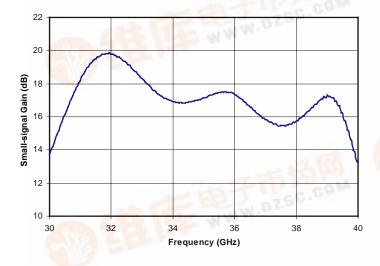
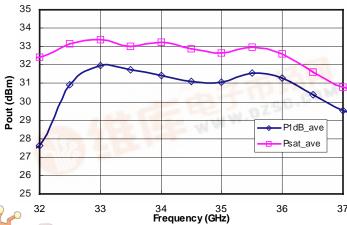


August 27, 2003

33-36 GHz 2W Power Amplifier


TGA1141-EPU

Key Features


- 0.25 um pHEMT Technology
- 17 dB Nominal Gain
- 31 dBm Pout @ P1dB,
- Psat 33dBm @ 6V, 34dBm @7V
- Bias 6 7V @ Iq = 880 mA, Id = 1.3 A at Psat
- Chip Dimensions 4.13 x 3.30 x 0.1 mm

Bias Conditions: Vd = 6 V, Id = 880 mA

Primary Applications

- Military Radar Systems
- Ka Band Sat-Com
- Point-to-Point Radio

37

August 27, 2003

TGA1141-EPU

TABLE I MAXIMUM RATINGS

Symbol	Parameter <u>1/</u>	Value	Notes
V ⁺	Positive Supply Voltage	8 V	<u>2/</u>
٧-	Negative Supply Voltage Range	-5V TO 0V	
l ⁺	Positive Supply Current	1.76 A	<u>2/</u>
I _G	Gate Supply Current	70 mA	
P_{D}	Power Dissipation	9.4 W	<u>2/, 3/</u>
P_{IN}	Input Continuous Wave Power	27 dBm	<u>2/</u>
T _{CH}	Operating Channel Temperature	150 °C	<u>4/,</u> 5 <u>/</u>
T_M	Mounting Temperature (30 seconds)	320 °C	
T_{STG}	Storage Temperature	-65 °C to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- 2/ Current is defined under no RF drive conditions. Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ When operated at this power dissipation with a base plate temperature of 70 °C, the median life is 1 E+6 hours.
- 4/ Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 5/ These ratings apply to each individual FET.

TABLE II DC PROBE TESTS

 $(T_A = 25 \, ^{\circ}C, Nominal)$

Symbol	Parameter	Minimum	Maximum	Value
ldss	Saturated Drain Current	40	188	mA
Gm	Transconductance	88	212	mS
V_P	Pinch-off Voltage	-1.5	-0.5	V
B _{VGS}	Breakdown Voltage gate- source	-30	-8	V
B _{VGD}	Breakdown Voltage gate- drain	-30	-8	V

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

August 27, 2003

TGA1141-EPU

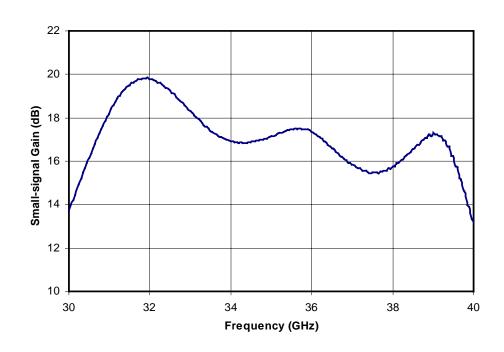
TABLE III ON-WAFER RF PROBE CHARACTERISTICS

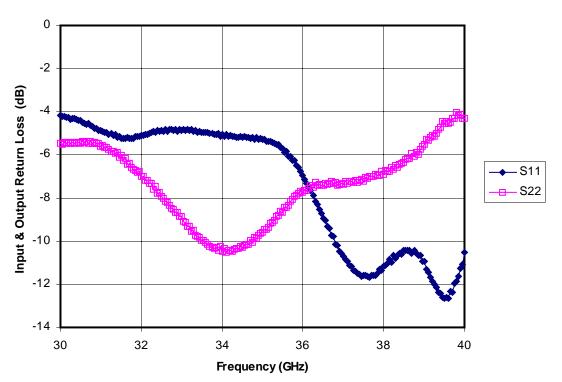
 $(T_A = 25 \, ^{\circ}C, \, Nominal)$ $V_d = 6 \, V, \, I_d = 880 \, mA$

