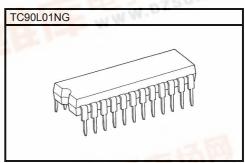
TOSHIBA

TC90L01NG


TOSHIBA Linear C-MOS Integrated Circuit Silicon Monolithic

TC90L01NG(TENTATIVE)

Audio/Video Switching IC for TVs

The TC90L01NG is an audio/video switching IC for TV sets.

Conforming to I²C bus standards, it allows you to perform various switching operations through the bus lines by using a microcomputer. This IC has the functions of audio mute, ALC(Auto Level Control), audio volume and so on.

Weight SDIP24-P-300-1.78 : 1.22 g (typ.)

Features

1²C bus control

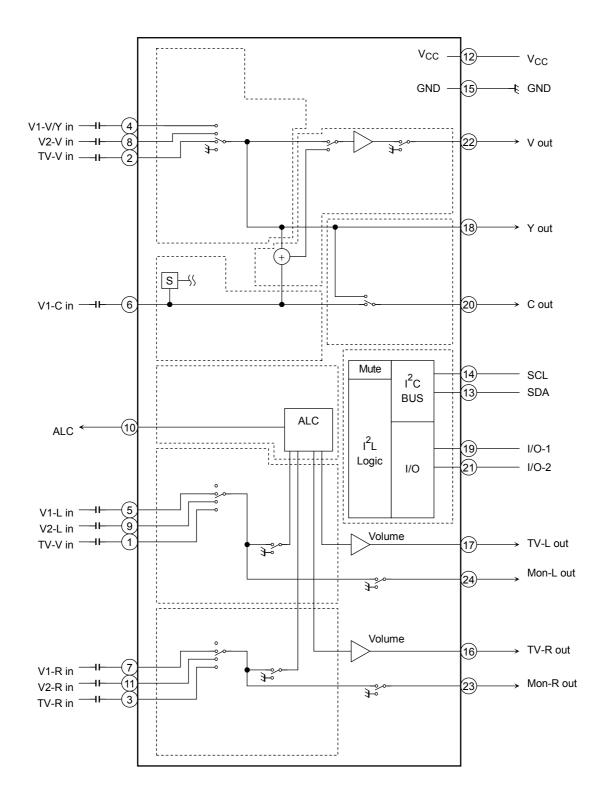
Video: 3-channel inputs and 1-channel outputs

(1 channels conforming to S system)

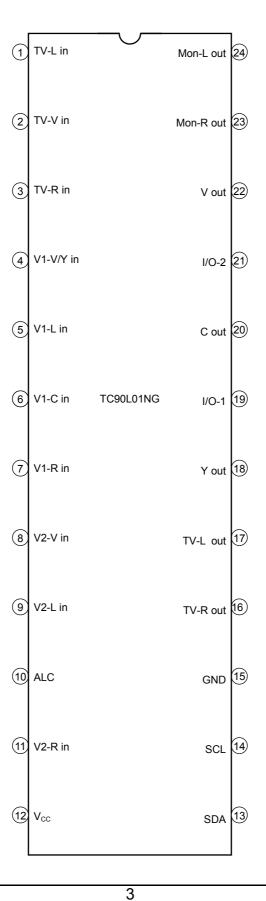
Audio: 3-channel inputs and 1-channel outputs

Monitor Audio out

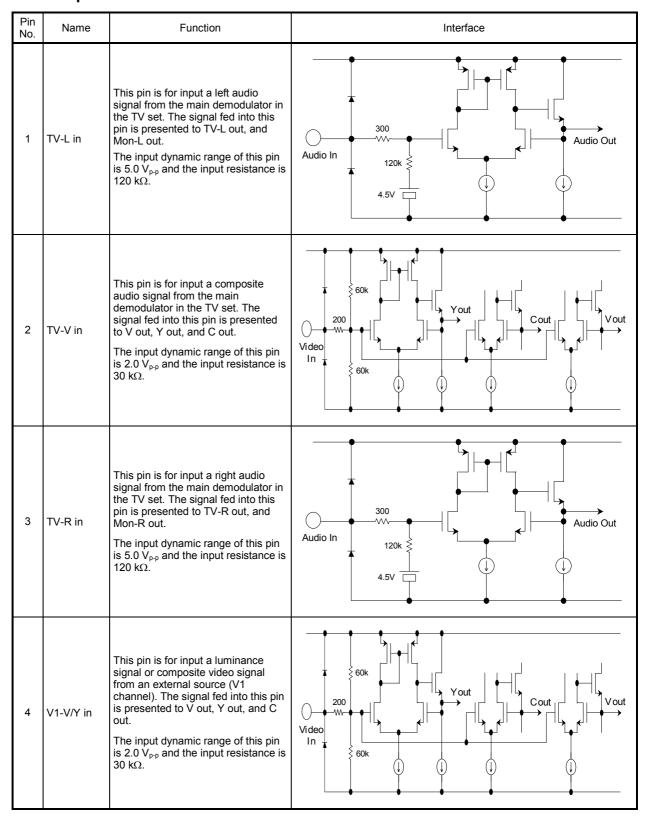
ALC(Auto Level Control)

