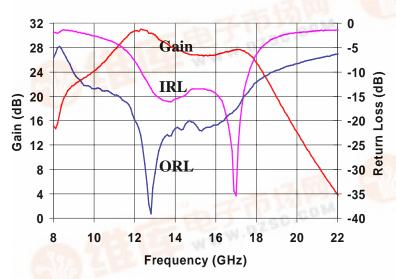


Advance Product Information December 5, 2004

12-18 GHz Ku-Band 3-Stage Driver Amplifier

TGA2507-EPU



Key Features

- 12-18 GHz Bandwidth
- 28 dB Nominal Gain
- 20 dBm P1dB
- Bias: 5,6,7 V, 80 ± 10% mA Self Bias
- 0.5 um 3MI mmW pHEMT Technology
- Chip Dimensions: 1.80 x 0.83 x 0.1 mm (0.071 x 0.031 x 0.004) in

Preliminary Measured Data

Bias Conditions: Vd = 6 V, Id = 80 mA

24 22 20 18 16 11 12 13 14 15 16 17 18 Frequency (GHz)

Primary Applications

- Point to Point Radio
- Military Ku-Band
- · Ku-Band Space
- VSAT

Advance Product Information December 5, 2004 TGA2507-EPU

TABLE I MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
V ⁺	Positive Supply Voltage	8 V	<u>2/</u>
l ⁺	Positive Supply Current	114 mA	<u>2</u> /
P _{IN}	Input Continuous Wave Power	20 dBm	
P_D	Power Dissipation	0.91 W	<u>2</u> / <u>3</u> /
T _{CH}	Operating Channel Temperature	150 ⁰ C	<u>4</u> / <u>5</u> /
T_M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device
- $\underline{2}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D .
- 3/ When operated at this power dissipation with a base plate temperature of 70° C, the median life is 1.8 E+6 hrs.
- 4/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 5/ These ratings apply to each individual FET.

TABLE II DC PROBE TESTS

 $(T_A = 25 \, ^{\circ}C \, Nominal)$

SYMBOL	PARAMETER	MINIMUM	MAXIMUM	VALUE
V_{BVGS3}	Breakdown Voltage gate-source	-30	-11	V
V_{BVGD3}	Breakdown Voltage gate-drain	-30	-11	V
V_{P2}	Pinch-off Voltage	-1.5	-0.3	V
V_{P3}	Pinch-off Voltage	-1.5	-0.3	V

Advance Product Information December 5, 2004

TGA2507-EPU

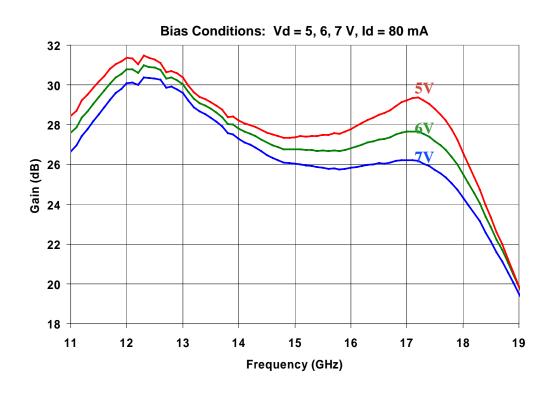
TABLE III ELECTRICAL CHARACTERISTICS

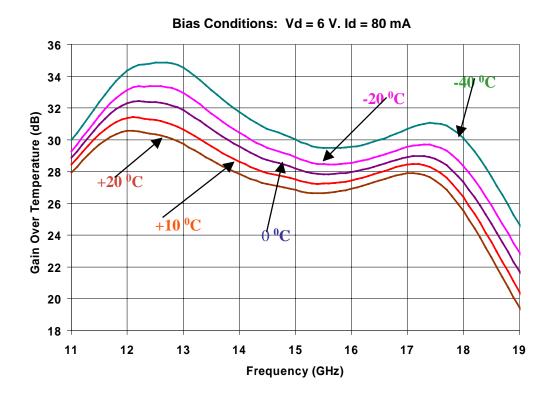
 $(Ta = 25 \, {}^{\circ}C, Nominal)$

PARAMETER	TYPICAL	UNITS
Drain Operating	6	V
Quiescent Current	80 ± 10% Self Bias	mA
Small Signal Gain	28	dB
Input Return Loss	15	dB
Output Return Loss	20	dB
Output Power @ 1 dB Compression Gain	20	dBm

