TC7MP3125FK

TOSHIBA

TOSHIBA Digital Integrated Circuit Silicon Monolithic

TC7MPH3125FK,TC7MPH3125FTG

Low Voltage/Low Power 2-Bit × 2 Dual Supply Bus Transceiver with Bushold

The TC7MPH3125FK/FTG is a dual supply, advanced high-speed CMOS 4-bit dual supply voltage interface bus transceiver fabricated with silicon gate CMOS technology.

Designed for use as an interface between a 1.2-V, 1.5-V, 1.8-V, or 2.5-V bus and a 1.8-V, 2.5-V or 3.6-V bus in mixed 1.2-V, 1.5-V, 1.8-V or 2.5-V/1.8-V, 2.5-V or 3.6-V supply systems.

The A-port interfaces with the 1.2-V, 1.5-V, 1.8-V or 2.5-V bus, the B-port with the 1.8-V, 2.5-V, 3.3-V bus.

The direction of data transmission is determined by the level of the DIR input. The enable input (\overline{OE}) can be used to disable the device so that the buses are effectively isolated. The bus of a B bus side at floating state is maintained in an appropriate logic level due to a bushold circuit to a B bus. Moreover, the bushold circuit which is added to a B bus is off when \overline{OE} is low.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- Bidirectional interface between 1.2-V and 1.8-V, 1.2-V and 2.5-V, 1.2-V and 3.3-V, 1.5-V and 2.5-V, 1.5-V and 3.3-V, 1.8-V and 2.5-V, 1.8-V and 3.3-V or 2.5-V and 3.3-V buses.
- High-speed operation: $t_{pd} = 6.8 \text{ ns (max)} (V_{CCA} = 2.5 \pm 0.2 \text{ V},$

 $V_{CCB} = 3.3 \pm 0.3 \text{ V}$ $t_{pd} = 8.9 \text{ ns (max)} (V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})$

 $t_{pd} = 0.3$ ns (max) (V_{CCA} = 1.5 ± 0.19 V, V_{CCB} = 3.3 ± 0.3 V) $t_{pd} = 10.3$ ns (max) (V_{CCA} = 1.5 ± 0.1 V, V_{CCB} = 3.3 ± 0.3 V)

 $t_{pd} = 61 \text{ ns (max)} (V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})$

 $t_{pd} = 9.5 \text{ ns (max)} (V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$

 $t_{pd} = 10.8 \text{ ns (max)} (V_{CCA} = 1.5 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$

 $t_{pd} = 60 \text{ ns (max)} (V_{CCA} = 1.2 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$

 $t_{pd} = 58 \text{ ns (max)} (V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 1.8 \pm 0.15 \text{ V})$

• Output current: $I_{OH}/I_{OL} = \pm 12 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$

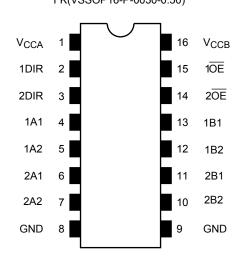
 $I_{OH}/I_{OL} = \pm 9 \text{mA (min)} (V_{CC} = 2.3 \text{ V})$

 $I_{OH}/I_{OL} = \pm 3 \text{ mA (min) (V}_{CC} = 1.65 \text{ V)}$

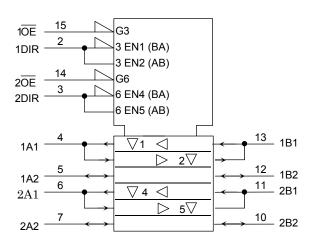
 $I_{OH}/I_{OL} = \pm 1 \text{mA (min) (V}_{CC} = 1.4 \text{ V)}$

- Latch-up performance: ±300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$ Human body model $\geq \pm 2000 \text{ V}$
- Ultra-small package: VSSOP (US16), VQON16
- Bushold circuit is build in only the B bus side. (Only in \overline{OE} = "H", a former state is maintained.)
- Low current consumption: Using the new circuit significantly reduces current consumption when \overline{OE} = "H". Suitable for battery-driven applications such as PDAs and cellular phones.
- Floating A-bus and B-bus are permitted. (when $\overline{OE} = \text{"H"}$)
- 3.6-V tolerant function provided on A-bus terminal, DIR and \overline{OE} terminal.

Note 1: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.

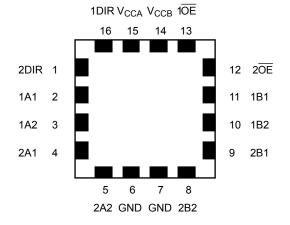

VSSOP16-P-0030-0.50 TC7MP3125FTG

VQON16-P-0303-0.50

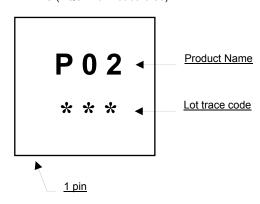

Weight VSSOP16-P-0030-0.50: 0.02 g (typ.) VQON16-P-0303-0.50: 0.013 g (typ.)