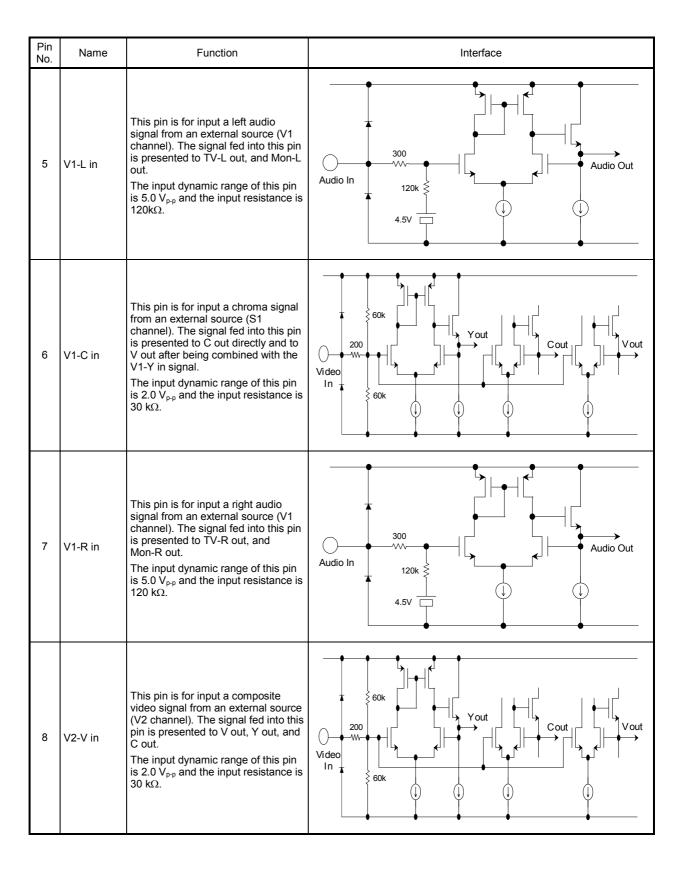

Audio volume by attenator circuit

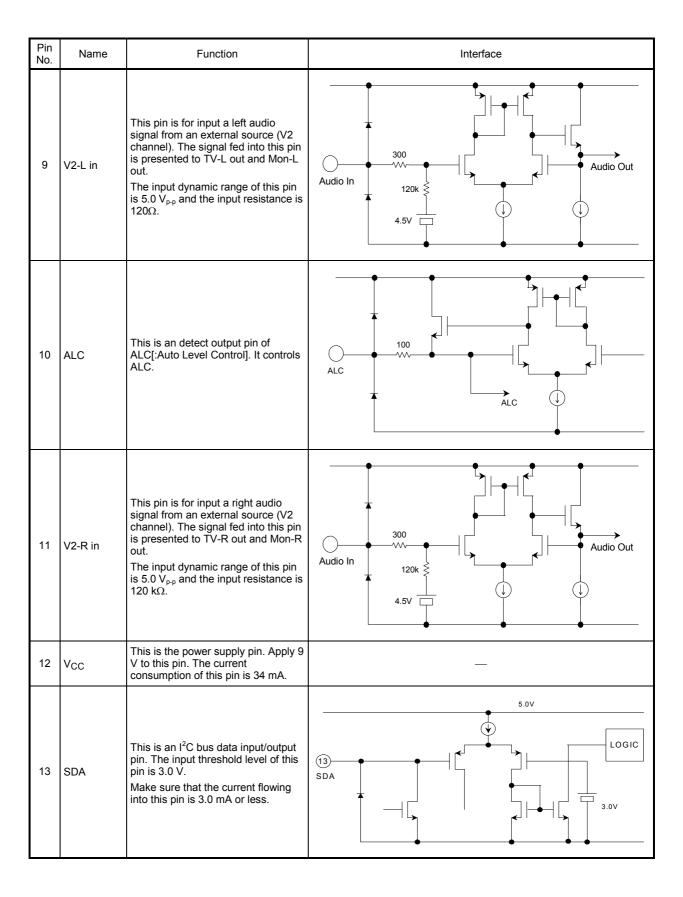
Audio mute

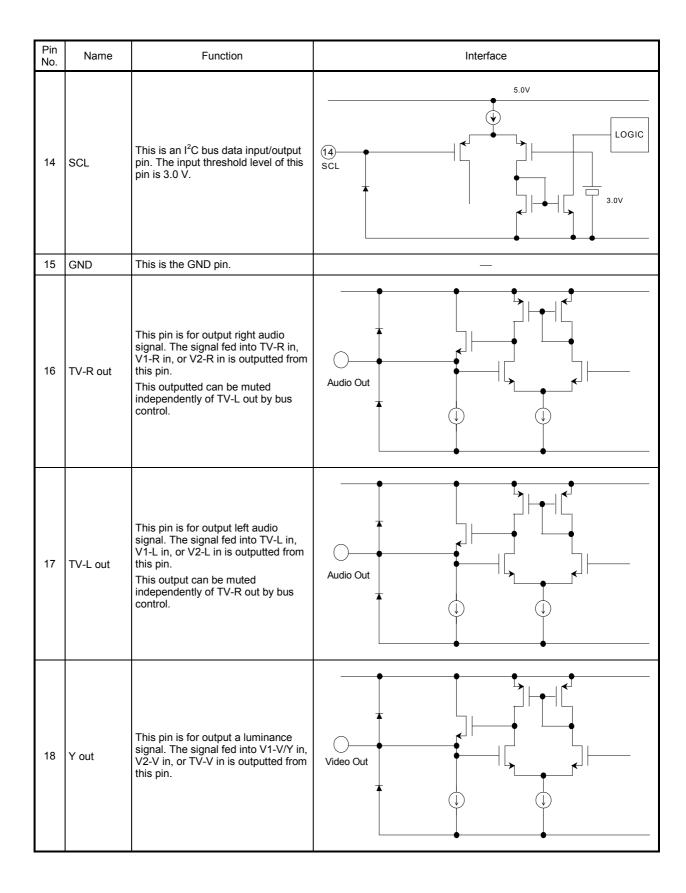

2 I/O ports

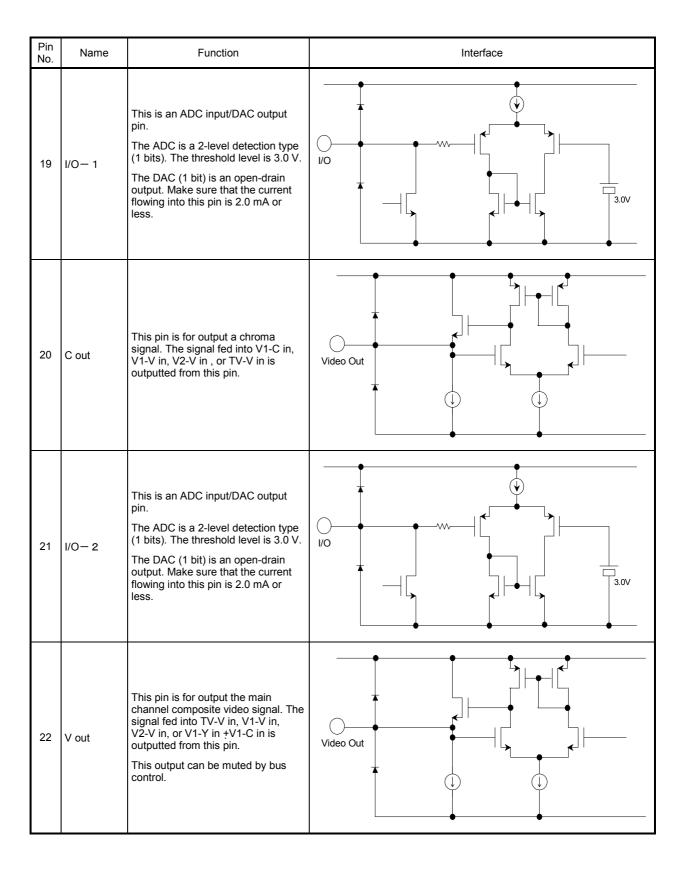
Block Diagram

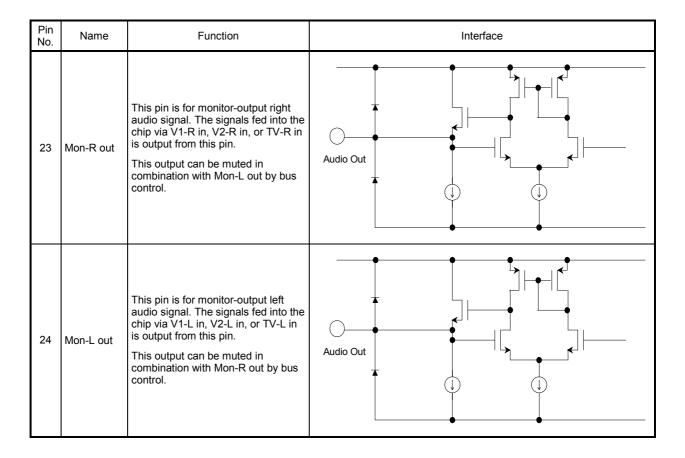



Pin Assignment TC90L01NG




2006/02/16


Pin Description



2006/02/16

9

Bus Data Specifications

Contents of Data

	Sub	Data No.									
Mode	Add.	[Preset]		Contents of Data							
		Data 1	B07	B06	B05	B04	B03	B02	B01	B00	
	00	[00H]	*	AL C	Gain		0	utput switchii	ng		
	[00.1]		T	ALC	ALC Gain		Select-C	Select-B	Sele	ect-A	
		Data 2 [00H]	B17	B16	B15	B14	B13	B12	B11	B10	
Write	01		Audio Mute	Audio attenator							
		B27	B26	B25	B24	B23	B22	B21	B20		
	02	Data 3 [03H]	*	*		*	*	DAC output switching			
		[0311]	*	*	*	*	*	*	I/O-2	I/O-1	
			B37	B36	B35	B34	B33	B32	B31	B30	
Read	_	Data 4	Power on Reset				ADC input d	C input discrimination			
						*	*	I/O-2	I/O-1	V1-C in	

Note1: The data contents marked by a * are an unused bit (data free).

WRITE mode Slave Add.=90H

Item	Bits	Descriptions	Preset
Select — A Sub; 00 h,D0~D1 (Note 2)	2	Select input function 00: T V	00
Select – B Sub; 00 h,D2	1	CVBS or S-video switching 0: CVBS 1: S-video	0
