INTEGRATED CIRCUITS

DATA SHEET

TDA8547
 2×1 W BTL audio amplifier with output channel switching

Preliminary specification
File under Integrated Circuits，IC01

2×1 W BTL audio amplifier with output channel switching

FEATURES

- Selection between output channels
- Flexibility in use
- Few external components
- Low saturation voltage of output stage
- Gain can be fixed with external resistors
- Standby mode controlled by CMOS compatible levels
- Low standby current
- No switch-on/switch-off plops
- High supply voltage ripple rejection
- Protected against electrostatic discharge
- Outputs short-circuit safe to ground, V_{CC} and across the load
- Thermally protected.

APPLICATIONS

- Telecommunication equipment
- Portable consumer products
- Personal computers
- Motor-driver (servo).

GENERAL DESCRIPTION

The TDA8547(T) is a two channel audio power amplifier for an output power of $2 \times 1 \mathrm{~W}$ with an 8Ω load at a 5 V supply. The circuit contains two BTL amplifiers with a complementary PNP-NPN output stage and standby/mute logic. The operating condition of all channels of the device (standby, mute or on) is externally controlled by the MODE pin. With the SELECT pin one of the output channels can be switched in the standby condition. This feature can be used for loudspeaker selection and also reduces the quiescent current consumption.
The TDA8547T comes in a SO16 package and the TDA8547 in a DIP16 package.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{CC}	supply voltage		2.2	5	18	V
I_{q}	quiescent current		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; 2$ channels	-	15	22
		$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} ; 1$ channel	-	8	12	mA
$\mathrm{I}_{\mathrm{stb}}$	standby current		-	-	10	$\mu \mathrm{~A}$
P_{o}	output power	THD $=10 \% ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	1	-	-	W
THD	total harmonic distortion	$\mathrm{P}_{\mathrm{o}}=0.5 \mathrm{~W}$	-	0.15	-	$\%$
SVRR	supply voltage ripple rejection		50	-	-	dB

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8547T	SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1
TDA8547	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1

2×1 W BTL audio amplifier with output

 channel switching

Fig. 1 Block diagram.

2×1 W BTL audio amplifier with output channel switching

PINNING

SYMBOL	PIN	DESCRIPTION
GND1	1	ground, channel 1
OUT1+	2	positive loudspeaker terminal, channel 1
MODE	3	operating mode select (standby, mute, operating)
SVRR	4	half supply voltage, decoupling ripple rejection
SELECT	5	input for selection of operating channel
n.c.	6	not connected
OUT2+	7	positive loudspeaker terminal, channel 2
GND2	8	ground, channel 2
VCC2 $_{\text {CUT }}$	9	supply voltage, channel 2
OUT2-	10	negative loudspeaker terminal, channel 2
IN2-	11	negative input, channel 2
IN2+	12	positive input, channel 2
IN1+	13	positive input, channel 1
IN1-	14	negative input, channel 1
OUT1-	15	negative loudspeaker terminal, channel 1
VCC1	16	supply voltage, channel 1

FUNCTIONAL DESCRIPTION

The TDA8547(T) is a $2 \times 1 \mathrm{~W}$ BTL audio power amplifier capable of delivering $2 \times 1 \mathrm{~W}$ output power to an 8Ω load at THD $=10 \%$ using a 5 V power supply. Using the MODE pin the device can be switched to standby and mute condition. The device is protected by an internal thermal shutdown protection mechanism. The gain can be set within a range from 6 to 30 dB by external feedback resistors.

Power amplifier

The power amplifier is a Bridge-Tied Load (BTL) amplifier with a complementary PNP-NPN output stage.
The voltage loss on the positive supply line is the saturation voltage of a PNP power transistor, on the negative side the saturation voltage of a NPN power transistor. The total voltage loss is $<1 \mathrm{~V}$ and with a 5 V supply voltage and an 8Ω loudspeaker an output power of 1 W can be delivered.

Fig. 2 Pin configuration.

MODE pin

The whole device (both channels) is in the standby mode (with a very low current consumption) if the voltage at the MODE pin is $>\left(\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}\right)$, or if this pin is floating. At a MODE voltage level of less than 0.5 V the amplifier is fully operational. In the range between 1.5 V and $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$ the amplifier is in mute condition. The mute condition is useful to suppress plop noise at the output caused by charging of the input capacitor.