Pin Assignment (top view)

FK(VSSOP16-P-0030-0.50)



IEC Logic Symbol



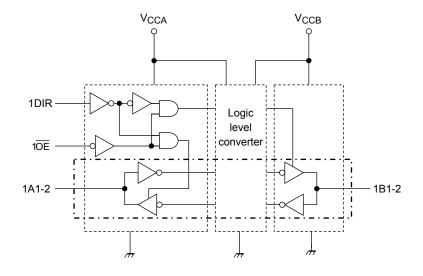
FTG (VQON16-P-0303-0.50)

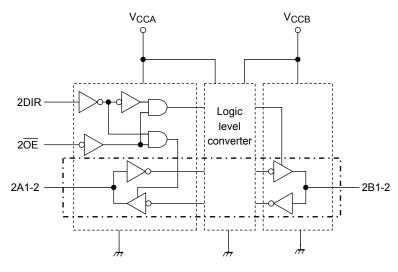
Marking

FTG (VQON16-P-0303-0.50)

Truth Table

Inp	uts	Function		_	Bushold Circuit
1OE	1DIR	Bus 1A1-1A2	Bus 1B1-1B2	Outputs	(B bus)
L	L	Output	Input	A = B	OFF
L	Н	Input Output		B=A	OFF
Н	Х	Z		Z	ON*


Inp	uts	Fund	ction	<u>.</u>	Bushold Circuit (B bus)	
2 OE	2DIR	Bus 2A1-2A2	Bus 2B1-2B2	Outputs		
L	L	Output Input		A = B	OFF	
L	Н	Input Output		B=A	OFF	
Н	Х	Z		Z	ON*	


2

- X: Don't care
- Z: High impedance
- *: Logic state just before becoming disable is maintained.

2007-10-19

Block Diagram

3

Absolute Maximum Ratings (Note 1)

Characteristics		Symbol	Rating		Unit	
Power supply voltage (No	ote 2)	V_{CCA}	-0.5 to 4.6		V	
rower supply voltage (140	ne 2)	V _{CCB}	-0.5 to 4.6		V	
DC input voltage (DIR, $\overline{\text{OE}}$)		V_{IN}	-0.5 to 4.6		٧	
		Viva	-0.5 to 4.6	(Note 3)		
DC bus I/O voltage		V _{I/OA}	-0.5 to V _{CCA} + 0.5 (Note		V	
		V _{I/OB}	-0.5 to V _{CCB} + 0.5	(Note 4)		
Input diode current		I _{IK}	-50		mA	
Output diode current		I _{I/OK}	±50	(Note 5)	mA	
DC output current		Iouta	±25		mA	
DC datput current		I _{OUTB}	±25		ША	
DC V _{CC} /ground current per suppl	v nin	ICCA	±50		mΛ	
DC vCC/ground current per suppr	урш	I _{CCB}	±50		mA	
Power dissipation		P_{D}	180		mW	
Storage temperature		T _{stg}	-65 to 150		°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: Don't supply a voltage to V_{CCB} pin when V_{CCA} is in the OFF state.

Note 3: Output in OFF state

Note 4: High or Low stats. IOUT absolute maximum rating must be observed.

Note 5: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CCA}	1.1 to 2.7	V
(Note 2)	V _{CCB}	1.65 to 3.6	V
Input voltage (DIR, \overline{OE})	V_{IN}	0 to 3.6	V
	Viva	0 to 3.6 (Note 3)	
Bus I/O voltage	V _{I/OA}	0 to V _{CCA} (Note 4)	V
	V _{I/OB}	0 to V _{CCB} (Note 4)	
		±9 (Note 5)	
	I _{OUTA}	±3 (Note 6)	
Output current		±1 (Note 7)	mA
Output current		±12 (Note 8)	ША
	I _{OUTB}	±9 (Note 9)	
		±3 (Note 10)	
Operating temperature	T _{opr}	-40 to 85	°C
Input rise and fall time	dt/dv	0 to 10 (Note 11)	ns/V

- Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.
- Note 2: Don't use in $V_{CCA} > V_{CCB}$
- Note 3: Output in OFF state
- Note 4: High or low state
- Note 5: $V_{CCB}= 2.3 \text{ to } 2.7 \text{ V}$
- Note 6: $V_{CCB} = 1.65 \text{ to } 1.95 \text{ V}$
- Note 7: $V_{CCB} = 1.4 \text{ to } 1.6 \text{ V}$
- Note 8: $V_{CCA} = 3.0 \text{ to } 3.6 \text{ V}$
- Note 9: $V_{CCA} = 2.3 \text{ to } 2.7 \text{ V}$
- Note 10: $V_{CCA} = 1.65$ to 1.95 V
- Note 11: $V_{IN} = 0.8$ to 2.0 V, $V_{CCA} = 2.5$ V, $V_{CCB} = 3.0$ V