Select — C Sub; 00 h,D3	1	Monitor-Video out 0: Normal 1: Mute	0
Select – D Sub; 00 h,D4	1	Monitor-Audio out 0: Normal 1: Mute	0
A L C Level Sub; 00 h,D5~D6	2	Audio Level Control Gain 00: A L C off 01: 1.1Vp-p 10: 1.6Vp-p 11: 2.3Vp-p	10
Audio Vol. Sub; 01h,D0~D6	7	Audio Volume 00: -∞ ~ 7F: 0dB	00
Audio mute on/off Sub; 01h,D7	1	Audio Mute 0: Normal 1: Mute	0
I/O-* High/Low Sub; 02h,D1,D2	1 × 2	DAC output switching 0: Low 1: High	1

Note 2 : Select- $A = \{1 \ 1\}$ not use.

READ mode Slave Add.=91H

Item	Bits	Description
POR	1	Power on Reset
		0: Normal 1: Resister Preset
V1-C in	1	S input discrimination
		0: GND 1: Open
I/O *	1 × 2	ADC input discrimination
		0: Low 1: High

11

Video Select: Terminal 22 , 18 , 20 Output Signal

Audio Select: Terminal 17 , 16 , 24 , 23 Output Signal

Mode		Video Output Signal		Audio Output Signal		Bus Data			
Wiode		Video Odiput Signal				Input Select			
Input	S/V	V out	Y out	C out	TV-L out	TV-R out	B02	B01	B00
input	5/ V	v out	1 Out	Cour	Mon-L out	Mon-R out	В	,	Ą
TV	CVBS	TV-V in	TV-V in	TV-V in	TV-L in	TV-R in	0	0	0
	CVBS	V1-V in	V1-V in	V1-V in	V1-L in	V1-R in	0	0	1
V1	S	V1-Y in + V1-C in	V1-Y in	V1-C in	V1-L in	V1-R in	1	0	1
V2	CVBS	V2-V in	V2-V in	V2-V in	V2-L in	V2-R in	0	1	0
V3	ı	_	-	-	_	_	0	1	1

