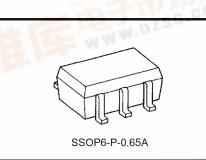
查询TC7PA19FU供应商 TOSHIBA 捷多邦,专业PCB打样工厂,24小时加急出货

TC7PA19FU

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7PA19FU

Chip Select Decoder


Features

Operating voltage range:	٧c
High-speed operation:	tpc

 $V_{CC} = 1.4 \sim 3.6 \text{ V}$ $t_{pd} = 3.3 \text{ ns (max) at } V_{CC} = 3.0 \sim 3.6 \text{ V}$ $t_{pd} = 3.9 \text{ ns (max) at } V_{CC} = 2.3 \sim 2.7 \text{ V}$ $t_{pd} = 8.0 \text{ ns (max) at } V_{CC} = 1.65 \sim 1.95 \text{ V}$ $t_{pd} = 10.0 \text{ ns (max) at } V_{CC} = 1.4 \sim 1.6 \text{ V}$

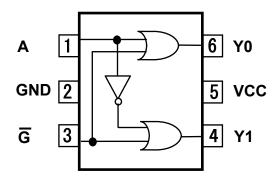
High-level output current:

 $I_{OH}/I_{OL} = \pm 24 \text{ mA (min) at } V_{CC} = 3.0 \text{ V}$ $I_{OH}/I_{OL} = \pm 18 \text{ mA (min) at } V_{CC} = 2.3 \text{ V}$ $I_{OH}/I_{OL} = \pm 4 \text{ mA (min) at } V_{CC} = 1.4 \text{ V}$

Weight: 0.0068 g (typ.)

3.6 V tolerant inputs

3.6 V power down protection outputs


Marking

Product name

1

<u>TOSHIBA</u>

Pin Assignment (top view)

Truth Table

Inp	outs	Outp	outs	
Enable	Select	Y0	Y1	Selected Output
G	А	10	τı	
Н	Х	Н	Н	None
L	L	L	Н	YO
L	Н	Н	L	Y1

X: Don't care

Absolute Maximum Ratings

Characteristics	Symbol	Value	Unit
Power supply voltage	V _{CC}	-0.5~4.6	V
DC input voltage	V _{IN}	-0.5~4.6	V
DC output voltage	Varia	-0.5~4.6 (Note1)	V
DC oulput voltage	Vout	-0.5~V _{CC} + 0.5 (Note2)	v
Input diode current	Iк	-50	mA
Output diode current	I _{OK}	-50 (Note3)	mA
DC output current	IOUT	±50	mA
Power dissipation	PD	200	mW
DC V _{CC} /ground current	Icc	±100	mA
Storage temperature	T _{stg}	-65~150	°C

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note1: V_{CC} = 0 V

Note2: High or Low state. The IOUT absolute maximum rating must be adhered to.

Note3: V_{OUT} < GND

Operating Ranges

Characteristics	Symbol	Value	Unit		
Power supply voltage	Vcc	1.4~3.6			
Power supply voltage	VCC	1.2~3.6 (Note4)	V		
Input voltage	V _{IN}	-0.3~3.6	V		
Output voltage	Varia	0~3.6 (Note5)	V		
Oulput voltage	Vout	0~V _{CC} (Note6)	v		
		±24 (Note7)			
Output Current	I _{OH} /I _{OL}	±18 (Note8)	mA		
		±4 (Note9)			
Operating temperature	T _{opr}	-40~85	°C		
Input rise and fall time	dt/dv	0~10 (Note10)	ns/V		

Note4: Data retention only

Note5: $V_{CC} = 0 V$

Note6: High or Low state

Note7: V_{CC} = 3.0~3.6 V

Note8: $V_{CC} = 2.3 \sim 2.7 \text{ V}$

Note9: $V_{CC} = 1.4 \sim 1.9 V$

Note10: $V_{IN} = 0.8 \sim 2.0 \text{ V}, \text{ V}_{CC} = 3.0 \text{ V}$

DC Electrical Characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.7 V < V_{CC} \leq 3.6 V)