Electrical Characteristics

DC Characteristics (2.3 V \leq V_{CCA} \leq 2.7 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Toot C	ondition	\/aa. (\/)	\/a== (\/\)	Ta = -40	to 85°C	Unit
Characteristics	Symbol	Test O	onulion	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, \overline{OE} , An		2.3 to 2.7	2.7 to 3.6	1.6		V
Ti-level input voltage	V _{IHB}	Bn		2.3 to 2.7	2.7 to 3.6	2.0		V
L-level input voltage	V _{ILA}	DIR, \overline{OE} , An		2.3 to 2.7	2.7 to 3.6		0.7	V
L-level input voltage	V _{ILB}	Bn		2.3 to 2.7	2.7 to 3.6	_	0.8	V
	V _{OHA}		$I_{OHA} = -100 \mu A$	2.3 to 2.7	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	$I_{OHA} = -9 \text{ mA}$	2.3	2.7 to 3.6	1.7		V
Tr-level output voltage	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \mu A$	2.3 to 2.7	2.7 to 3.6	V _{CCB} - 0.2		V
			$I_{OHB} = -12 \text{ mA}$	2.3 to 2.7	3.0	2.2		
	V _{OLA}		$I_{OLA} = 100 \mu A$	2.3 to 2.7	2.7 to 3.6	_	0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 9 mA	2.3	2.7 to 3.6		0.6	V
L-icver output voltage	V _{OLB}	AIM - AIM OL AIF	I _{OLB} = 100 μA	2.3 to 2.7	2.7 to 3.6	_	0.2	V
	VOLB		I _{OLB} = 12 mA		3.0	_	0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$			2.7 to 3.6	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	2.3 to 2.7	2.7 to 3.6	_	±2.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±1.0	μА
Bushold input minimum drive hold	lu ioi p	V _{IN} = 0.8 V		2.3 to 2.7	3.0	75	_	^
current	IHOLD	V _{IN} = 2.0 V		2.3 to 2.7	3.0	-75		μА
Bushold input over-drive current to	lion		(Note 1)	2.3 to 2.7	3.6	_	550	μА
change state	liod		(Note 2)	2.3 to 2.7	3.6	_	-550	μΛ
	I _{OFF1}			0	0	_	2.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	2.3 to 2.7	0	_	2.0	μΑ
	I _{OFF3}			2.3 to 2.7	Open	_	2.0	
	ICCA	V _{INA} = V _{CCA} or GND V _{INB} = V _{CCB} or GND		2.3 to 2.7	2.7 to 3.6	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		2.3 to 2.7	2.7 to 3.6	_	2.0	μΑ
	I _{CCA}	$V_{CCA} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±2.0	
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±2.0	μА
	Ісств	V _{INB} = V _{CCB} - 0	.6 V per input	2.3 to 2.7	2.7 to 3.6	_	750.0	μΑ

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

6

Note 2: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

2007-10-19

DC Characteristics (1.65 V \leq V $_{\text{CCA}}$ < 2.3 V, 2.7 V < V $_{\text{CCB}}$ \leq 3.6 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
Characteriotics	Cymbol	1000 00			VCCB (V)	Min	Max	Onic
H-level input voltage	V _{IHA}	DIR, OE, An		1.65 to 2.3	2.7 to 3.6	0.65 × V _{CCA}	_	V
	V _{IHB}	Bn		1.65 to 2.3	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, \overline{OE} , An		1.65 to 2.3	2.7 to 3.6		$\begin{array}{c} 0.35 \times \\ V_{CCA} \end{array}$	V
	V _{ILB}	Bn	Bn 1		2.7 to 3.6	_	0.8	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.65 to 2.3	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	$I_{OHA} = -3 \text{ mA}$	1.65	2.7 to 3.6	1.25	_	V
Triever output voltage	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \mu A$	1.65 to 2.3	2.7 to 3.6	V _{CCB} - 0.2		V
			I _{OHB} = -12 mA	1.65 to 2.3	3.0	2.2	_	
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.65 to 2.3	2.7 to 3.6	_	0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 3 mA	1.65	2.7 to 3.6	_	0.3	V
L level output voltage	V _{OLB}	VIN - VIN OI VIL	$I_{OLB} = 100 \mu A$	1.65 to 2.3	2.7 to 3.6	_	0.2	V
	VOLB		I _{OLB} = 12 mA	1.65 to 2.3	3.0	_	0.55	
0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	loza	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	1.65 to 2.3	2.7 to 3.6	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	1.65 to 2.3	2.7 to 3.6	_	±2.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) :	= 0 to 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±1.0	μА
Bushold input minimum drive hold		V _{IN} = 0.8 V		1.65 to 2.3	3.0	75	_	
current	IHOLD	V _{IN} = 2.0 V		1.65 to 2.3	3.0	-75	_	μА
Bushold input over-drive current			(Note 1)	1.65 to 2.3	3.6	_	550	^
to change state	lIOD		(Note 2)	1.65 to 2.3	3.6	_	-550	μΑ
	I _{OFF1}			0	0	_	2.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0	_	2.0	μА
	I _{OFF3}			1.65 to 2.3	Open	_	2.0	
_	ICCA		V _{INA} = V _{CCA} or GND V _{INB} = V _{CCB} or GND		2.7 to 3.6		2.0	A
Quiescent supply current	I _{CCB}	V _{INA} = V _{CCA} or GND V _{INB} = V _{CCB} or GND		1.65 to 2.3	2.7 to 3.6	_	2.0	μΑ
	ICCA	V _{CCA} ≤ (V _{IN} , V _O		1.65 to 2.3	2.7 to 3.6	_	±2.0	
	I _{CCB}	V _{CCB} ≤ (V _{IN} , V _O	_{UT}) ≤ 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±2.0	μА
	Ісств	V _{INB} = V _{CCB} - 0	.6 V per input	1.65 to 2.3	2.7 to 3.6	_	750.0	μА