DAC Output Switching

		Bus Data					
Mo	ode	DAC Output Switching					
Output	State	B23	B22	B21	B20		
I/O-1	Low	*	*	*	0		
1/0-1	Open	*	*	4	1		
I/O-2	Low	*	*	0	*		
1/0-2	Open	•	*	1	*		

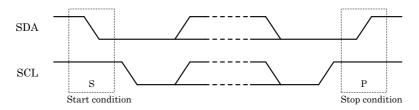
Read Mode

Power-On Reset Discrimination

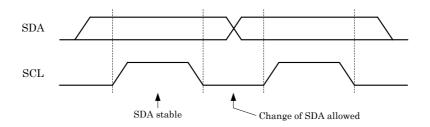
		Bus Data
Mo	ode	Power-On Reset
		B37
Reset	On (Preset)	1
Neset	off (Normal)	0

S Input Discrimination

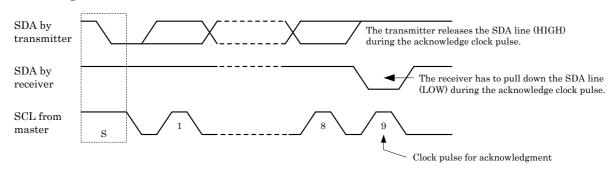
Mo	ode	Bus Data
IVIC	ode	S Input Discrimination
Input	Voltage	B30
V1-C in	High (open)	1
V 1-C III	Low	0

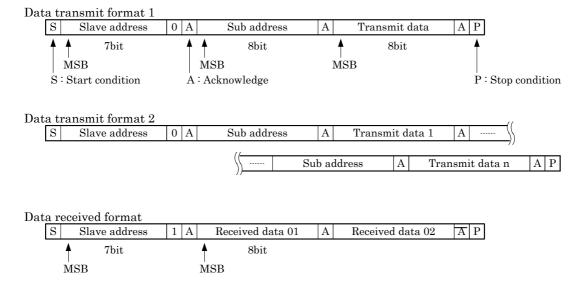

ADC Input Discrimination

Mo	ode	Bus Data						
IVIC	Jue		ADC Input Discrimination					
Input	Voltage	B34	B33	B32	B31			
I/O-1	High	*	*	*	1			
1/0-1	Low				0			
I/O-2	High	*	*	1	*			
1/0-2	Low	• r	**	0	T.			

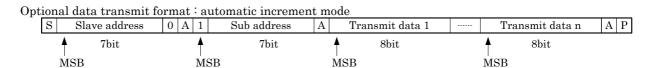

Outline of I²C Bus Control Format

DATA TRANSFER FORMAT VIA I2C BUS


Start and stop condition



Bit transfer


Acknowledge

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.

The Stop condition is generated by the master.

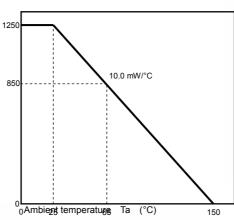
In this transmission methods, data is set on automatically incremented sub-address from the specified sub-address.

I²C BUS Conditions

Characteristics	Symbol	Min	Тур.	Max	Unit
Low level input voltage	V_{IL}	0	=	1.5	V
High level input voltage	V _{IH}	3.0	-	Vcc	V
Low level output voltage at 3 mA sink current	V _{OL1}	0	-	0.8	V
Input current each I/O pin with an input voltage between 0.1 VDD and 0.9 VDD	l _i	-10	-	10	μΑ
Capacitance for each I/O pin	Ci	-	-	10	pF
SCL clock frequency	f _{SCL}	0	-	100	kHz
Hold time START condition	t _{HD;STA}	4.0	-	-	μS
Low period of SCL clock	t _{LOW}	4.7	-	-	μS
High period of SCL clock	t _{HIGH}	4.0	-	-	μS
Set-up time for a repeated START condition	t _{su;sta}	4.7	-	-	μS
Data hold time	t _{HD;DAT}	10	-	-	ns
Data set-up time	t _{SU;DAT}	250	-	-	ns
Set-up time for STOP condition	t _{su;sto}	4.0	-	_	μS
Bus free time between a STOP and START condition	t _{BUF}	4.7	=	=	μS

Absolute Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	11	V
Input Pin Voltage	Vin	GND - 0.3 to Vcc + 0.3	V
Power dissipation	P _{DMAX} (Note3)	1250	mW
Operating temperature	T _{opr}	-20~65	°C
Storage temperature	T _{stg}	−55~150	°C


Note3: When using the device at temperatures above Ta = 25°C, reduce the rated power dissipation by 10.0 mW at TC90L01NG per degree of centigrade. (See the diagram below.)

(mW)

PD

Power consumption

Operating Conditions

Characteristics	Test Condition	Min	Тур.	Max	Unit	Remark
Supply voltage	12	8.1	9.0	9.9	V	_
Composite signal input amplitude	2, 4, 8	_	1.0	_	V _{p-p}	100IRE
Y input amplitude	4, 8	_	1.0	_	V _{p-p}	100IRE
Chroma input amplitude	6	_	286	_	mV _{p-p}	Burst
Audio input amplitude	1, 3, 5, 7, 9, 11		_	3.0	V _{p-p}	_

Electrical Characteristics (referenced to V_{CC} = 9 V at Ta = 25°C unless otherwise specified)

Current Consumption

Pin No.	Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
12	V_{CC}	I _{CC}	_	20	34	48	mA

