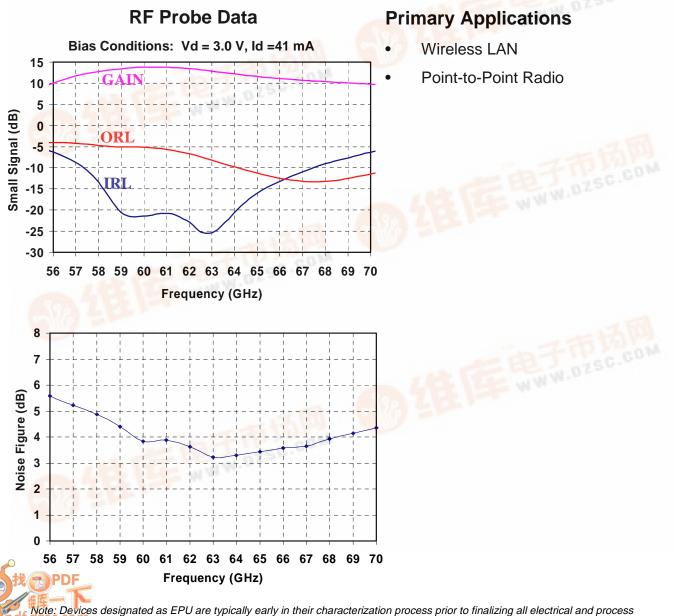


捷多邦,专业PCB打样工厂,24小时加急出货

Advance Product Information October 28, 2003


60GHz Low Noise Amplifier

TGA4600-EPU

Key Features

- Typical Frequency Range: 57 65 GHz
- 4 dB Nominal Noise Figure
- 13 dB Nominal Gain
- Bias 3.0 V, 41 mA
- 0.15 um 3MI pHEMT Technology
- Chip Dimensions 1.62 x 0.84 x 0.10 mm (0.064 x 0.033 x 0.004 in)

por operations of the second s

TABLE I MAXIMUM RATINGS <u>1</u>/

SYMBOL	PARAMETER	VALUE	NOTES	
Vd	Drain Voltage	5 V	<u>2/</u>	
Vg	Gate Voltage Range	-1 TO +0.5 V		
ld	Drain Current	200 mA	<u>2</u> / <u>3</u> /	
Ig	Gate Current	5 mA	<u>3</u> /	
P _{IN}	Input Continuous Wave Power	15 dBm		
P _D	Power Dissipation	0.39W	<u>2/ 4</u> /	
Т _{сн}	Operating Channel Temperature	150 °C	<u>5</u> / <u>6</u> /	
Τ _M	Mounting Temperature (30 Seconds)	320 ⁰ C		
T _{STG}	Storage Temperature	-65 to 150 ⁰ C		

1/ These ratings represent the maximum operable values for this device.

2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.

- 3/ Total current for the entire MMIC.
- When operated at this bias condition with a base plate temperature of 70°C, the median life is
 1.0E+6 hrs.
- 5/ Junction operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 6/ These ratings apply to each individual FET.

TABLE II DC PROBE TESTS (Ta = $25 \,^{\circ}$ C, Nominal)

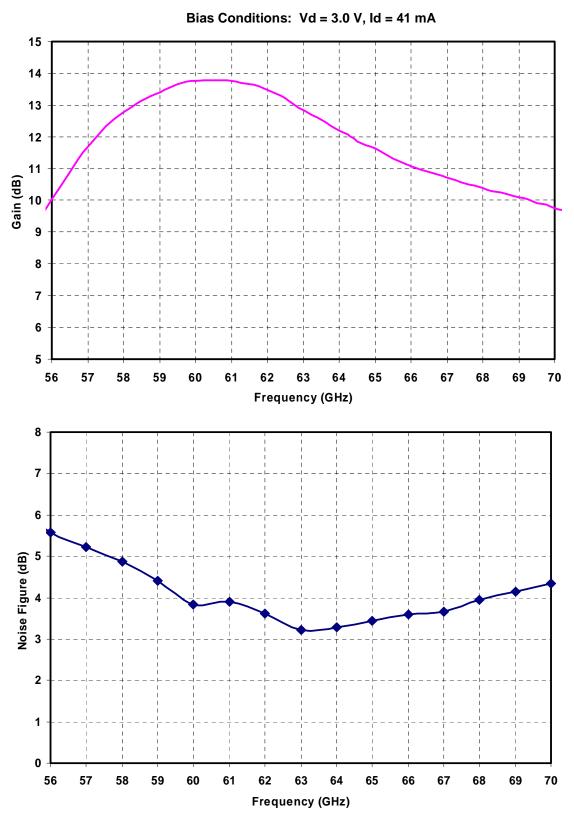
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
V _{BVGD, Q1-Q3}	Breakdown Voltage Gate-Source	-30		-5	V
V _{BVGS, Q3}	Breakdown Voltage Gate-Source	-30		-5	V
V _{P, Q1,2,3}	Pinch-off Voltage	-1.0		-0.1	V