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
Onaracteristics	Cymbol	rest oblidition		VCCA (V)	VCCB (V)	Min	Max	Offic
H-level input voltage	V_{IHA}	DIR, \overline{OE} , An		1.4 to 1.65	2.7 to 3.6	0.65 × V _{CCA}		V
	V_{IHB}	Bn ,		1.4 to 1.65	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, $\overline{\text{OE}}$, An		1.4 to 1.65	2.7 to 3.6		$\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$	V
	V_{ILB}	Bn		1.4 to 1.65	2.7 to 3.6		8.0	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.4 to 1.65	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	I _{OHA} = -1 mA	1.4	2.7 to 3.6	1.05		V
Ti-level output voltage	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \mu A$	1.4 to 1.65	2.7 to 3.6	V _{CCB} – 0.2		V
			I _{OHB} = -12 mA	1.4 to 1.65	3.0	2.2		
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.4 to 1.65	2.7 to 3.6	_	0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 1 mA	1.4	2.7 to 3.6		0.35	V
L-level output voltage	Vol.	AIM - AIH OL AIF	$I_{OLB} = 100 \mu A$	1.4 to 1.65	2.7 to 3.6		0.2	V
	V _{OLB}		I _{OLB} = 12 mA	1.4 to 1.65	3.0	_	0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		2.7 to 3.6		±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6	V	1.4 to 1.65	2.7 to 3.6	_	±2.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.4 to 1.65	2.7 to 3.6	_	±1.0	μА
Bushold input minimum drive hold		V _{IN} = 0.8 V		1.4 to 1.65	3.0	75	_	
current	IHOLD	V _{IN} = 2.0 V		1.4 to 1.65	3.0	-75	_	μΑ
Bushold input over-drive current			(Note 1)	1.4 to 1.65	3.6	_	550	
to change state	lIOD		(Note 2)	1.4 to 1.65	3.6	_	-550	μΑ
	l _{OFF}			0	0	_	2.0	
Power-off leakage current	l _{OFF}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0	_	2.0	μА
	l _{OFF}			1.4 to 1.65	Open	_	2.0	
	I _{CCA}		$V_{INA} = V_{CCA}$ or GND $V_{INB} = V_{CCB}$ or GND		2.7 to 3.6	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or V_{CCB}		1.4 to 1.65	2.7 to 3.6	_	2.0	μА
	I _{CCA}	V _{CCA} ≤ (V _{IN} , V _O		1.4 to 1.65	2.7 to 3.6	_	±2.0	_
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$		1.4 to 1.65		_	±2.0	μА
	Ісств	$V_{INB} = V_{CCB} - 0$		1.4 to 1.65	2.7 to 3.6	_	750.0	μА

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

8

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Test C	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
	-,			1007(1)	1000 (1)	Min	Max	
H-level input voltage	V _{IHA}	DIR, OE, An		1.1 to 1.4	2.7 to 3.6	0.65 × V _{CCA}	_	V
	V _{IHB}	Bn		1.1 to 1.4	2.7 to 3.6	2.0		
L-level input voltage	V _{ILA}	DIR, OE, An	DIR, $\overline{\text{OE}}$, An		2.7 to 3.6	_	0.30 × V _{CCA}	V
	V _{ILB}	Bn		1.1 to 1.4	2.7 to 3.6	_	0.8	
	V _{OHA}		I _{OHA} = -100 μA	1.1 to 1.4	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OHB} = -100 \mu A$	1.1 to 1.4	2.7 to 3.6	V _{CCB} - 0.2		V
			$I_{OHB} = -12 \text{ mA}$	1.1 to 1.4	3.0	2.2		
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.1 to 1.4	2.7 to 3.6		0.2	
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \mu A$	1.1 to 1.4	2.7 to 3.6	—	0.2	V
L level output voltage	VOLB		I _{OLB} = 12 mA	1.1 to 1.4	3.0	—	0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	$V_{OUT} = 0$ to 3.6 V $V_{IN} = V_{IH}$ or V_{IL}		2.7 to 3.6	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6			2.7 to 3.6	_	±2.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$)	= 0 to 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±1.0	μА
Bushold input minimum drive hold		V _{IN} = 0.8 V		1.1 to 1.4	3.0	75		
current	IHOLD	V _{IN} = 2.0 V		1.1 to 1.4	3.0	-75	_	μΑ
Bushold input over-drive current			(Note 1)	1.1 to 1.4	3.6	_	550	
to change state	l _{IOD}		(Note 2)	1.1 to 1.4	3.6	_	-550	μΑ
	I _{OFF1}			0	0	_	2.0	
Power-off leakage current	I _{OFF2}	V _{IN} , V _{OUT} = 0 to	3.6 V	1.1 to 1.4	0	_	2.0	μΑ
	I _{OFF3}			1.1 to 1.4	Open	_	2.0	
	I _{CCA}		V _{INA} = V _{CCA} or GND V _{INB} = V _{CCB} or GND		2.7 to 3.6	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.1 to 1.4	2.7 to 3.6	_	2.0	μΑ
	I _{CCA}	$V_{CCA} \le (V_{IN}, V_{CI})$	_{UT}) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±2.0	
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{CCB})$	_{UT}) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±2.0	μΑ
	Ісств	$V_{INB} = V_{CCA} - 0$.6 V per input	1.1 to 1.4	2.7 to 3.6	_	750.0	