SELECT pin

If the voltage at the SELECT pin is in the range between 1.5 V and $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, or if it is kept floating, then both channels can be operational. If the SELECT pin is set to a LOW voltage or grounded, then only channel 2 can operate and the power amplifier of channel 1 will be in the standby mode. In this case only the loudspeaker at channel 2 can operate and the loudspeaker at channel 1 will be switched off. If the SELECT pin is set to a HIGH level or connected to V_{CC}, then only channel 1 can

2×1 W BTL audio amplifier with output channel switching

operate and the power amplifier of channel 2 will be in the standby mode. In this case only the loudspeaker at channel 1 can operate and the loudspeaker at channel 2 will be switched off. Setting the SELECT pin to a LOW or a HIGH voltage results in a reduction of quiescent current consumption by a factor of approximately 2.
Switching with the SELECT pin during operating is not plop-free, because the input capacitor of the channel which is coming out of standby needs to be charged first.

For plop-free channel selecting the device has first to be set in mute condition with the MODE pin (between 1.5 V and $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$), then set the SELECT pin to the new level, after a delay set the MODE pin to a LOW level. The delay needed depends on the values of the input capacitor and the feedback resistors. Time needed is approx. $10 \times \mathrm{C} 1 \times(\mathrm{R} 1+\mathrm{R} 2)$, so approximately 0.6 s . for the values in Fig. 4.

Table 1 Control pins MODE and SELECT versus status of output channels
Voltage levels at control pins at $\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V}$; for other supply voltages see Figs. 14 and 15.

CONTROL PIN		STATUS OF OUTPUT CHANNEL		TYP. I \mathbf{q} $(\mathbf{m A})$
MODE	SELECT	CHANNEL 1	CHANNEL 2	
$\mathrm{HIGH}^{(1)} / \mathrm{NC}^{(2)}$	$\mathrm{X}^{(3)}$	standby	standby	0
$\mathrm{HVP}^{(4)}$	$\mathrm{HVP}^{(4)} / \mathrm{NC}^{(2)}$	mute	mute	15
$\mathrm{LOW}^{(5)}$	$\mathrm{HVP}^{(4)} / \mathrm{NC}^{(2)}$	on	on	15
$\mathrm{HVP}^{(4) / \mathrm{LOW}^{(5)}}$	$\mathrm{HIGH}^{(1)}$	mute/on	standby	8
$\mathrm{HVP}^{(4)} / \mathrm{LOW}^{(5)}$	$\mathrm{HVP}^{(4)} / \mathrm{NC}^{(2)}$	mute/on	mute/on	15
$\mathrm{HVP}^{(4) / \mathrm{LOW}^{(5)}}$	$\mathrm{LOW}^{(5)}$	standby	mute/on	8

Notes

1. $\mathrm{HIGH}=\mathrm{V}_{\text {pin }}>\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$.
2. $\mathrm{NC}=$ not connected or floating.
3. $\mathrm{X}=$ don't care.
4. $\mathrm{HVP}=1.5 \mathrm{~V}<\mathrm{V}_{\mathrm{pin}}<\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.
5. $\mathrm{LOW}=\mathrm{V}_{\text {pin }}<0.5 \mathrm{~V}$.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {CC }}$	supply voltage	operating	-0.3	+18	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{I}_{\text {ORM }}$	repetitive peak output current		-	1	A
$\mathrm{~T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {Psc }}$	AC and DC short-circuit safe voltage		-	10	V
$\mathrm{P}_{\text {tot }}$	total power dissipation	SO16	-	1.2	W
		DIP16	-	2.2	W

QUALITY SPECIFICATION

In accordance with "SNW-FQ-611-E". The number of the quality specification can be found in the "Quality Reference Handbook". The handbook can be ordered using the code 939775000192.

2×1 W BTL audio amplifier with output

 channel switchingTHERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\text {th(j-a) }}$	thermal resistance from junction to ambient	in free air		
	TDA8547T (SO16)		100	K/W
	TDA8547 (DIP16)		55	K/W

Fig. 3 Power derating curve.

