

K-Band High Power Amplifier

Product Description

The TriQuint TGA4022 is a compact High Power Amplifier MMIC for K-band applications. The part is designed using TriQuint's proven standard 0.25 um power pHEMT production process.

The TGA4022 nominally provides 32.5dBm of Output Power @ 1dB Gain Compression from 18 - 23GHz. The MMIC also provides 26dB Gain and 15dB typical Return Loss.

The part is ideally suited for markets such as Point-to-Point Radio, Point-to-Multipoint Communications, and K-Band Satellite Communications both commercial and military.

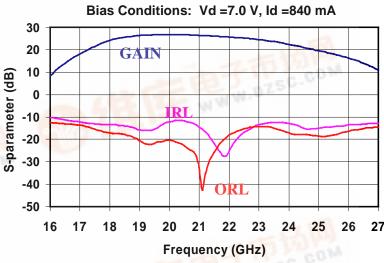
The TGA4022 is 100% DC and RF tested onwafer to ensure performance compliance.

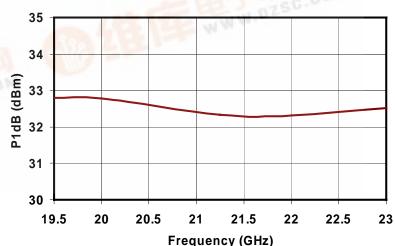
Lead-Free & RoHS compliant.

捷多邦,专业PCB打样工厂,24小时加急出货

Advance Product Information February 10, 2006

TGA4022


Key Features


- Frequency Range: 18 23 GHz
- 26 dB Nominal Gain
- 32.5 dBm Nominal P1dB
- 15dB Nominal Return Loss
- Bias 7.0 V, 840 mA
- 0.25 um 2MI pHEMT Technology
- Chip Dimensions 3.65 x 3.14 x 0.10 mm (0.144 x 0.124 x 0.004 in)

Primary Applications

- Point-to-Point Radio
- Point-to-Multipoint Communications
- K-Band Sat-Com

Measured Fixtured Data

Advance Product Information February 10, 2006

TGA4022

TABLE I MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
Vd	Drain Voltage	8 V	<u>2/</u>
Vg	Gate Voltage Range	-1 TO + 0 V	
ld	Drain Current	1.5 A	<u>2</u> / <u>3</u> /
Ig	Gate Current	56 mA	<u>3</u> /
P _{IN}	Input Continuous Wave Power	26 dBm	
P_D	Power Dissipation	7.4 W	<u>2</u> / <u>4</u> /
T _{CH}	Operating Channel Temperature	150 °C	<u>5</u> / <u>6</u> /
T_M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ Total current for the entire MMIC.
- When operated at this bias condition with a base plate temperature of 70°C, the median life is 1.0E+6 hrs.
- 5/ Junction operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 6/ These ratings apply to each individual FET.

TABLE II DC PROBE TESTS

 $(Ta = 25 \, {}^{0}C, Nominal)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
I _{DSS,Q1}	Saturated Drain Current	60	171	282	mA
G _{M,Q1}	Transconductance	132	210	318	mS
$V_{BVGS,Q1}$	Breakdown Voltage Gate_Source	-30	-15	-8	V
$V_{BVGD,Q1-Q7}$	Breakdown Voltage Gate_Drain	-30	-16	-12	V
V _{P,Q1-Q14}	Pinch-off Voltage	-1.5	-1	-0.5	V

Q1 is 600 um FET, Q1-Q7 is 2800 um FET, Q1-Q14 is 8400 um FET.

 $\overline{}$

Advance Product Information February 10, 2006 TGA4022

TABLE III ELECTRICAL CHARACTERISTICS

(Ta = 25 °C Nominal)

PARAMETER	TYPICAL	UNITS
Frequency Range	18 - 23	GHz
Drain Voltage, Vd	7.0	V
Drain Current, Id	840	mA
Small Signal Gain, S21	26	dB
Input Return Loss, S11	15	dB
Output Return Loss, S22	20	dB
Pout @ 1dB Gain Compression, P1dB	32.5	dBm