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

9

DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40) to 85°C	Unit
	.,			00/11/	005(7	Min	Max	
H-level input voltage	V_{IHA}	DIR, $\overline{\text{OE}}$, An		1.65 to 2.3	2.3 to 2.7	0.65 × V _{CCA}		V
	V_{IHB}	Bn	Bn ,		2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, OE, An	DIR, $\overline{\text{OE}}$, An		2.3 to 2.7	_	0.35 × V _{CCB}	V
	V _{ILB}	Bn		1.65 to 2.3	2.3 to 2.7	_	0.7	
	V _{OHA}		I _{OHA} = -100 μA	1.65 to 2.3	2.3 to 2.7	V _{CCA} - 0.2	_	
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	$I_{OHA} = -3 \text{ mA}$	1.65	2.3 to 2.7	1.25		V
n-level output voltage	V _{OHB}	VIN = VIH OI VIL	I _{OHB} = -100 μA	1.65 to 2.3	2.3 to 2.7	V _{CCB} - 0.2	_	V
			$I_{OHB} = -9 \text{ mA}$	1.65 to 2.3	2.3	1.7	_	
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.65 to 2.3	2.3 to 2.7	_	0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 3 mA	1.65	2.3 to 2.7	_	0.3	V
L-level output voltage	V _{OLB}	AIM - AIH OL AIL	I _{OLB} = 100 μA	1.65 to 2.3	2.3 to 2.7	_	0.2	V
	VOLB		I _{OLB} = 9mA	1.65 to 2.3	2.3	_	0.6	
	loza	$V_{IN} = V_{IH}$ or V_{IL}		1.65 to 2.3	2.3 to 2.7	_	±2.0	
3-state output OFF state current	IOZA	V _{OUT} = 0 to 3.6 V		1.00 to 2.0	2.0 (0 2.7		⊥2.0	μА
o date output of the date outfork	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL}		1.65 to 2.3	2.3 to 2.7	_	±2.0	μιτ
	-OZB	$V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V					
Input leakage current	I _{IN}	V _{IN} (DIR, \overline{OE}) =	= 0 to 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±1.0	μΑ
Bushold input minimum drive hold	I _{IHOLD}	V _{IN} = 0.7 V		1.65 to 2.3	2.3	45	_	μА
current	IIIOLD	V _{IN} = 1.6 V		1.65 to 2.3	2.3	-45	_	F** -
Bushold input over-drive current	l _{IOD}		(Note 1)	1.65 to 2.3	2.7	_	450	μА
to change state	·IOD		(Note 2)	1.65 to 2.3	2.7	_	-450	μ
	I _{OFF}			0	0	_	2.0	
Power-off leakage current	I _{OFF}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0	_	2.0	μΑ
	I _{OFF}			1.65 to 2.3	Open	_	2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or 0	V _{INA} = V _{CCA} or GND		2.3 to 2.7	_	2.0	
	.004	V _{INB} = V _{CCB} or GND		1.65 to 2.3				uА
Quiescent supply current	I _{CCB}	V _{INA} = V _{CCA} or GND		1.65 to 2.3	2.3 to 2.7		μA	r.
		$V_{INB} = V_{CCB}$ or						
	ICCA	$V_{CCA} \le (V_{IN}, V_{O})$		1.65 to 2.3	2.3 to 2.7		±2.0	μА
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.3 to 2.7		±2.0	•

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

10

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Tost Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40) to 85°C	Unit
Characteristics	Syllibol	1651 01	oridition	VCCA(V)	ACCB (A)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, OE, An		1.4 to 1.65	2.3 to 2.7	0.65 × V _{CCA}		٧
	V _{IHB}	Bn	Bn		2.3 to 2.7	1.6		
L-level input voltage	V _{ILA}	DIR, OE, An		1.4 to 1.65	2.3 to 2.7	_	0.30 × V _{CCA}	V
	V _{ILB}	Bn		1.4 to 1.65	2.3 to 2.7		0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	$I_{OHA} = -1 \text{ mA}$	1.4	2.3 to 2.7	1.05		V
Thever output voltage	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCB} – 0.2		V
			$I_{OHB} = -9 \text{ mA}$	1.4 to 1.65	2.3	1.7		
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.4 to 1.65	2.3 to 2.7		0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 1 mA	1.4	2.3 to 2.7		0.35	V
L-level output voltage	V _{OLB}	A A M = A M OL A M	$I_{OLB} = 100 \mu A$	1.4 to 1.65	2.3 to 2.7	_	0.2	V
	VOLB		I _{OLB} = 9mA	1.4 to 1.65	2.3	_	0.6	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	l 1.		2.3 to 2.7	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6	V	1.4 to 1.65	2.3 to 2.7	_	±2.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$)	= 0 to 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±1.0	μА
Bushold input minimum drive hold		V _{IN} = 0.7 V		1.4 to 1.65	2.3	45	_	
current	IHOLD	V _{IN} = 1.6 V		1.4 to 1.65	2.3	-45	_	μΑ
Bushold input over-drive current			(Note 1)	1.4 to 1.65	2.7	_	450	^
to change state	l _{IOD}		(Note 2)	1.4 to 1.65	2.7	_	-450	μΑ
	I _{OFF1}			0	0	_	2.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0	_	2.0	μΑ
	I _{OFF3}			1.4 to 1.65	Open	_	2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or	V _{INA} = V _{CCA} or GND V _{INB} = V _{CCB} or GND		2.3 to 2.7	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or	GND	1.4 to 1.65	2.3 to 2.7	_	2.0	μΑ
	I _{CCA}	$V_{CCA} \le (V_{IN}, V_{CI})$	_{UT}) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±2.0	^
	I _{CCB}	V _{CCB} ≤ (V _{IN} , V _C	_{OUT}) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7		±2.0	μΑ