Pin Voltage

Pin No.	Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
1	TV-L in	V1	_	4.3	4.5	4.7	V
2	TV-V in	V2	_	4.1	4.3	4.5	V
3	TV-R in	V3	_	4.3	4.5	4.7	V
4	V2-V/Y in	V4	_	4.1	4.3	4.5	V
5	V1-L in	V5	_	4.3	4.5	4.7	V
6	V1-C in	V6	_	4.1	4.3	4.5	V
7	V1-R in	V7	_	4.3	4.5	4.7	V
8	V2-V in	V8	_	4.1	4.3	4.5	V
9	V2-L in	V9	_	4.3	4.5	4.7	V
10	ALC	V10	_	_	5.0	_	V
11	V2-R in	V11	_	4.3	4.5	4.7	V
12	V _{CC}	V12	_	_	9.0	_	V
15	GND	V15	_	_	0	_	V
16	TV-R out	V16	_	4.0	4.5	5.0	V
17	TV-L out	V17	_	4.0	4.5	5.0	V
18	Y out	V18	_	4.0	4.3	4.6	V
19	I/O-1	V19	_	_	_	_	V
20	C out	V20	_	4.0	4.3	4.6	V
21	I/O-2	V21	_	_	_	_	V
22	V out	V22	_	4.0	4.3	4.6	V
23	Mon-R out	V23	_	4.2	4.5	4.8	V
24	Mon-L out	V24	_	4.2	4.5	4.8	V

TOSHIBA

DC Characteristics

Characteristics	Measured Pin	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Remark
	TV-V in	R2	_	20	30	40	kΩ	
	V1-V/Y in	R4	_	20	30	40	kΩ	
	V2-V in	R8	_	20	30	40	kΩ	Measure a change ΔI
lanut ain	V1-C in	R6	_	20	30	40	kΩ	in the current flowing into each pin when the
Input pin Input resistance	TV-L in	R1	_	80	120	160	kΩ	voltage is raised by 0.5V. Then calculate
	TV-R in	R3		80	120	160	kΩ	the input resistance value R.
	V1-L in	R5	_	80	120	160	kΩ	5 6 5 1 1 1 1 1 1 1
	V1-R in	R7	_	80	120	160	kΩ	R = 0.5 V/ΔI [Ω]
	V2-L in	R9		80	120	160	kΩ	
	V2-R in	R11	_	80	120	160	kΩ	
	V out	R22	_	30	50	80	Ω	
	Y out	R18	_	30	50	80	Ω	Measure a voltage change ΔV on each
Output pin	C out	R20	_	30	50	80	Ω	pin when a current of 100 μA flows into the
Output resistance	TV-L out	R17	_	30	50	80	Ω	pin. Then calculate the output resistance
Output resistance	TV-R out	R16	_	30	50	80	Ω	value R.
	Mon-L out	R24		30	50	80	Ω	R = ΔV/100 μA [Ω]
	Mon-R out	R23	_	30	50	80	Ω	
S mode discrimination voltage	V1-C in	VthC1	_	2.0	2.5	3.0	V	Voltage on pin 6 at which data B30 changes.
ADC input discrimination	I/O 1	VthI1	_	2.5	3.0	3.5	V	High-Low threshold level of I/O-1 input (pin 19).
voltage	I/O 2	VthI2	_	2.5	3.0	3.5	V	High-Low threshold level of I/O-2 input (pin 21).

AC Characteristics

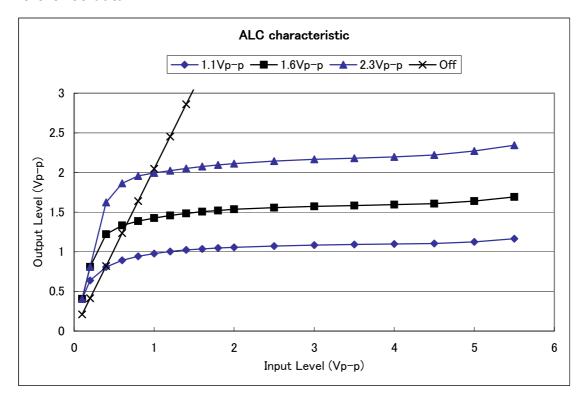
Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-V in	VDR2V1	_	1.5			V _{p-p}	(1) Apply a 15 kHz
V out	V1-V/Y in	VDR4V1	_	1.5	<u>—</u> .	_	V _{p-p}	sine wave to each input pin. (2) In each select
Input dynamic range	V2-V in	VDR8V1	_	1.5	_	_	V _{p-p}	mode, measure an input amplitude at which the output waveform on pin
	V2-C in	VDR6V1	_	1.5	_	_	V _{p-p}	22 begins to be distorted.
	TV-V in	G2V1	_	5.5	6.0	6.5	dB	
V out	V1-V/Y in	G4V1	_	5.5	6.0	6.5	dB	(1) Apply a 15 kHz, 1.0 V _{p-p} sine wave to each input pin.
Gain	V2-V in	G8V1	_	5.5	6.0	6.5	dB	(2) In each select mode, find the gain between input and output.
	V2-C in	G6V1	_	5.5	6.0	6.5	dB	·
	TV-V in	F2V1	_	15	_	_	MHz	(1) Apply a 1.0 V _{p-p} sine wave to each
V out	V1-V/Y in	F4V1	_	15	_	_	MHz	input pin. (2) In each select mode, measure a
Frequency response	V2-V in	F8V1	_	15	_	_	MHz	frequency at which the output amplitude on pin 22 is 3dB down
	V2-C in	F6V1	_	15	_	_	MHz	from the 15 kHz applied level.
	TV-V in	CT2V1	_	60	70	_	dB	(1) Apply a 3.58 MHz, 1.0 V _{p-p} sine wave
V out	V1-V/Y in	CT4V1	_	60	70		dB	to each input pin. (2) In each select mode, compare
Crosstalk	V2-V in	CT8V1	_	60	70	_	dB	signal output from the selected pin with leakage components from
	V2-C in	CT6V1	_	60	70	_	dB	nonselected pins to find a crosstalk.