Table 2 Maximum ambient temperature at different conditions

V_{Cc} (V)	$\begin{aligned} & \mathbf{R}_{\mathbf{L}} \\ & (\Omega) \end{aligned}$	APPLICATION	OPERATION MODE	$\begin{aligned} & \mathbf{P}_{\mathbf{o}} \\ & (\mathbf{W})^{(1)} \end{aligned}$	CONTINUOUS SINE WAVE DRIVEN		
					$P_{\text {max }}$ (W)	$T_{\text {amb(max) }}$ (${ }^{\circ} \mathrm{C}$)	
						SO16	DIP16
5	8	2 channels	BTL	2×1.2	1.4	-	73
5	8	1 channel	BTL	1.2	0.7	80	112
7.5	8	2 channels	BTL	2×2.4	3.0	-	-
7.5	8	1 channel	BTL	2.4	1.5	-	68
7.5	16	2 channels	BTL	2×1.2	1.8	-	50
7.5	16	1 channel	BTL	1.2	0.9	60	100
7.5	28	2 channels	BTL	2×1	1.0	50	95
7.5	28	1 channel	BTL	1	0.5	100	122

Note

1. $\mathrm{At} \mathrm{THD}=10 \%$.

2×1 W BTL audio amplifier with output channel switching

TDA8547

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$; $\mathrm{V}_{\mathrm{MODE}}=0 \mathrm{~V}$; gain $=20 \mathrm{~dB}$; measured in BTL application circuit Fig.4; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{CC}	supply voltage	operating	2.2	5	18	V
I_{q}	quiescent current	BTL 2 channels; note 1	-	15	22	mA
		BTL 1 channel; note 1	-	8	12	mA
$\mathrm{I}_{\text {stb }}$	standby current	$\mathrm{V}_{\text {MODE }}=\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{O}	DC output voltage	note 2	-	2.2	-	V
$\mid \mathrm{V}_{\text {OUT+ }}$ - $\mathrm{V}_{\text {OUT- }} \mid$	differential output voltage offset		-	-	50	mV
$\mathrm{l}_{\mathrm{IN}_{+},}, \mathrm{l}_{\mathrm{IN}-}$	input bias current		-	-	500	nA
$\mathrm{V}_{\text {MODE }}$	input voltage MODE pin	operating	0	-	0.5	V
		mute	1.5	-	$V_{C C}-1.5$	V
		standby	$\mathrm{V}_{\mathrm{CC}}-0.5$	-	V_{CC}	V
$\mathrm{I}_{\text {Mode }}$	input current MODE pin	$0 \mathrm{~V}<\mathrm{V}_{\text {MODE }}<\mathrm{V}_{\text {CC }}$	-	-	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SELECT }}$	input voltage SELECT pin	channel 1 = standby; channel 2 = on	0	-	1	V
		channel 1 = on; channel 2 = standby	$\mathrm{V}_{\mathrm{CC}}-1$	-	$\mathrm{V}_{\text {CC }}$	V
ISELECT	input current SELECT pin	$\mathrm{V}_{\text {SELECT }}=0 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$

Notes

1. Measured with $R_{L}=\infty$. With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the DC output offset voltage divided by R_{L}.
2. The DC output voltage with respect to ground is approximately $0.5 \mathrm{~V}_{\mathrm{CC}}$.

2×1 W BTL audio amplifier with output channel switching

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{MODE}}=0 \mathrm{~V}$; gain $=20 \mathrm{~dB}$; measured in BTL application circuit Fig. 4 ; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
P_{0}	output power	THD $=10 \%$	1	1.2	-	W
		THD $=0.5 \%$	0.6	0.9	-	W
THD	total harmonic distortion	$\mathrm{P}_{0}=0.5 \mathrm{~W}$	-	0.15	0.3	\%
G_{v}	closed loop voltage gain	note 1	6	-	30	dB
Z_{i}	differential input impedance		-	100	-	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {no }}$	noise output voltage	note 2	-	-	100	$\mu \mathrm{V}$
SVRR	supply voltage ripple rejection	note 3	50	-	-	dB
		note 4	40	-	-	dB
V_{0}	output voltage	note 5	-	-	200	$\mu \mathrm{V}$
$\alpha_{\text {cs }}$	channel separation	$\mathrm{V}_{\text {SELECT }}=0.5 \mathrm{~V}_{\text {CC }}$; note 6	40	-	-	dB