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
Characteriotics	Cymbol	100101	on diagon	VCCA (V)	VCCB (V)	Min	Max	Onne
H-level input voltage	V _{IHA}	DIR, OE, An		1.1 to 1.4	2.3 to 2.7	0.65 × V _{CCA}		V
	V _{IHB}	Bn		1.1 to 1.4	2.3 to 2.7	1.6		
L-level input voltage	V _{ILA}	DIR, OE, An	DIR, $\overline{\text{OE}}$, An		2.3 to 2.7	_	$\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$	V
	V _{ILB}	Bn		1.1 to 1.4	2.3 to 2.7	—	0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.1 to 1.4	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OHB} = -100 \mu A$	1.1 to 1.4	2.3 to 2.7	V _{CCB} - 0.2	_	V
			$I_{OHB} = -9 \text{ mA}$	1.1 to 1.4	2.3	1.7	_	
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.1 to 1.4	2.3 to 2.7		0.2	
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \mu A$	1.1 to 1.4	2.3 to 2.7	_	0.2	V
	VOLB		I _{OLB} = 9 mA	1.1 to 1.4	2.3		0.6	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ s}$	V	1.1 to 1.4	2.3 to 2.7	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	1.1 to 1.4	2.3 to 2.7	_	±2.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$)	= 0 to 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±1.0	μА
Bushold input minimum drive hold	1	V _{IN} = 0.7 V		1.1 to 1.4	2.3	45		^
current	IHOLD	V _{IN} = 1.6 V		1.1 to 1.4	2.3	-45	_	μΑ
Bushold input over-drive current	lias		(Note 1)	1.1 to 1.4	2.7	_	450	μА
to change state	l _{IOD}		(Note 2)	1.1 to 1.4	2.7	_	-450	μΑ
	I _{OFF1}			0	0	_	2.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	_	2.0	μΑ
	I _{OFF3}			1.1 to 1.4	Open	_	2.0	
	I _{CCA}	V _{INA} = V _{CCA} or GND		1.1 to 1.4	2.3 to 2.7	_	2.0	
Quiescent supply current	I _{CCB}	+	$V_{INB} = V_{CCB}$ or GND $V_{INA} = V_{CCA}$ or GND $V_{INB} = V_{CCB}$ or GND		2.3 to 2.7	_	2.0	μА
	ICCA	$V_{CCA} \le (V_{IN}, V_{O})$		1.1 to 1.4	2.3 to 2.7	_	±2.0	_
	I _{CCB}	V _{CCB} ≤ (V _{IN} , V _O	u⊤) ≤ 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±2.0	μΑ

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 1.65 V \leq V_{CCB} < 2.3 V)

Characteristics	Symbol	Tost Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
Characteristics	Symbol	1631 01	oridition	VCCA (V)	ACCB (A)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, OE, An		1.1 to 1.4	1.65 to 2.3	$\begin{array}{c} 0.65 \times \\ V_{CCAB} \end{array}$		V
THE verifipat voltage	V _{IHB}	Bn		1.1 to 1.4	1.65 to 2.3	0.65 × V _{CC}		V
L-level input voltage	V _{ILA}	DIR, $\overline{\text{OE}}$, An		1.1 to 1.4	1.65 to 2.3		$\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$	V
L-rever input voltage	V _{ILB}	Bn	_	1.1 to 1.4	1.65 to 2.3		$\begin{array}{c} 0.35 \times \\ V_{CCB} \end{array}$	V
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.1 to 1.4	1.65 to 2.3	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OHB} = -100 \mu A$	1.1 to 1.4	1.65 to 2.3	V _{CCB} - 0.2		V
			$I_{OHB} = -3 \text{ mA}$		1.65	1.25		
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.1 to 1.4	1.65 to 2.3		0.2	
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH}$ or V_{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL} $ $I_{OLB} = 100 \mu A$ 1		1.65 to 2.3		0.2	V
	VOLB		$I_{OLB} = 3 \text{ mA}$	1.1 to 1.4	1.65		0.3	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		1.65 to 2.3		±2.0	•
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6	V	1.1 to 1.4	1.65 to 2.3		±2.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±1.0	μА
Bushold input minimum drive hold		V _{IN} = 0.58 V		1.1 to 1.4	1.65	20	_	
current	IHOLD	V _{IN} = 1.07 V		1.1 to 1.4	1.65	-20	_	
Bushold input over-drive current			(Note 1)	1.1 to 1.4	1.95		300	
to change state	lIOD		(Note 2)	1.1 to 1.4	1.95	_	-300	
	I _{OFF1}			0	0		2.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0		2.0	μΑ
	I _{OFF3}			1.1 to 1.4	Open		2.0	
	I _{CCA}	V _{INA} = V _{CCA} or GND V _{INB} = V _{CCB} or GND		1.1 to 1.4	1.65 to 2.3		2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		1.1 to 1.4	1.65 to 2.3	_	2.0	μА
	I _{CCA}	$V_{CCA} \le (V_{IN}, V_{O})$	ouT) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3		±2.0	^
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	ouT) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±2.0	μА

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

13

AC Characteristics (Ta = -40 to 85°C, Input: $t_r = t_f = 2.0$ ns)

 $V_{CCA} = 2.5 \pm 0.2$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	5.4	
$(Bn \rightarrow An)$	t _{pHL}	rigule 1, rigule 2	1.0	3.4	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	8.4	ns
$(\overline{OE} \to An)$	t _{pZH}	Figure 1, Figure 3	1.0	0.4	115
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	6.7	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	0.7	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	6.8	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	0.0	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	4.0	0.7	20
$(\overline{\sf OE} \ \to \sf Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	8.7	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	4.0	2.0	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	3.9	
Output to output alcour	t _{osLH}	(Note)		0.5	20
Output to output skew	t _{osHL}	(Note)		0.5	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	8.9	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	0.9	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	13.4	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	13.4	113
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	10.9	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	10.9	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	7.8	
$(An \rightarrow Bn)$	t _{pHL}	rigule 1, rigule 2	1.0	7.0	
3-state output enable time	t _{pZL}	Figure 1 Figure 2	1.0	10.7	ns
$(\overline{\sf OE} \ \to \sf Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	10.7	115
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	5.2	
$(\overline{\sf OE} \ \to \sf Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	3.2	
Outroit to subside leave	t _{osLH}	(Note)		0.5	ns
Output to output skew	t _{osHL}	(Note)		0.5	115