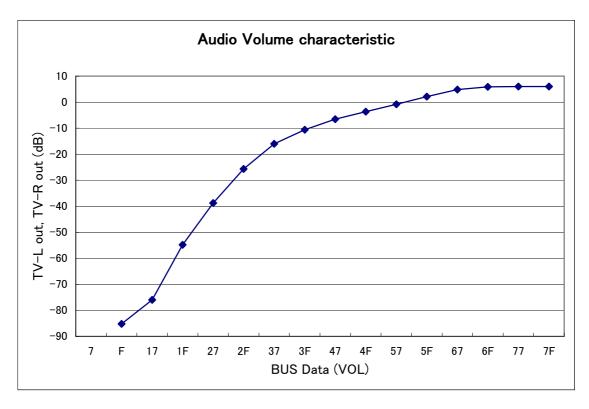
Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-V in	VDR2Y	_	3.0	4.0	_	V _{p-p}	(1) Apply a 15 kHz sine wave to each input pin.
Y out Input dynamic range	V1-V/Y in	VDR4Y	_	3.0	4.0	_	V_{p-p}	(2) In each select mode, measure an input amplitude at
	V2-V in	VDR8Y	_	3.0	4.0	_	V _{p-p}	which the output waveform on pin 18 begins to be distorted.
	TV-V in	G2Y	_	-0.5	0	0.5	dB	(1) Apply a 15 kHz,
Y out Gain	V1-V/Y in	G4Y	_	-0.5	0	0.5	dB	1.0 V _{p-p} sine wave to each input pin. (2) In each select mode, find the gain between input and
	V2-V in	G8Y	_	-0.5	0	0.5	dB	output.
	TV-V in	F2Y	_	15	_	_	MHz	(1) Apply a 1.0 V _{p-p} sine wave to each input pin.
Y out Frequency response	V1-V/Y in	F4Y	_	15	_	_	MHz	mode, measure a frequency at which the output amplitude on pin
	V2-V in	F8Y	_	15	_	_	MHz	18 is 3dB down from the 15 kHz applied level.
Y out Crosstalk	TV-V in	CT2Y	_	60	70	_	dB	(1) Apply a 3.58 MHz, 1.0 V _{p-p} sine wave to each input pin.
	V1-V/Y in	CT4Y	_	60	70	_	dB	(2) In each select mode, compare signal output from the selected pin with leakage
	V2-V in	CT8Y	_	60	70	_	dB	components from nonselected pins to find a crosstalk.

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-V in	VDR2C	_	1.5	2.0	_	V _{p-p}	(1) Apply a 3.58MHz
C out	V1-V/Y in	VDR4C	_	1.5	2.0	_	V _{p-p}	sine wave to each input pin.
Input dynamic range	V2-V in	VDR8C	_	1.5	2.0	_	V _{p-p}	(2) In each select mode, measure an input amplitude at which the output
	V2-C in	VDR6C	_	1.5	2.0	_	V _{p-p}	waveform on pin 20 begins to be distorted.
	TV-V in	G2C	_	-0.5	0	0.5	dB	
C out	V1-V/Y in	G4C	_	-0.5	0	0.5	dB	(1) Apply a 15 kHz, 1.0 V _{p-p} sine wave to each input pin.
Gain	V2-V in	G8C	_	-0.5	0	0.5	dB	(2) In each select mode, find the gain between input and output.
	V2-C in	G6C	_	-0.5	0	0.5	dB	·
	TV-V in	F2C	_	15	_	_	MHz	(1) Apply a 1.0 V _{p-p}
C out	V1-V/Y in	F4C	_	15	_	_	MHz	sine wave to each input pin. (2) In each select mode, measure a frequency at which
Frequency response	V2-V in	F8C	_	15	_		MHz	the output amplitude on pin 20 is 3dB down from the 15 kHz
	V2-C in	F6C	_	15	_	_	MHz	applied level.
	TV-V in	CT2C	_	60	70	_	dB	(1) Apply a 3.58 MHz,
C out Crosstalk	V1-V/Y in	CT4C	_	60	70		dB	1.0 V _{p-p} sine wave to each input pin. (2) In each select mode, compare signal output from
	V2-V in	CT8C	_	60	70	_	dB	the selected pin with leakage components from nonselected pins
	V2-C in	CT6C	_	50	55	_	dB	to find a crosstalk.