Notes

1. Gain of the amplifier is $2 \times \frac{\mathrm{R} 2}{\mathrm{R} 1}$ in BTL application circuit Fig.4.
2. The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a source impedance of $R_{S}=0 \Omega$ at the input.
3. Supply voltage ripple rejection is measured at the output, with a source impedance of $R_{S}=0 \Omega$ at the input. The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.
4. Supply voltage ripple rejection is measured at the output, with a source impedance of $R_{S}=0 \Omega$ at the input. The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.
5. Output voltage in mute position is measured with a 1 V (RMS) input voltage in a bandwidth of 20 Hz to 20 kHz , so including noise.
6. Channel separation is measured at the output with a source impedance of $R_{S}=0 \Omega$ at the input and a frequency of 1 kHz . The output power in the operating channel is set to 0.5 W .

2×1 W BTL audio amplifier with output channel switching

TEST AND APPLICATION INFORMATION

Test conditions

Because the application can be either Bridge-Tied Load (BTL) or Single-Ended (SE), the curves of each application are shown separately.

The thermal resistance $=55 \mathrm{~K} / \mathrm{W}$ for the DIP16; the maximum sine wave power dissipation for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
is: $\frac{150-25}{55}=2.3 \mathrm{~W}$
For $T_{a m b}=60^{\circ} \mathrm{C}$ the maximum total power dissipation is: $\frac{150-60}{55}=1.7 \mathrm{~W}$

BTL application

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ if not specially mentioned, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$, audio band-pass 22 Hz to 22 kHz .

The BTL application circuit is illustrated in Fig.4.
The quiescent current has been measured without any load impedance and both channels driven. When one channel is active the quiescent current will be halved. The total harmonic distortion as a function of frequency was measured using a low-pass filter of 80 kHz . The value of capacitor C3 influences the behaviour of the SVRR at low frequencies: increasing the value of C3 increases the performance of the SVRR. The figure of the MODE voltage ($\mathrm{V}_{\text {MODE }}$) as a function of the supply voltage shows three areas; operating, mute and standby. It shows, that the DC-switching levels of the mute and standby respectively depend on the supply voltage level. The figure of the SELECT voltage ($\mathrm{V}_{\text {SELECT }}$) as a function of the supply voltage shows the voltage levels for switching the channels in the active, mute or standby mode.

SE application

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ if not specially mentioned, $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$, $f=1 \mathrm{kHz}, R_{L}=4 \Omega, G_{v}=20 \mathrm{~dB}$, audio band-pass 22 Hz to 22 kHz .

The SE application circuit is illustrated in Fig.16. Increasing the value of electrolytic capacitor C3 will result in a better channel separation. Because the positive output is not designed for high output current $\left(2 \times I_{0}\right)$ at low load impedance ($\leq 16 \Omega$), the SE application with output capacitors connected to ground is advised. The capacitor value of $C 6 / C 7$ in combination with the load impedance determines the low frequency behaviour. The THD as a function of frequency was measured using a low-pass filter of 80 kHz . The value of capacitor C3 influences the behaviour of the SVRR at low frequencies: increasing the value of C3 increases the performance of the SVRR.

General remark

The frequency characteristic can be adapted by connecting a small capacitor across the feedback resistor. To improve the immunity to HF radiation in radio circuit applications, a small capacitor can be connected in parallel with the feedback resistor ($56 \mathrm{k} \Omega$); this creates a low-pass filter.

2×1 W BTL audio amplifier with output channel switching

BTL APPLICATION

Fig. $5 I_{\mathrm{q}}$ as a function of V_{CC}.

$\mathrm{f}=1 \mathrm{kHz} ; \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$.
(1) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.
(2) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.

Fig. 6 THD as a function of P_{o}.

2×1 W BTL audio amplifier with output channel switching

$P_{0}=0.5 \mathrm{~W} ; \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$.
(1) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.
(2) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.

Fig. 7 THD as a function of frequency.

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega ; \mathrm{V}_{\mathrm{r}}=100 \mathrm{mV}$.
(1) $G_{v}=30 \mathrm{~dB}$.
(2) $\mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$.
(3) $\mathrm{G}_{\mathrm{v}}=6 \mathrm{~dB}$.