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	10.3	
$(Bn \rightarrow An)$	t _{pHL}	ga. o .,ga. o _			
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	18.5	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	10.5	110
3-state output disable time	t_{pLZ}	Figure 1, Figure 3	1.0	13.0	
$(\overline{OE} \to An)$	t _{pHZ}	rigure 1, rigure 3	1.0	13.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	8.6	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	0.0	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	14.3	ns
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	14.3	115
3-state output disable time	t_{pLZ}	Figure 4 Figure 2	1.0	6.6	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	0.0	
Output to autout along	t _{osLH}	(Note)		1.5	ns
Output to output skew	t _{osHL}	(Note)		1.0	115

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	61	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	01	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	95	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	90	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	44	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	44	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	22	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	22	
3-state output enable time	t _{pZL}	Figure 1 Figure 2	1.0	52	ns
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	32	115
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	18	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	10	
Output to output allow	t _{osLH}	(Noto)		1.5	no
Output to output skew tosHL		(Note)		1.0	ns

15

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	9.1	
$(Bn \rightarrow An)$	t _{pHL}				
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	13.5	ns
$(\overline{OE} \rightarrow An)$	t _{pZH}	rigure 1, rigure 3	1.0	10.0	110
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	11.8	
$(\overline{OE} \to An)$	t _{pHZ}	rigure 1, rigure 3	1.0	11.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	9.5	
$(An \rightarrow Bn)$	t _{pHL}	rigure 1, rigure 2	1.0	9.5	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	12.6	ns
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	12.0	115
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	5.1	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	5.1	
Output to output skew	t _{osLH}	(Note)		0.5	ns
Output to output skew	t _{osHL}	(Note)		0.5	115

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

 $V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	10.8	
$(Bn \rightarrow An)$	t _{pHL}	Figure 1, Figure 2	1.0	10.6	
3-state output enable time	t _{pZL}	Figure 1 Figure 2	1.0	18.3	ns
$(\overline{OE} \to An)$	t _{pZH}	Figure 1, Figure 3	1.0	10.3	115
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	14.2	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	14.2	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	10.5	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	10.5	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	4.0	45.4	
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	15.4	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	4.0	0.4	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	6.4	
Output to output allow	t _{osLH}	(Note)		1 5	20
Output to output skew	t _{osHL}	(Note)		1.5	ns

16

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	60	
$(Bn \rightarrow An)$	t _{pHL}	rigule 1, rigule 2	1.0	00	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	95	ns
$(\overline{OE} \to An)$	t _{pZH}	Figure 1, Figure 3	1.0	95	115
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	45	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	45	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	23	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	23	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	4.0	F4	20
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	54	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	4.0	47	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	17	
0	t _{osLH}	(Note)		1 5	20
Output to output skew	t _{osHL}	(Note)		1.5	ns

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 1.8 \pm 0.15$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	58	
$(Bn \rightarrow An)$	t _{pHL}	Figure 1, Figure 2	1.0	36	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	92	ns
$(\overline{OE} \to An)$	t _{pZH}	Figure 1, Figure 3	1.0	92	113
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	47	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	47	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	30	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	30	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	4.0		20
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	55	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	4.0	47	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	17	
Output to output skow	t _{osLH}	(Nloto)		1.5	20
Output to output skew	t _{osHL}	(Note)		1.5	ns

17

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, \, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

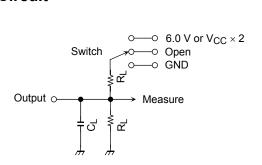
Characteristics		Symbol	Test Condition				Тур.	Unit					
Characteristics		Symbol	rest condition		V _{CCA} (V)	V _{CCB} (V)	τyp.	Offic					
					2.5	3.3	8.0						
	$A\toB$				1.8	3.3	8.0						
Quiet output maximum		V _{OLP}	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	0.6	V					
dynamic V _{OL}		VOLP	1)	Note)	2.5	3.3	0.6	V					
	$B\toA$				1.8	3.3	0.25						
					1.8	2.5	0.25						
					2.5	3.3	-0.8						
	$A\toB$				1.8	3.3	-0.8						
Quiet output minimum		V_{OLV}	- V _{OLV}	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	-0.6	V				
dynamic V _{OL}				VOLV	VOLV	VOLV	VOLV	VOLV	1)	Note)	2.5	3.3	-0.6
	$B \rightarrow A$	$B\toA$				1.8	3.3	-0.25					
									1.8	2.5	-0.25		
					2.5	3.3	4.6						
	$A\toB$				1.8	3.3	4.6						
Quiet output maximum		V	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	3.3	V					
dynamic V _{OH}		VOHP	VOHP	VOHP	VOHP	V _{OHP}	1)	(Note)	2.5	3.3	3.3	V	
	$B\toA$				1.8	3.3	2.3						
					1.8	2.5	2.3						
					2.5	3.3	2.0						
	$A\toB$				1.8	3.3	2.0						
Quiet output minimum		V	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	1.7	\					
dynamic V _{OH}	dynamic V _{OH}	V _{OHV}	1)	Note)	2.5	3.3	1.7	V					
	$B\toA$				1.8	3.3	1.3						
					1.8	2.5	1.3						