Q1 is 100 um FET, Q2 is 100 um FET, Q3 is 210 um FET.

TABLE III ELECTRICAL CHARACTERISTICS

(Ta = 25 °C Nominal)

PARAMETER	TYPICAL	UNITS
Frequency Range	57 - 65	GHz
Drain Voltage, Vd	3.0	V
Drain Current, Id	41	
Gate Voltage, Vg	-0.5 - 0	V
Small Signal Gain, S21	13	dB
Input Return Loss, S11	20	dB
Output Return Loss, S22	6	dB
Noise Figure, NF	4	dB

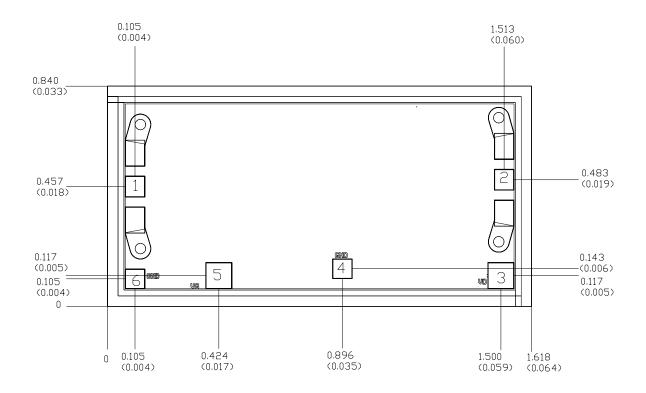

TABLE IV THERMAL INFORMATION

PARAMETER TEST CONDITIONS		Τ _{CH} R _{θJC} (^o C) (°C/W)		T _M (HRS)		
R _{0JC} Thermal Resistance (channel to Case)	Vd = 3 V Id = 41 mA Pdiss = 0.12 W	80	83	1.2 E+9		

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

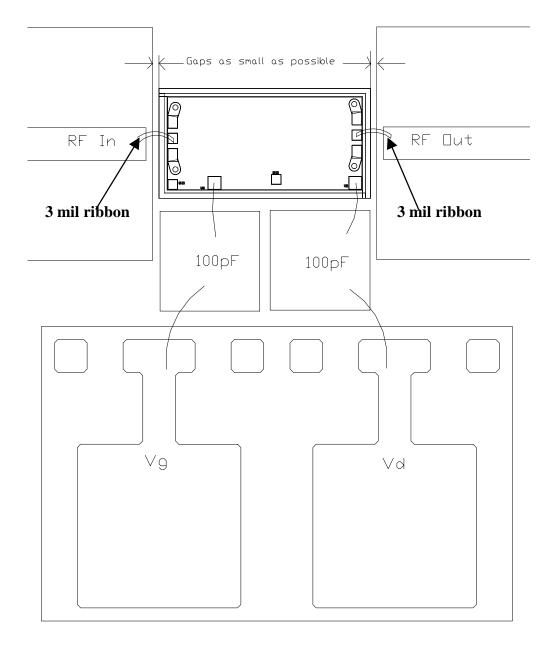
RF Probe Data

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice


RF Probe Data

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

Mechanical Drawing


Units: Millimeters (inches) Thickness: 0.050 (0.002) (reference only) Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002) RF Ground is backside of MMIC

Bond pad #1:	(RF In)	$0.075 \times$	0.080	(0.003	\times	0.003>
Bond pad #2:	(RF Out)	$0.075 \times$	0.080	(0.003	\times	0.003)
Bond pad #3:	(Vd)	$0.100 \times$				
Bond pad #4 & #6:	(GND, N/C)	$0.075 \times$	0.075	(0.003	\times	0.003>
Bond pad #5:	(Vg)	$0.100 \times$	0.100	<0.004	×	0.004)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Recommended Chip Assembly Diagram

Ribbons as short as possible

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300⁰C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200^oC.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.