TABLE IV THERMAL INFORMATION

Parameter	Test Conditions	T _{CH} (°C)	R _{θJC} (°C/W)	T _M (HRS)
R _{θJC} Thermal Resistance (channel to backside of carrier)	Vd = 6 V Id = 80 mA Pdiss = 0.48 W	108	80	5.2 E+7

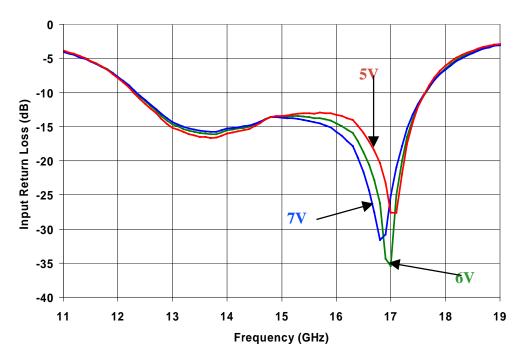

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

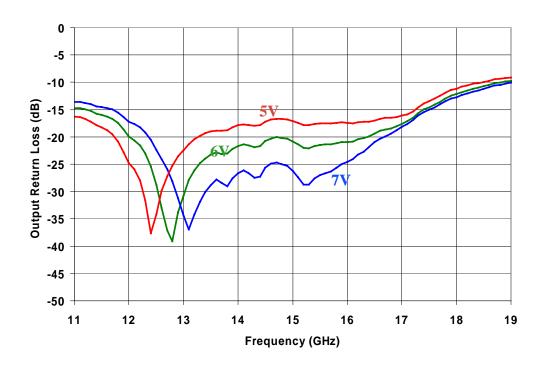


December 5, 2004

TGA2507-EPU

Preliminary Measured Data

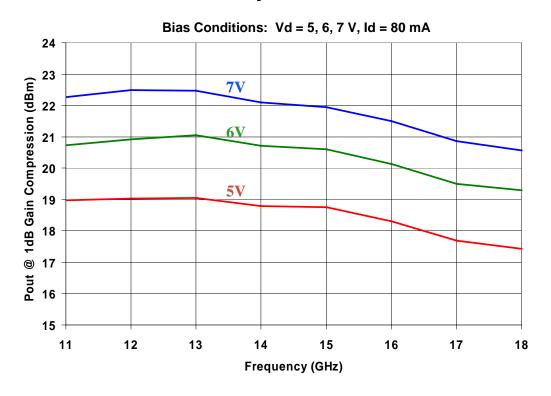


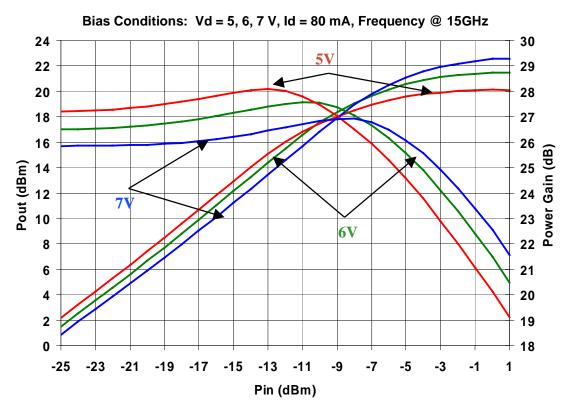

December 5, 2004

TGA2507-EPU

Preliminary Measured Data

Bias Conditions: Vd =5, 6, 7 V, Id = 80 mA

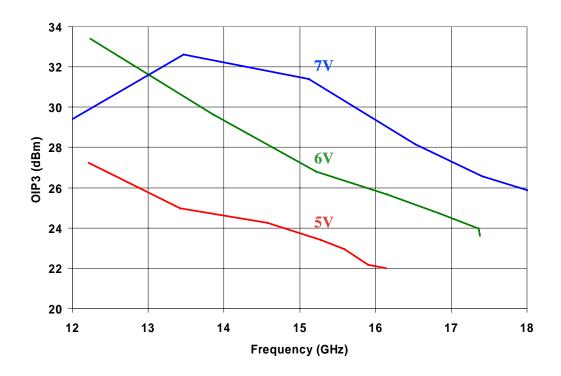




December 5, 2004

TGA2507-EPU

Preliminary Measured Data

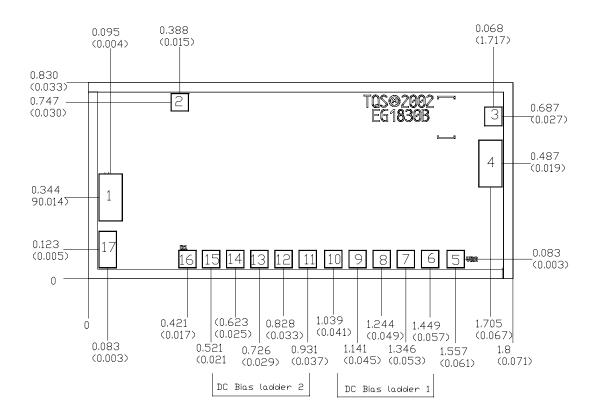


December 5, 2004

TGA2507-EPU

Preliminary Measured Data

Bias Conditions: Vd = 5, 6, 7 V, Id = 80 mA



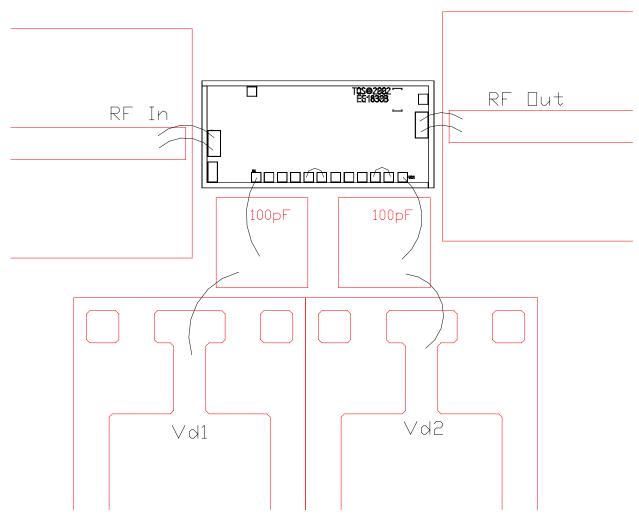
Advance Product Information December 5, 2004

TGA2507-EPU

Mechanical Drawing

Units: millimeters (inches)
Thickness: 0.100 (0.004)
Chip edge to bond pad dimensions are shown to center of bond pad
Chip size tolerance: +/- 0.051 (0.002)
