics ($V_{SS} = 0 V$)

		Sym-	Test Condition	-40°C		25°C			85°C			
Charac	teristics	bol		V _{DD} (V)	Min	Max	Min	Тур.	Max	Min	Max	Unit
			< 1 A	5	4.95	_	4.95	5.00	_	4.95	_	
High-level output voltage	VOH	I _{OUT} < 1 μΑ	10	9.95	_	9.95	10.00	_	9.95	_	V	
			$V_{IN} = V_{SS}, V_{DD}$	15	14.95		14.95	15.00		14.95		
			I _{OUT} < 1 μΑ	5	—	0.05		0.00	0.05	—	0.05	
Low-level voltage	output	V _{OL}	$V_{IN} = V_{SS}, V_{DD}$	10	—	0.05		0.00	0.05	—	0.05	V
0			VIN – VSS, VDD	15	_	0.05	_	0.00	0.05	—	0.05	
			V _{OH} = 4.6 V	5	-0.61	_	-0.51	-1.0	—	-0.42	—	
			$V_{OH} = 2.5 V$	5	-2.50	_	-2.10	-4.0	_	-1.70	_	
Output hig	h current	IOH	V _{OH} = 9.5 V	10	-1.50	_	-1.30	-2.2	_	-1.10	_	mA
			V _{OH} = 13.5 V	15	-4.00	_	-3.40	-9.0	_	-2.80	_	
			$V_{IN} = V_{SS}, \ V_{DD}$									
		I _{OL}	V _{OL} = 0.4 V	5	0.61	_	0.51	1.5	_	0.42	_	mA
Output low	vcurrent		$V_{OL} = 0.5 V$	10	1.50	_	1.30	3.8	_	1.10	_	
Calpation	veurient		V _{OL} = 1.5 V	15	4.00	_	3.40	15.0	—	2.80	—	
			$V_{IN} = V_{SS}, \ V_{DD}$									
			$V_{OUT} = 0.5 V, 4.5 V$	5	3.5	_	3.5	2.75	_	3.5	_	v
Input high	voltage	VIH	V _{OUT} = 1.0 V, 9.0 V	10	7.0	_	7.0	5.50	_	7.0	_	
input nign	voltage	VIH	$V_{OUT} = 1.5 V, 13.5 V$	15	11.0	_	11.0	8.25	_	11.0	_	
			$ I_{OUT} < 1 \ \mu A$									
			$V_{OUT} = 0.5 V, 4.5 V$	5	—	1.5		2.25	1.5	—	1.5	
Input low voltage		VIL	V _{OUT} = 1.0 V, 9.0 V	10	—	3.0		4.50	3.0	—	3.0	v
			$V_{OUT} = 1.5 V, 13.5 V$	15	—	4.0	—	6.75	4.0	—	4.0	
			$ I_{OUT} < 1 \ \mu A$									
Input	"H" level	IIН	V _{IH} = 18 V	18		0.1		10 ⁻⁵	0.1	_	1.0	μA
current	"L" level	١ _{١L}	$V_{IL} = 0 V$	18		-0.1		-10 ⁻⁵	-0.1	_	-1.0	μη
			V _{IN} = V _{SS} , V _{DD}	5		5	_	0.005	5	_	150	
Quiescent current	supply	I _{DD}	$v_{IN} = v_{SS}, v_{DD}$ (Note)	10	—	10		0.010	10	—	300	μA
			(14018)	³⁾ 15 — 15 — 0.015 20 —	—	600						

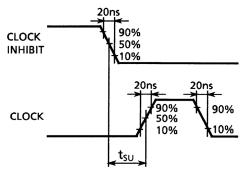
Note: All valid input combinations.