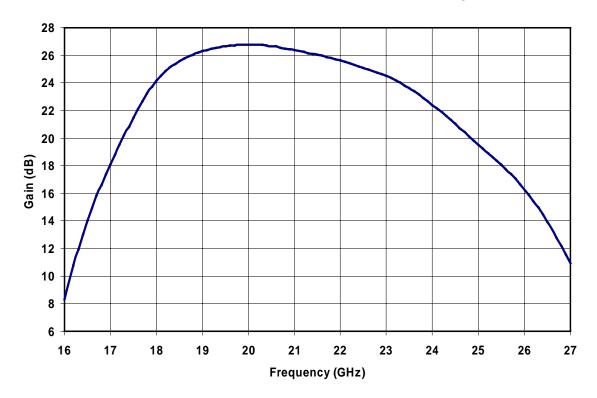
Note: Temperature coefficient on Gain -0.036 dB/0C

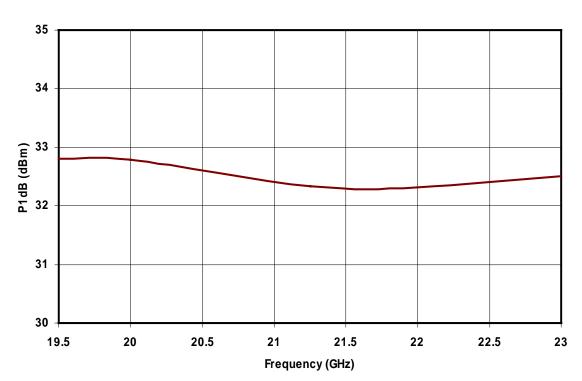
TABLE IV THERMAL INFORMATION

PARAMETER	TEST CONDITIONS	T _{CH} (°C)	R _{eJC} (°C/W)	T _M (HRS)
R _{θJC} Thermal Resistance (channel to backside of Carrier)	Vd = 7 V Id = 1 A Pdiss = 7 W	146	10.8	1.5 E+6

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70° C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