Characteristics	Symbol	Test Condition			Min	Мах	Unit																				
Characteristics	Symbol	1631 0	Sonation	V _{CC} (V)	IVIIII	Μαλ	Unit																				
High-Level Input Voltage	VIH		_	2.7~3.6	2.0	_	v																				
Low-Level Input Voltage	VIL			2.7~3.6	_	0.8	v																				
			I _{OH} = -100 μA	2.7~3.6	V _{CC} - 0.2	_																					
High-Level Output Voltage	tput Voltage V _{OH} V	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -12 mA	2.7	2.2	_	v																				
			I _{OH} = -18 mA	3.0	2.4	_																					
			I _{OH} =24 mA	3.0	2.2	_																					
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 100 μA	2.7~3.6	_	0.2																					
Low Lovel Output Veltage	Mai		I _{OL} = 12 mA	2.7	_	0.4	v																				
Low-Level Output Voltage	V _{OL}					VIN - VIH OI VIL			VIN - VIH OI VIL											$v_{IN} = v_{IH} o_{IV} v_{IL}$	AIV = AIH OL AIF	AIV = AIH OL AIF	I _{OL} = 18 mA	3.0	_	0.4	v
			I _{OL} = 24 mA	3.0	_	0.55																					
Input Leakage Current	I _{IN}	V _{IN} = 0~3.6 V	V _{IN} = 0~3.6 V		_	±10.0	μA																				
Power-off Leakage Current	IOFF	V _{IN} or V _{OUT} = 0~3.6 V		0	_	10.0	μA																				
Quiescent Supply Current		$V_{IN} = V_{CC}$ or GN	V _{IN} = V _{CC} or GND			20.0																					
	ICC	$V_{CC} \leq V_{IN} \leq 3.6 \text{ V}$		2.7~3.6		±20.0	μA																				
Increase in I _{CC} per Input	Δlcc	$V_{IH} = V_{CC} - 0.6$	/	2.7~3.6		750																					

DC Electrical Characteristics (Ta = -40~85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteristics	Symbol	Test (Test Condition		Min	Мах	Unit				
Characteristics	Cymbol				IVIIII	Max	Onic				
High-Level Input Voltage	VIH			2.3~2.7	1.6	_	v				
Low-Level Input Voltage	V _{IL}			2.3~2.7	_	0.7	v				
			I _{OH} = -100 μA	2.3~2.7	V _{CC} - 0.2	_					
High-Level Output Voltage	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	VIN = VIH or VIL	VIN = VIH or VIL	VIN = VIH or VIL	VIN = VIH or VII	I _{OH} = -6 mA	2.3	2.0	_	V
			I _{OH} = -12 mA	2.3	1.8	_					
			I _{OH} = -18 mA	2.3	1.7						
			I _{OL} = 100 μA	2.3~2.7	_	0.2	v				
Low-Level Output Voltage	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 12 mA	2.3	_	0.4	v
			I _{OL} = 18 mA	2.3	_	0.6					
Input Leakage Current	I _{IN}	V _{IN} = 0~3.6 V	V _{IN} = 0~3.6 V			±10.0	μA				
Power-off Leakage Current	IOFF	V _{IN} or V _{OUT} = 0~3.6 V		0		10.0	μA				
	la a	V _{IN} = V _{CC} or GND		2.3~2.7		20.0					
Quiescent Supply Current	Icc	$V_{CC} \leq V_{IN} \leq 3.6$	6 V	2.3~2.7	_	±20.0	μA				