Fig. 9 SVRR as a function of frequency.

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=2 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.
(1) $G_{v}=30 \mathrm{~dB}$.
(2) $\mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$.
(3) $G_{v}=6 d B$.

Fig. 8 Channel separation as a function of frequency.

THD $=10 \%$.
(1) $R_{L}=8 \Omega$.
(2) $R_{L}=16 \Omega$.

Fig. $10 \mathrm{P}_{\mathrm{o}}$ as a function of V_{Cc}.

2×1 W BTL audio amplifier with output channel switching

(1) $R_{L}=8 \Omega$.
(2) $R_{L}=16 \Omega$.

Fig. 11 Worst case power dissipation as a function of V_{CC} (both channels on).

Band-pass $=22 \mathrm{~Hz}$ to 22 kHz .
(1) $V_{C C}=3 V$.
(2) $V_{C C}=5 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$.

Fig. $13 \mathrm{~V}_{0}$ as a function of $\mathrm{V}_{\text {MODE }}$.

Sine wave of 1 kHz .
(1) $V_{C C}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.
(2) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.

Fig. 12 Power dissipation as a function of P_{0} (both channels on).

2×1 W BTL audio amplifier with output channel switching

TDA8547

Fig. $15 \mathrm{~V}_{\text {SELECT }}$ as a function of V_{P}.

SE APPLICATION

Fig. 16 SE application.

2×1 W BTL audio amplifier with output channel switching

$\mathrm{f}=1 \mathrm{kHz} ; \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$.
(1) $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.
(2) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$; $\mathrm{R}_{\mathrm{L}}=8 \Omega$.
(3) $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.

Fig. 17 THD as a function of P_{o}.

$\mathrm{V}_{\mathrm{o}}=1 \mathrm{~V} ; \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$.
(1) $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.
(2) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.
(3) $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.
(4) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=32 \Omega$.

Fig. 19 Channel separation as a function of frequency.

$\mathrm{P}_{\mathrm{o}}=0.5 \mathrm{~W} ; \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$.
(1) $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.
(2) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.
(3) $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.

Fig. 18 THD as a function of frequency.

Fig. 20 SVRR as a function of frequency.

2×1 W BTL audio amplifier with output channel switching

THD $=10 \%$.
(1) $R_{L}=4 \Omega$.
(2) $R_{L}=8 \Omega$.
(3) $R_{L}=16 \Omega$.

Fig. $21 \mathrm{P}_{\mathrm{o}}$ as a function of V_{Cc}.

Sine wave of 1 kHz .
(1) $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.
(2) $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.
(3) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.

Fig. 23 Power dissipation as a function of P_{0} (both channels on).

(1) $\mathrm{R}_{\mathrm{L}}=4 \Omega$.
(2) $R_{L}=8 \Omega$.
(2) $\mathrm{R}_{\mathrm{L}}=8 \Omega$.
(3) $\mathrm{R}_{\mathrm{L}}=16 \Omega$.

Fig. 22 Worst case power dissipation as a function of V_{CC} (both channels on).

2×1 W BTL audio amplifier with output channel switching

a. Top view without components.

b. Top view with components.

Fig. 24 Printed-circuit board layout (BTL and SE).

2×1 W BTL audio amplifier with output channel switching

TDA8547

PACKAGE OUTLINES

SO16: plastic small outline package; 16 leads; body width 7.5 mm
SOT162-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 101 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & \hline 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & \hline 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT162-1	075E03	MS-013AA		\square ¢	$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

2×1 W BTL audio amplifier with output channel switching

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}	$\mathbf{Z}^{(\mathbf{1})}$ $\mathbf{m a x}$.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.020	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT38-1	$050 G 09$	MO-001AE			-	$95-01-19$

2×1 W BTL audio amplifier with output channel switching

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

DIP

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

2×1 W BTL audio amplifier with output channel switching

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

2×1 W BTL audio amplifier with output
 TDA8547 channel switching

NOTES

2×1 W BTL audio amplifier with output
 TDA8547 channel switching

NOTES

2×1 W BTL audio amplifier with output
 TDA8547 channel switching

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43160 1011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773

Belgium: see The Netherlands

Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +453288 2636, Fax. +4531570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +314027 82785, Fax. +31402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11470 5911, Fax. +27114705494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