Symbol	Parameter	Test Condition	Limit		Units	
			Min	Тур	Max	
Gain	Small Signal	F = 33 – 36 GHz		17		dB
	Gain	F = 34 - 35.2 GHz	16			
IRL	Input Return	F = 33 - 36 GHz		-8		dB
	Loss					
ORL	Output Return	F = 33 - 36 GHz		-6.5		dB
	Loss					
PWR	Output Power @	F = 34 - 34.6 Hz	32			dBm
	P_{in} = +21 dBm	F = 35.2 GHz	31.5			
I_{pk}	Peak LS Drain	F = 34 - 35.2 GHz			1.6	Α
	Current @					
	$P_{in} = 21 \text{ dBm}$					

TABLE IV THERMAL INFORMATION

Parameter	Test Conditions	T _{CH} (°C)	R _{θJC} (°C/W)	T _M (HRS)
R _{0JC} Thermal Resistance (channel to backside of carrier)	Vd = 6 V Id = 880 mA Pdiss = 5.3 W	115	8.5	2.6 E+7

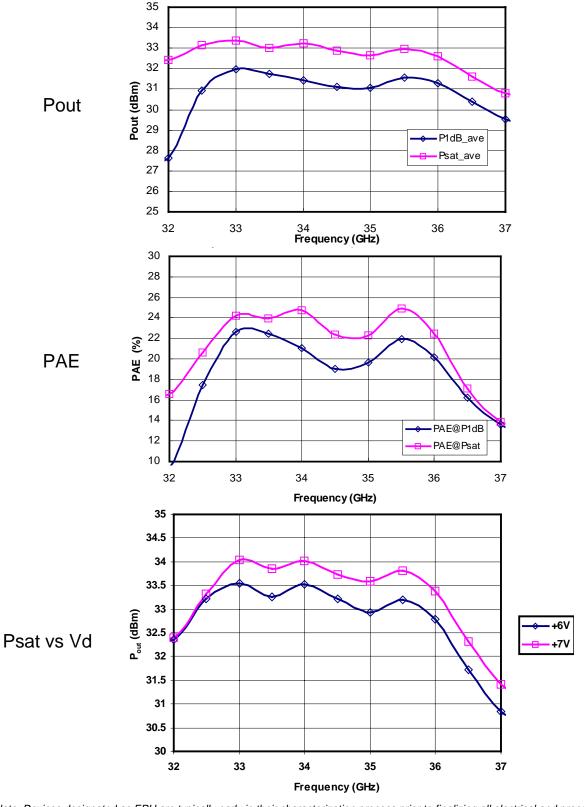

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.



August 27, 2003

TGA1141-EPU

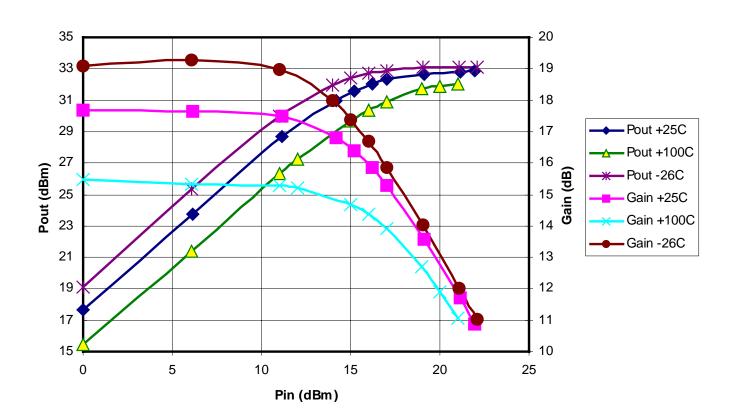
Measured Fixtured Data Bias Conditions: Vd = 6V, Id = 880 mA


Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

August 27, 2003

Measured Fixtured Data Bias Conditions: Vd = 6V, Id = 880 mA

TGA1141-EPU

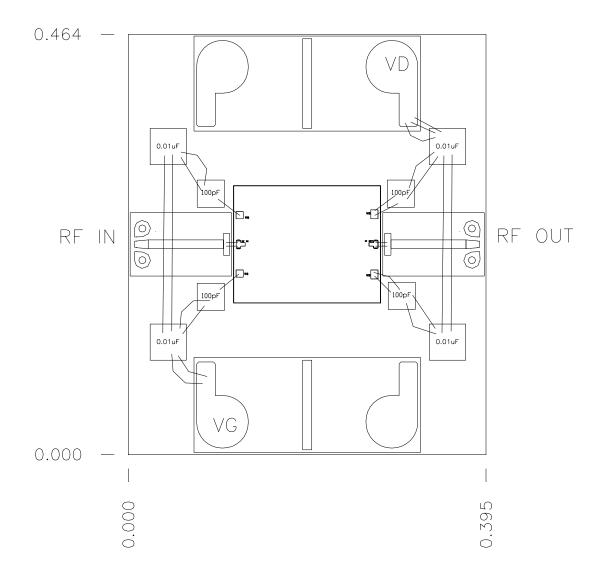

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

August 27, 2003

TGA1141-EPU

Measured Fixtured Data Bias Conditions: Vd = 6V, Id = 880 mA

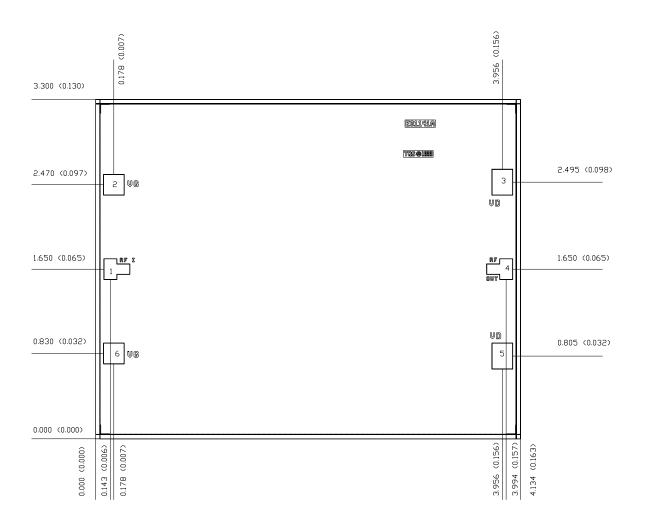
Pout vs. Temperature Data Summary Matrix:


	T= -26C		T= +25C		T= +100C	
Freq (GHz)	min Pout	mean Pout	min Pout	mean Pout	min Pout	mean Pout
34	33	33	32.7	32.8	31.9	32
34.6	32.8	32.9	32.5	32.6	31.7	31.8
35.2	32.5	32.7	32.3	32.4	31.5	31.6
Ave. Pout (dBm)	32.8	32.9	32.5	32.6	31.7	31.8

August 27, 2003

TGA1141-EPU

Chip Assembly and Bonding Diagram


GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

August 27, 2003

TGA1141-EPU

Mechanical Drawing

Units: millimeters (inches)
Thickness: 0.100 (0.004) (reference only)
Chip edge to bond pad dimensions are shown to center of pad
Chip size tolerance: +/- 0.051 (0.002)

 Bond Pad #1:
 RF IN
 0.127 x 0.202 (0.005 x 0.008)

 Bond Pad #2, 6:
 Vg
 0.200 x 0.200 (0.008 x 0.008)

 Bond Pad #4:
 RF Dut
 0.125 x 0.200 (0.005 x 0.008)

 Bond Pad #3, 5:
 Vd
 0.200 x 0.250 (0.008 x 0.000)

August 27, 2003

TGA1141-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C (for 30 sec max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.