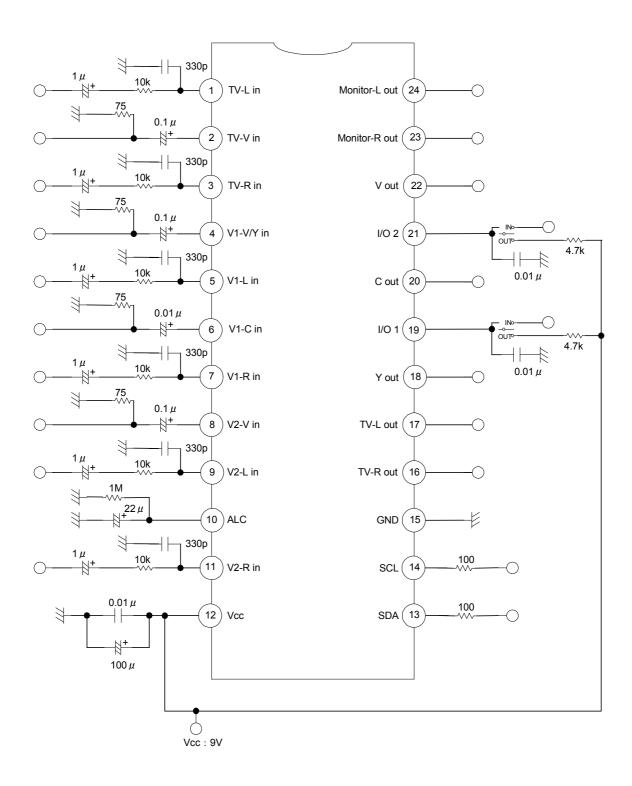
Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
TV/L out	TV-L in	VDR1L1	_	3.0	5.0	_	V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin.
TV-L out Input dynamic range	V1-L in	VDR5L1	_	3.0	5.0	_	V _{p-p}	(2) In each select mode, measure an input amplitude at
	V2-L in	VDR9L1	_	3.0	5.0	_	V _{p-p}	which the output waveform on pin 17 begins to be distorted.
TVI out	TV-L in	G1L1	_	4.0	6.0	8.0	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave
TV-L out Gain	V1-L in	G5L1	_	4.0	6.0	8.0	dB	to each input pin. (2) In each select mode, find the gain between
	V2-L in	G9L1	_	4.0	6.0	8.0	dB	input and output. (3) ALC:Off
	TV-L in	VOL1L1	_	1.1	1.6	2.1	V _{p-p}	(1) Apply a 1 kHz, 2.0 V _{p-p} sine wave to each input pin.
TV-L out	V1-L in	VOL5L1	_	1.1	1.6	2.1	V _{p-p}	Vol:7F (2) In each select
Output level	V2-L in	VOL9L1	_	1.1	1.6	2.1	V _{p-p}	mode, measure an output amplitude at pin 17. (3) ALC:"1.6Vp-p"
	*	GANL1		-4.0	-3.0	-2.0	dB	(1) Set ALC level "1.1Vpp" and
TV-L out	т	GANLI		-4.0	-3.0	-2.0	иь	measure output level changes.
ALC level Min. ALC level Max.	*	GAXL1	_	2.0	3.0	4.0	dB	Vol:7F (2) Set ALC level "2.3Vpp" and measure output level changes. Vol:7F
	TV-L in	F1L1	_	0.1		_	MHz	(1) Apply a 1.0 V _{p-p} sine wave to each input pin.
TV-L out Frequency response	V1-L in	F5L1	_	0.1	_	_	MHz	(2) In each select mode, measure a frequency at which the output amplitude
	V2-L in	F9L1	_	0.1		_	MHz	on pin 17 is 3dB down from the 1 kHz applied level.
TV-L out	TV-L in	CT1L1	_	70	80	_	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin. (2) In each select

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
Crosstalk	V1-L in	CT5L1	_	70	80		dB	mode, compare signal output from the selected pin with leakage
	V2-L in CT9L1 — 70 80	80	١	dB	components from nonselected pins to find a crosstalk.			
	TV-L in	M1L1	_	70	90	١	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin.
TV-L out Mute attenuation	V1-L in	M5L1	_	70	90		dB	(2) In each select mode, compare the output amplitudes on pin 17 when mute is
	V2-L in	M9L1	_	70	90	_	dB	turned on and turned off to find mute attenuation.

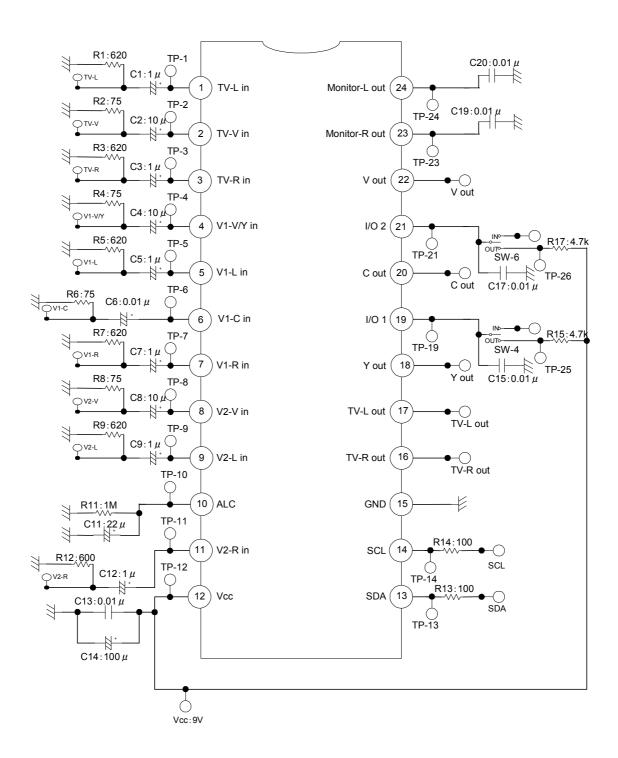

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
TV-R out	TV-R in	VDR3R1	_	3.0	5.0	_	V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin.
Input dynamic range	V1-R in	VDR7R1	_	3.0	5.0	_	V _{p-p}	(2) In each select mode, measure an input amplitude at
	V2-R in	VDR11R1	_	3.0	5.0	_	V _{p-p}	which the output waveform on pin 16 begins to be distorted.
	TV-R in	G3R1	_	4.0	6.0	8.0	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave
TV-R out Gain	V1-R in	G7R1	_	4.0	6.0	8.0	dB	to each input pin. (2) In each select mode, find the gain between
	V2-R in	G11R1	_	4.0	6.0	8.0	dB	input and output. (3) ALC:Off
	TV-R in	VOL3R1	_	1.1	1.6	2.1	V _{p-p}	(1) Apply a 1 kHz, 2.0 V _{p-p} sine wave to each input pin.
TV-R out	V1-R in	VOL7R1	_	1.1	1.6	2.1	V _{p-p}	Vol:7F
Output level	V2-R in	VOL11R1	_	1.1	1.6	2.1	V _{p-p}	(2) In each select mode, measure an output amplitude at pin 16.
								(3) ALC:"1.6Vp-p"
	*	GANR1	_	-4.0	-3.0	-2.0	dB	(1) Set ALC level "1.1Vpp" and measure output level changes.
TV-R out ALC level Min. ALC level Max.	*	GAXR1	_	2.0	3.0	4.0	dB	Vol:7F (2) Set ALC level "2.3Vpp" and measure output level changes. Vol:7F
	TV-R in	F3R1	_	0.1	_	_	MHz	(1) Apply a 1.0 V _{p-p} sine wave to each input pin.
TV-R out Frequency response	V1-R in	F7R1	_	0.1	_	_	MHz	(2) In each select mode, measure a frequency at which
	V2-R in	F11R1	_	0.1	_	_	MHz	the output amplitude on pin 16 is 3dB down from the 1 kHz applied level.
TV-R out Crosstalk	TV-R in	CT3R1	_	70	80	_	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin. (2) In each select

