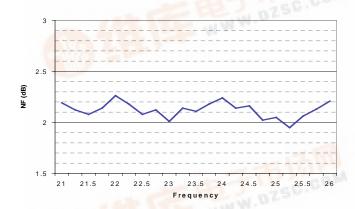


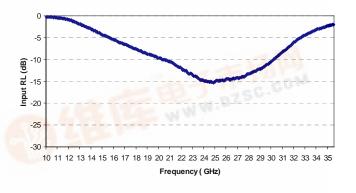
November 6, 2001

Ka Band Wideband LNA/Driver

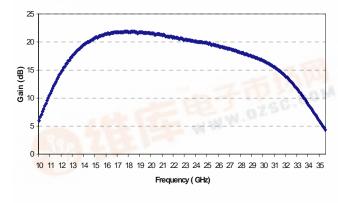
TGA1319C-EPU

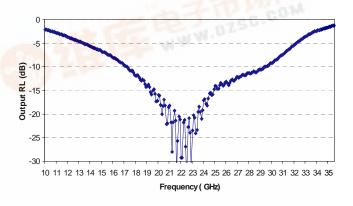

Chip Dimensions 2.179 mm x .847 mm

Key Features and Performance


- 0.15um pHEMT Technology
- 16-30 GHz Frequency Range
- 2.25 dB Nominal Noise Figure midband
- 21 dB Nominal Gain
- 14 dBm Pout
- Bias 5V, 60 mA with -0.5V < Vg < +0.5V

Primary Applications


- Point-to-Point Radio
- Point-to-Multipoint Communications


Typical NF @ 25C

Typical S11 @ 25C

Typical Gain @ 25C

Typical S22 @ 25C

November 6, 2001 TGA1319C-EPU

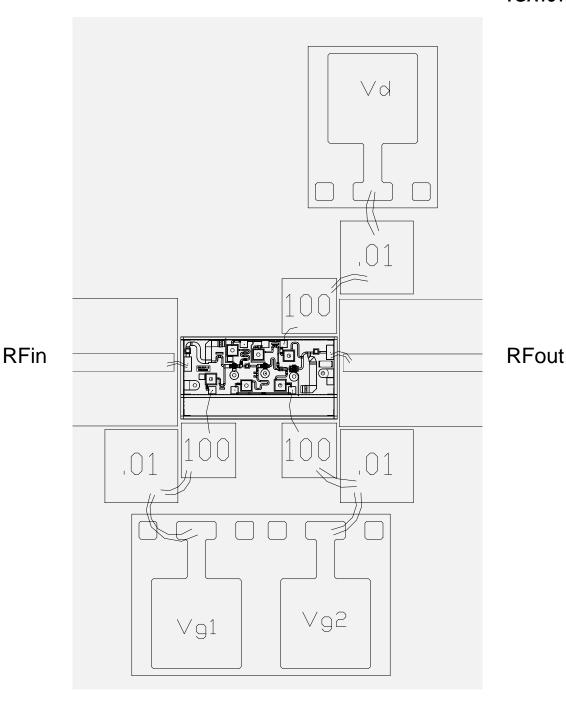
MAXIMUM RATINGS

SYMBOL	PARAMETER <u>4</u> /	VALUE	NOTES
V^{+}	POSITIVE SUPPLY VOLTAGE	9 V	
I^+	POSITIVE SUPPLY CURRENT	80 mA	1/
I ⁻	NEGATIVE GATE CURRENT	5.28 mA	
$P_{\rm IN}$	INPUT CONTINUOUS WAVE POWER	18 dBm	
P_{D}	POWER DISSIPATION	.72 W	
T_{CH}	OPERATING CHANNEL TEMPERATURE	150 °C	<u>2</u> / <u>3</u> /
T_{M}	MOUNTING TEMPERATURE (30 SECONDS)	320 °C	
T_{STG}	STORAGE TEMPERATURE	-65 to 150 °C	

- 1/ Total current for all stages.
- 2/ These ratings apply to each individual FET.
- $\underline{3}$ / Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 4/ These ratings represent the maximum operable values for the device.

DC PROBE TESTS
$$(T_A = 25 \text{ °C} \pm 5 \text{ °C})$$

Symbol	Parameter	Minimum	Maximum	Value
Idss	Saturated Drain Current			mA
V_{P}	Pinch-off Voltage	-1.5	-0.5	V
BVGS	Breakdown Voltage gate-source			V
BVGD	Breakdown Voltage gate-drain			V

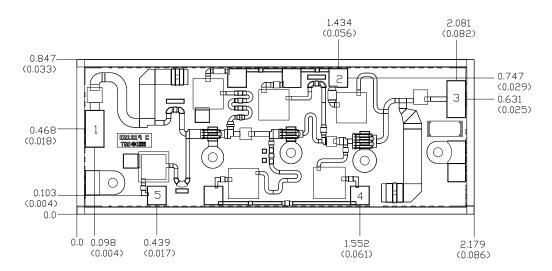

ON-WAFER RF PROBE CHARACTERISTICS

$$(T_A=25~^{\circ}C\pm5^{\circ}C)$$

$$V_d=5~V,~I_{d1}=10~mA,~I_{d2}=50~mA$$

Symbol	Parameter	Test Condition	Limit		Units	
			Min	Тур	Max	
Gain	Small Signal Gain	F = 21 - 27 GHz	19			dB
NF	Noise Figure	F = 21 - 25 GHz			2.5	dB
		F = 26 - 26.5 GHz			2	
PWR	Output Power	F = 21 - 26 GHz	10			dBm
	@ P1dB	F = 27 GHz	9			

November 6, 2001 TGA1319C-EPU


Notes:1. Vg1 and Vg2 may be sourced from the same supply.

2. Positive or negative gate bias may be required to achieve recommended operating point.

TGA1319C- Recommended Assembly Drawing

November 6, 2001 TGA1319C-EPU

Units: millimeters (inches) Thickness: 0.1016 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002)

 Bond Pad #1 (RF Input)
 0.100 x 0.200 (0.004 x 0.008)

 Bond Pad #2 (Vd)
 0.100 x 0.100 (0.004 x 0.004)

 Bond Pad #3 (RF Dutput)
 0.100 x 0.200 (0.004 x 0.008)

 Bond Pad #4 (Vg2)
 0.100 x 0.100 (0.004 x 0.004)

 Bond Pad #5 (Vg1)
 0.100 x 0.100 (0.004 x 0.004)

Mechanical Drawing

November 6, 2001 TGA1319C-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

 $\overline{}$

November 6, 2001 TGA1319C-EPU

Assembly Process Notes

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300°C
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200°C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.