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics		Symbol		Test Circuit			Тур.	Unit					
Characteristics		Syllibol		rest Circuit		V _{CCB} (V)	τyp.	Offic					
Input capacitance		C _{IN}	DIR, OE		2.5	3.3	7	pF					
Bus I/O capacitance		C _{I/O}	An, Bn		2.5	3.3	8	pF					
			OE = "L"	$A \rightarrow B (DIR = "H")$	2.5	3.3	3						
		C _{PDA}	OL - L	$B \rightarrow A (DIR = "L")$	2.5	3.3	16						
			OPDA	OPDA 	OPDA	OPDA	OPDA	OE = "H"	$A \rightarrow B (DIR = "H")$	2.5	3.3	0	
Power dissipation capacitance			OL = II	$B \rightarrow A (DIR = "L")$	2.5	3.3	0	pF					
1)	Note)		OE = "L"	$A \rightarrow B (DIR = "H")$	2.5	3.3	16	ρι					
		Cooo		$B \rightarrow A (DIR = "L")$	2.5	3.3	5						
			C _{PDB} -	OE = "H"		$A \rightarrow B (DIR = "H")$	2.5	3.3	0				
											OL = H	$B \rightarrow A (DIR = "L")$	2.5

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


18

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 \text{ (per bit)}$

AC Test Circuit

Parameter		Switch
t _{pLH} , t _{pHL}		Open
	6.0 V	$@V_{CC} = 3.3 \pm 0.3 V$
	V _{CC} × 2	@ $V_{CC} = 2.5 \pm 0.2 \text{ V}$
t_{pLZ}, t_{pZL}		$@V_{CC} = 1.8 \pm 0.15 V$
		$@V_{CC} = 1.5 \pm 0.1 \text{ V}$
		$ v_{CC} = 1.2 \pm 0.1 \text{ V} $
t_{pHZ} , t_{pZH}		GND

Symbol	V _{CC} (output)								
Symbol	$\begin{array}{c} 3.3 \pm 0.3 \ \text{V} \\ 2.5 \pm 0.2 \ \text{V} \end{array}$	1.8 ± 0.15 V 1.5 ± 0.1 V 1.2 ± 0.1 V							
R_{L}	500 Ω	1 kΩ	2 kΩ	10 kΩ					
CL	30 pF	30 pF	15 pF	15 pF					

Figure 1

19

AC Waveform

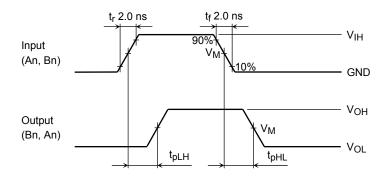
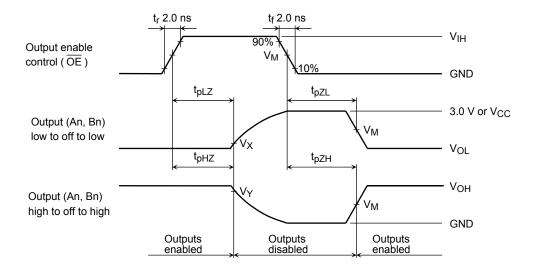
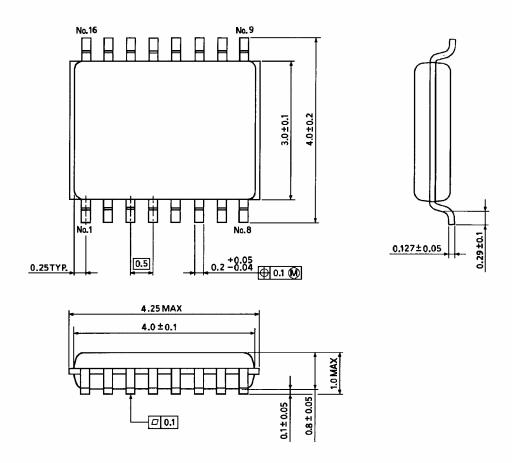


Figure 2 t_{pLH}, t_{pHL}

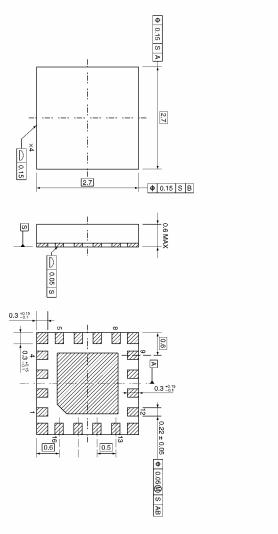



Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

Symbol	V _{CC}		
	$3.3\pm0.3~\textrm{V}$	2.5 ± 0.2 V 1.8 ± 0.15 V	$\begin{array}{c} 1.5 \pm 0.1 \ V \\ 1.2 \pm 0.1 \ V \end{array}$
V_{IH}	2.7 V	V _{CC}	V _{CC}
V _M	1.5 V	V _{CC} /2	V _{CC} /2
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.1 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.1 V

20

Package Dimensions


VSSOP16-P-0030-0.50 Unit: mm

Weight: 0.02 g (typ.)

Package Dimensions

VQON16-P-0303-0.50 Unit: mm

Weight: 0.013 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.