GND is back side of MMIC

Bond pad #1	(RF In)		(0.004×0.008)
Bond pad #2	(N/C)	0.075×0.075	(0.003×0.003)
	(N/C)		(0.003×0.003)
Bond pad #4	(RF Dut)	0.100×0.200	(0.004×0.008)
Bond pad #5	(Vd2)	0.075×0.075	(0.003×0.003)
Bond pad #6 thru #10	(DC Bias ladder 1)	0.075×0.075	(0.003×0.003)
Bond pad #11 thru #15	(DC Bias ladder 2)	0.075×0.075	(0.003×0.003)
Bond pad #16	(Vd1)	0.075×0.075	(0.003×0.003)
Bond pad #17	(N/C)	0.075×0.155	(0.003×0.006)


GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

December 5, 2004

TGA2507-EPU

Chip Assembly Diagram

This configuration is for a self-bias logic pad current search with connections for bin #1. See Table IV for alternate bin # to get the current of typical $80 \pm 10\%$ mA.

TABLE V PAD CONNECTIONS

BIN No.	DC BIAS LADDER 1	DC BIAS LADDER 2
1	Pad 6 to Pad 7	Pad 11 to Pad 12
2	Pad 6 to Pad 8	Pad 11 to Pad 13
3	Pad 6 to Pad 9	Pad 11 to Pad 14
4	Pad 6 to Pad 10	Pad 11 to Pad 15

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information December 5, 2004 TGA2507-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200

 C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.