 $\overline{}$

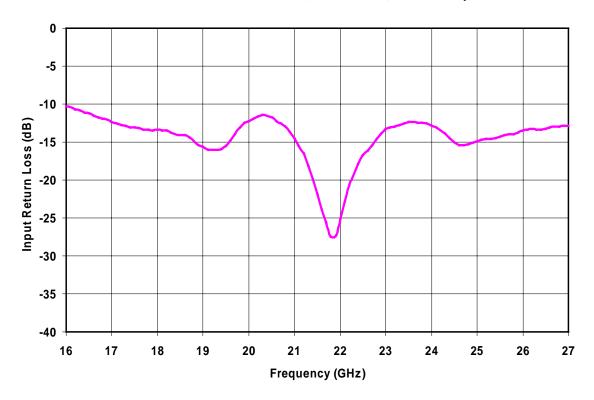

Advance Product Information

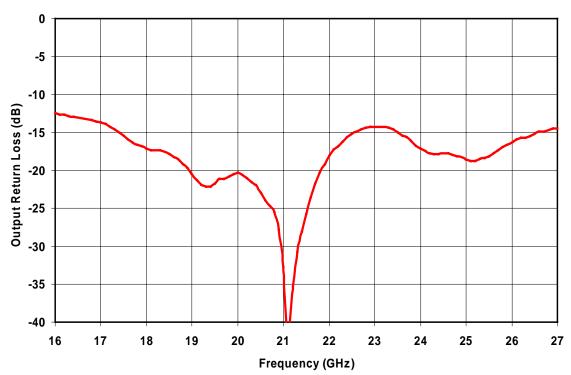

February 10, 2006

TGA4022

Preliminary Measured Data

Bias Conditions: Vd = 7.0 V, Id = 840 mA, Room Temperature

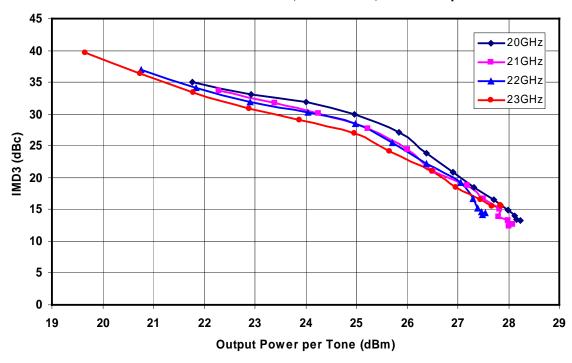

Advance Product Information


February 10, 2006

TGA4022

Preliminary Measured Data

Bias Conditions: Vd = 7.0 V, Id = 840 mA, Room Temperature

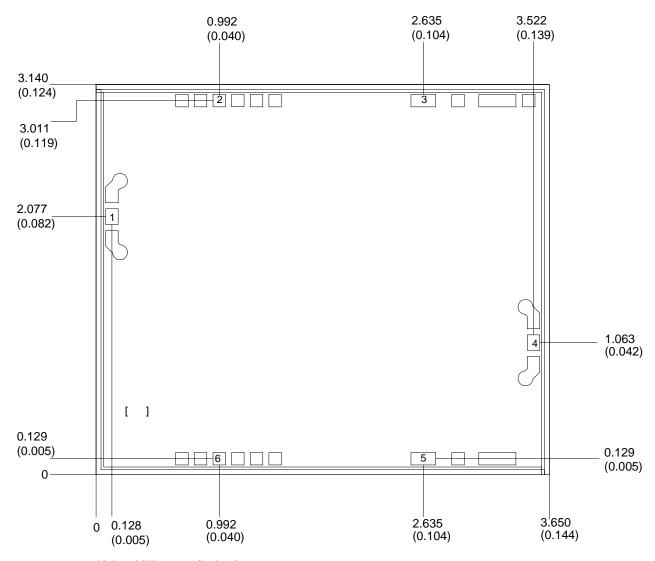

Advance Product Information

February 10, 2006

TGA4022

Preliminary Measured Data

Bias Conditions: Vd = 7.0 V, Id = 840 mA, Room Temperature



Advance Product Information February 10, 2006

TGA4022

Mechanical Drawing

Units: Millimeters (inches) Thickness: 0.100 (0.004)

Chip size to bond pad dimensions are shown to center of bond pad

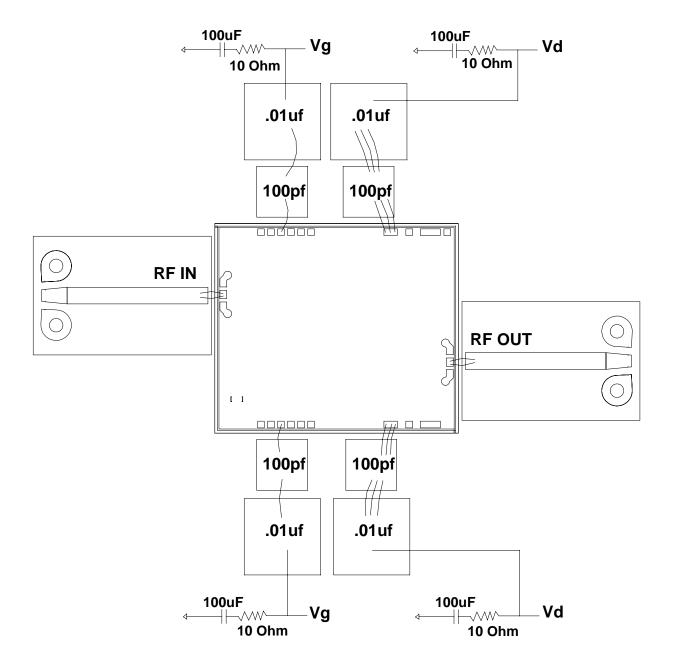
Chip size tolerance: +/- 0.051 (0.002) RF Ground is backside of MMIC

 Bond pad #1:
 (RF In)
 0.100 X 0.125 (0.004 X 0.005)

 Bond pad #2, #6:
 (Vg)
 0.100 X 0.100 (0.004 X 0.004)

 Bond pad #3, #5:
 (Vd)
 0.200 X 0.100 (0.008 X 0.004)

 Bond pad #4:
 (RF Out)
 0.100 X 0.125 (0.004 X 0.005)


GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

_

Advance Product Information February 10, 2006 TGA4022

Recommended Chip Assembly Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

_

Advance Product Information February 10, 2006 TGA4022

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

 $\overline{}$