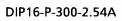

Dynamic Electrical Characteristics (Ta = 25° C, V_{SS} = 0 V, C_L = 50 pF)

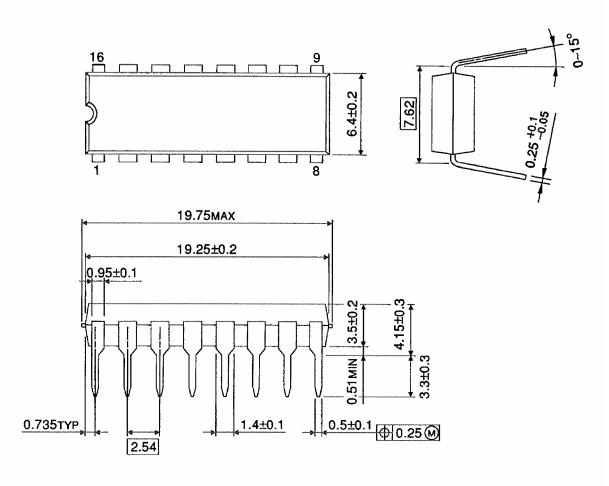
Oberesteristics	Currente el	Test Condition	N.4%	Tour	Mari	Linit	
Characteristics	Symbol		V _{DD} (V)	Min	Тур.	Max	Unit
			5		80	200	
Output transition time	t _{TLH}	_	10	_	50	100	ns
(low to high)			15	_	40	80	
			5		80	200	
Output transition time	t _{THL}	_	10	_	50	100	ns
(high to low)			15		40	80	
			5		325	650	
Propagation delay time	t _{pLH}	—	10	_	135	270	ns
(CLOCK-Qn)	t _{pHL}		15		85	170	
			5		280	600	
Propagation delay time	t _{pLH}	—	10	_	110	250	ns
(CLOCK-CARRY OUT)	tpHL		15	_	75	160	
Propagation delay time			5	_	265	530	
RESET-Qn	t _{pLH}	_	10		115	230	ns
RESET-CARRY OUT	t _{pHL}		15	_	85	170	
			5	2.5	6.0	_	
Max clock frequency	f _{CL}	_	10	5.0	12.0	_	MHz
			15	6.7	13.5	_	
	tw	_	5	_	85	200	ns
Min clock pulse width			10		40	90	
			15		35	60	
			5	_	50	260	
Min pulse width	t _{WH}	_	10		20	110	ns
(RESET)			15		15	60	
			5				
Max clock rise time	t _{rCL}	_	10		No limit		μS
Max clock fall time	t _{fCL}		15				
			5		30	230	
Min set-up time	tsu	_	10	_	15	100	ns
(CLOCK INHIBIT-CLOCK)			15		10	70	
			5		-55	400	
Min removal time	t _{rem}	_	10		-20	275	ns
(RESET-CLOCK)			15		-15	150	
Input capacitance	C _{IN}		1		5	7.5	pF


<u>TOSHIBA</u>

Waveforms for Measurement of Dynamic Characteristics

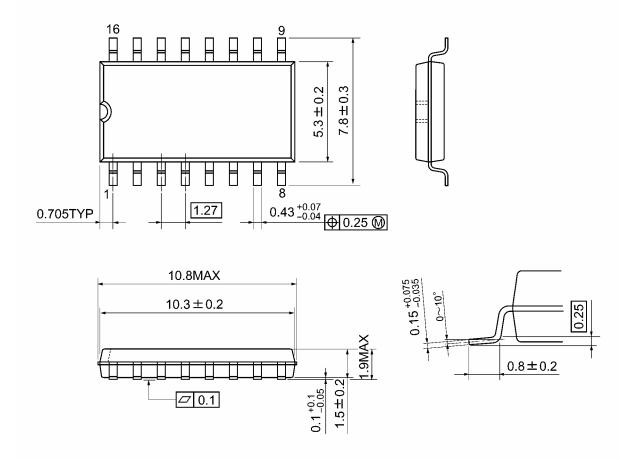

Waveform 1


Waveform 2


Waveform 3

Package Dimensions

Unit : mm



Weight: 1.00 g (typ.)

<u>TOSHIBA</u>

Package Dimensions

SOP16-P-300-1.27A

Weight: 0.18 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability"
- Handbook" etc.
 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
- medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.