Characteristics	Symbol	Teet (Test Condition		Min	Мах	Unit
Characteristics	Symbol			V _{CC} (V)	IVIIII	Wax	Unit
High-Level Input Voltage	V _{IH}		_	1.4~2.3	V _{CC} × 0.7	_	v
Low-Level Input Voltage	VIL		_		_	V _{CC} × 0.13	v
High-Level Output Voltage	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.4	V _{CC} - 0.2	_	v
			I _{OH} = -4 mA	1.4	1.0	—	
Low-Level Output Voltage	Ve	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 100 μA	1.4	_	0.2	v
Low-Level Output Voltage	V _{OL}	VIN = VIH OL VIL	I _{OL} = 4 mA	1.4	_	0.3	v
Input Leakage Current	I _{IN}	V _{IN} = 0~3.6 V	V _{IN} = 0~3.6 V		_	±10.0	μA
Power-off Leakage Current	I _{OFF}	V _{IN} or V _{OUT} = 0~3.6 V		0	_	10.0	μA
		V _{IN} = V _{CC} or GND		1.4		20.0	
Quiescent Supply Current	ICC	$V_{CC} \leq V_{IN} \leq 3.6$	6 V	1.4		±20.0	μA

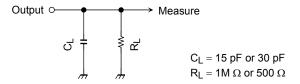
DC Electrical Characteristics (Ta = $-40 \sim 85^{\circ}$ C, 1.4 V $\leq V_{CC} < 2.3$ V)

AC Electrical Characteristics (Ta = $-40 \sim 85^{\circ}$ C, input t_r = t_f = 2.0 ns)

Characteristics	Symbol	I Test Condition			Min	Max	Unit
				V _{CC} (V)			
				1.5 ± 0.1	1.8	10.0	
			C _L =15pF,	1.8 ± 0.15	1.5	8.0	ns
		(Figure 1 and 2)	$R_L=1M\Omega$	2.5 ± 0.2	0.8	3.9	
Propagation delay time	t _{pLH}			3.3 ± 0.3	0.6	3.3	
(A or G – Y0 or Y1)	tpHL		C _L =30pF, R _L =500Ω	1.5 ± 0.1	2.0	13.0	
				1.8 ± 0.15	1.8	9.5	20
				2.5 ± 0.2	1.2	5.0	ns
				$\textbf{3.3}\pm\textbf{0.3}$	1.0	4.0	

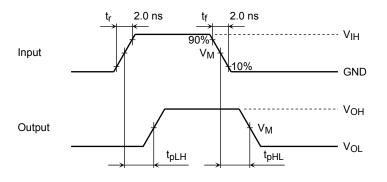
For C_L = 50 pF, add approximately 300 ps to the AC maximum specification.

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Tost Condition	TYP.		Unit	
Characteristics	Symbol	Test Condition		V _{CC} (V)	116.	Unit
Input Capacitance	C _{IN}	—		1.8, 2.5, 3.3	6	pF
Power Dissipation Capacitance	C _{PD}	f _{IN} = 10 MHz	(Note 11)	1.8, 2.5, 3.3	20	pF

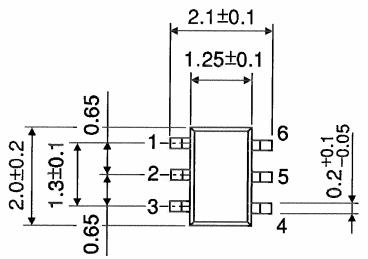
Note 11: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

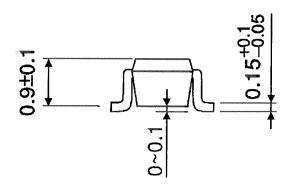
Average operating current can be obtained by the equation:


 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

AC test circuit Figure 1

AC wave forms


Figure 2 t_{pLH}, t_{pHL}



Symbol	V _{CC}					
Symbol	$3.3\pm0.3~V$	$2.5\pm0.2~V$	$1.8\pm0.15\;V$	$1.5\pm0.1\;V$		
VIH	2.7 V	V _{CC}	V _{CC}	V _{CC}		
VM	1.5 V	V _{CC} /2	V _{CC} /2	V _{CC} /2		

Package Dimensions

SSOP6-P-0.65A

Weight: 0.0068 g (typ.)

Unit: mm

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- Handbook" etc.
 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.