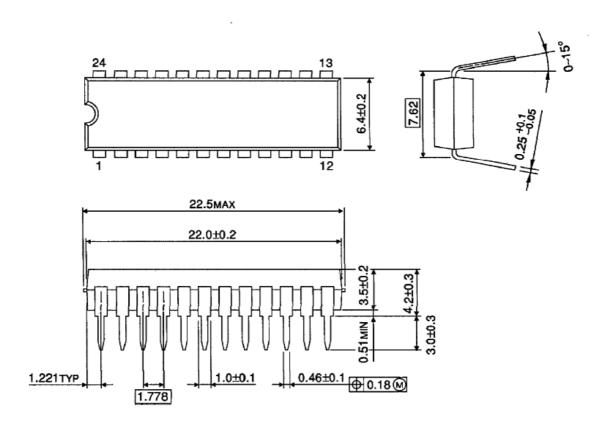

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	V1-R in	CT7R1		70	80		dB	mode, compare signal output from the selected pin with leakage
	V2-R in	CT11R1		70	80	l	dB	components from nonselected pins to find a crosstalk.
TV-R out Mute attenuation	TV-R in	M3R1		70	90	l	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin. (2) In each select
	V1-R in	M7R1		70	90	l	dB	(2) In each select mode, compare the output amplitudes on pin 16 when mute is
	V2-R in	M11R1		70	90	_	dB	turned on and turned off to find mute attenuation.

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
Mon-L out	TV-L in	VDR1L2	_	3.5	5.0	_	V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin. (2) In each select
Input dynamic range	V1-L in	VDR5L2	_	3.5	5.0	_	V _{p-p}	mode, measure an input amplitude at which the output
	V2-L in	VDR9L2	_	3.5	5.0	_	V _{p-p}	waveform on pin 24 begins to be distorted.
	TV-L in	G1L2	_	-0.5	0	0.5	dB	(1) Apply a 1 kHz, 1.0 V_{p-p} sine
Mon-L out Gain	V1-L in	G5L2	_	-0.5	0	0.5	dB	wave to each input pin. (2) In each select mode, find the gain
	V2-L in	G9L2	_	-0.5	0	0.5	dB	between input and output.
	TV-L in	F1L2	_	0.1	_	_	MHz	(1) Apply a 1.0 V _{p-p} sine wave to each input pin.
Mon-L out Frequency response	V1-L in	F5L2	_	0.1	_	_	MHz	(2) In each select mode, measure a frequency at which the output amplitude on pin
	V2-L in	F9L2	_	0.1	_	_	MHz	24 is 3dB down from the 1 kHz applied level.
	TV-L in	CT1L2	_	70	90	_	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin.
Mon-L out Crosstalk	V1-L in	CT5L2	_	70	90	_	dB	(2) In each select mode, compare signal output from the selected pin with leakage
	V2-L in	CT9L2	_	70	90		dB	components from nonselected pins to find a crosstalk.
Mon-L out Mute attenuation	TV-L in	M1L2	_	70	80	_	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin.
	V1-L in	M5L2	_	70	80	_	dB	(2) In each select mode, compare the output amplitudes on pin 24 when mute is
	V2-L in	M9L2	_	70	80	_	dB	turned on and turned off to find mute attenuation.


Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-R in	VDR3R2	_	3.5	5.0	_	V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin.
Mon-R out Input dynamic range	V1-R in	VDR7R2	_	3.5	5.0	_	V _{p-p}	(2) In each select mode, measure an input
	V2-R in	VDR11R2	_	3.5	5.0	_	V _{p-p}	amplitude at which the output waveform on pin 23 begins to be distorted.
Man Band	TV-R in	G3R2	_	-0.5	0	0.5	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine
Mon-R out Gain	V1-R in	G7R2	_	-0.5	0	0.5	dB	wave to each input pin. (2) In each select mode, find the gain
	V2-R in	G11R2	_	-0.5	0	0.5	dB	between input and output.
	TV-R in	F3R2	_	0.1	_	_	MHz	(1) Apply a 1.0 V _{p-p} sine wave to each input pin.
Mon-R out Frequency response	V1-R in	F7R2	_	0.1	_	—	MHz	(2) In each select mode, measure a frequency at which the output amplitude on pin
	V2-R in	F11R2	_	0.1	_	_	MHz	23 is 3dB down from the 1 kHz applied level.
	TV-R in	CT3R2		70	90	_	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin. (2) In each select
Mon-R out Crosstalk	V1-R in	CT7R2	_	70	90	_	dB	mode, compare signal output from the selected pin with leakage
	V2-R in	CT11R2		70	90		dB	components from nonselected pins to find a crosstalk.
Mon-R out Mute attenuation	TV-R in	M3R2	_	70	80	_	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine wave to each input pin.
	V1-R in	M7R2	_	70	80	_	dB	(2) In each select mode, compare the output amplitudes on pin 23 when mute is
	V2-R in	M11R2	_	70	80	_	dB	turned on and turned off to find mute attenuation.

Reference data




Application Circuit

Test Circuit

Package Dimensions

Weight: 1.22 g (typ.)

About solderability, following conditions were confirmed.

- · Solderability
 - (1) Use of Sn-37Pb solder Bath
 - · solder bath temperature = 230°C
 - dipping time = 5 seconds
 - the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder
 - solder bath temperature = 245°C
 - dipping time = 5 seconds
 - the number of times = once

RESTRICTIONS ON PRODUCT USE

030619EBA

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.

TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.