査询TGA4517供应商

TriQuint SEMICONDUCTOR®

Ka-Band Power Amplifier

Product Description

The TriQuint TGA4517 is a compact High Power Amplifier MMIC for Ka-band applications. The part is designed using TriQuint's 0.15um gate power pHEMT process.

The TGA4517 nominally provides 35dBm of Saturated Output Power, and 20dB small signal gain @ mid-band of 31 - 37GHz. The MMIC also provides 12dB Return Loss.

The part is ideally suited for markets such as Point-to-Point Radio, Military Radar Systems, and Ka-Band Satellite Communications both commercial and military.

The TGA4517 is 100% DC and RF tested onwafer to ensure performance compliance.

Lead-Free & RoHS compliant.

捷多邦,专业PCB打样工厂,24小时加急出货

Advance Product Information February 10, 2006

TGA4517

Key Features

- Frequency Range: 31 37 GHz
- 35 dBm Nominal Psat @ Mid-band
- 20 dB Nominal Gain @ Mid-band
- 12 dB Nominal Return Loss
- Bias 5-6 V, 2 A Quiescent
- 0.15 um 3MI pHEMT Technology
- Chip Dimensions 4.35 x 3.90 x 0.05 mm (0.171 x 0.154 x 0.002) in

Primary Applications

- Point-to-Point Radio
- Military Radar Systems
- Ka-Band Sat-Com

Measured Fixtured Data

Advance Product Information February 10, 2006

TGA4517

TABLE I ABSOLUTE MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
Vd	Drain Voltage	6.5 V	<u>2/</u>
Vg	Gate Voltage Range	-3 TO 0 V	
ld	Drain Current (Under RF Drive)	4 A	<u>2</u> / <u>3</u> /
Ig	Gate Current	141 mA	<u>3</u> /
P_{IN}	Input Continuous Wave Power	TBD	
P_{D}	Power Dissipation	18.3 W	<u>2</u> / <u>4</u> /
T _{CH}	Operating Channel Temperature	ating Channel Temperature 150 °C	
T_M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 ⁰ C	

- 1/ These ratings represent the maximum operable values for this device.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ Total current for the entire MMIC.
- 4/ When operated at this bias condition (with RF applied) at a base plate temperature of 70 °C, the median life is 1E+6 hrs.
- 5/ Junction operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 6/ These ratings apply to each individual FET.

TABLE II DC PROBE TESTS

 $(Ta = 25 \, {}^{0}C, Nominal)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
$V_{BVGD,Q1-Q2}$	Breakdown Voltage Gate-Drain	-30	-14	-11	V
V _{BVGD,Q15-Q30}	Breakdown Voltage Gate-Drain	-30	-14	-11	V
V _{P,Q15-Q30}	Pinch-Off Voltage	-1.5	-1	-0.5	V

Each FET Cell is 750um

Advance Product Information February 10, 2006

TGA4517

TABLE III ELECTRICAL CHARACTERISTICS

(Ta = 25 °C, Nominal)

PARAMETER	TYPICAL	UNITS
Frequency Range	31 - 37	GHz
Drain Voltage, Vd	6	V
Drain Current (Quiescent), Idq	2	А
Gate Voltage, Vg	-0.5	V
Small Signal Gain, S21 @ Mid-band	20	dB
Input Return Loss, S11	14	dB
Output Return Loss, S22	12	dB
Output Power, Psat	35	dBm

TABLE IV THERMAL INFORMATION

PARAMETER	TEST	T _{сн}	R _{⊎JC}	T _M
	CONDITIONS	(°C)	(°C/W)	(HRS)
R _{eJC} Thermal Resistance (channel to backside of carrier)	Vd = 6 V Idq = 2 A Pdiss = 12 W	122.3	4.36	1.2E+7

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

 $\overline{}$

February 10, 2006

TGA4517

Measured Data

Bias Conditions: Vd =5-6 V, Idq = 2 A, Room Temp.

Bias Conditions: Vd =5-6 V, Idq = 2 A, Duty = 20%, Room Temp.

_

February 10, 2006

TGA4517

Measured Data

Bias Conditions: Vd =5-6 V, Idq = 2 A, Room Temp.

February 10, 2006

TGA4517

Measured Data

Drain Current vs. Drain Voltage, Duty = 20%, Room Temp.

February 10, 2006

TGA4517

Measured Data

Bias Conditions: Vd =5-6 V, Idq = 2 A, CW Power @ Pin = 22dBm, Room Temp.

Advance Product Information February 10, 2006

TGA4517

Mechanical Drawing

Units: Millimeters (inches)

Thickness: 0.050 (0.002) (reference only)

Chip edge to bond pad dimensions are shown to center of bond pad

Chip size tolerance: +/- 0.051 (0.002) RF Ground is backside of MMIC

(RF In) 0.125 x 0.200 (0.005 x 0.008) Bond pad # 1: Bond pad # 2, 18: 0.125 x 0.125 (0.005 x 0.005) (Vg1) Bond pad # 3, 17: (Vd1) 0.125 x 0.125 (0.005 x 0.005) Bond pad # 4, 16: 0.125 x 0.125 (0.005 x 0.005) (Vg2) Bond pad # 5, 15: (Vd2) 0.125 x 0.125 (0.005 x 0.005) Bond pad # 6, 14: (Vg3) 0.125 x 0.125 (0.005 x 0.005) Bond pad #7, 13: 0.125 x 0.125 (0.005 x 0.005) (Vg4) Bond pad # 8, 12: 0.125 x 0.125 (0.005 x 0.005) (Vd3) Bond pad # 9, 11: 0.125 x 0.125 (0.005 x 0.005) (Vd4) Bond pad # 10: (RF Out) 0.125 x 0.200 (0.005 x 0.008)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

_

Advance Product Information February 10, 2006 TGA4517

Chip Assembly Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

_

Advance Product Information February 10, 2006 TGA4517

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

 $\overline{}$