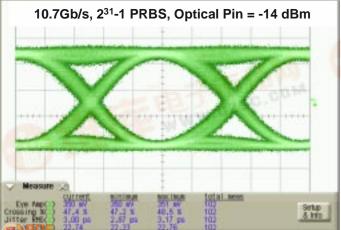

捷多邦,专业PCB打样工厂,24小时加急出货 Advance Product Information November 16, 2004


查询TGA4815-EPU供应商 TriQuint © SEMICONDUCTOR®

10Gb/s Differential TIA

Preliminary Measured Performance

TGA4815-EPU

Key Features and Performance

- 6500Ω Single-Ended Transimpedance
- >10GHz 3dB Bandwidth
- 1.7mA_{pp} Maximum Input Current
- 9pA/ √Hz Input Noise Current
- Adjustable Output Offset
- Rx Signal Indicator (RSSI)
- 0.15µm 3MI pHEMT Technology
- Bias Conditions: 3.3V, 80mA
- Chip dimensions: 1.78 x 0.96 x 0.1 mm (0.070 x 0.038 x 0.004 inches)

Primary Applications

OC-192/STM-64 Fiber Optic WWW.DZSC.COM Systems

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

TGA4815-EPU

TABLE I MAXIMUM RATINGS

Symbol	Parameter <u>1</u> /	Value	Notes
VPOS	Positive Supply Voltage	5.5 V	<u>2</u> /
IPOS	Positive Supply Current (Quiescent)	90 mA	<u>2</u> /
P _{IN}	Input Continuous Wave Power	14.5 dBm	<u>2</u> /
P _D	Power Dissipation	TBD	<u>2</u> /
T _{CH}	Operating Channel Temperature	150 °C	<u>3</u> / <u>4</u> /
T _M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ These ratings apply to each individual FET.
- <u>4/</u> Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

TGA4815-EPU

TABLE II RF CHARACTERIZATION TABLE ($T_A = 25^{\circ}$ C, Nominal) (VPOS = 3.3V, IPOS = 80mA ±5%) 1/

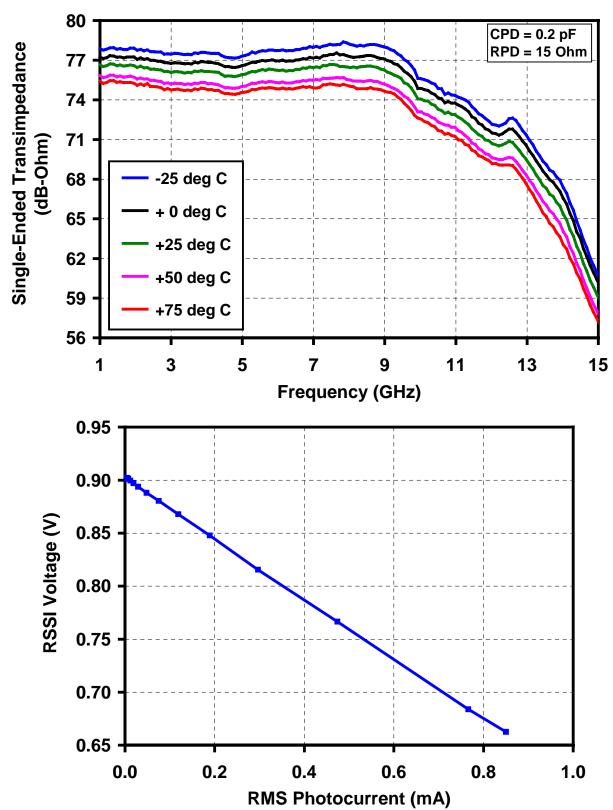
Parameter	Notes	Typical	Unit
Single-Ended Transimpedance (1GHz)		6500	Ω
3dB Transimpedance Bandwidth	<u>2</u> / <u>3</u> /	10	GHz
Low Frequency 3dB Cut-Off	<u>4</u> /	30	kHz
Transimpedance Ripple (1 to 8GHz)	<u>2</u> / <u>3</u> /	0.3	dBpp
Group Delay Variation (0.1 to 8GHz)	<u>2</u> / <u>3</u> /	±15	ps
Ave Eq. Noise Current (0.1 to 8GHz)	<u>2/</u> <u>3</u> /	9	pA/√Hz
Output Return Loss (0.1 to F3dB)	<u>2</u> / <u>3</u> /	12	dB
Input Overload Current		1.7	mApp
Input Sensitivity (BER = 10 ⁻¹²)		-20	dBm
Single-Ended Limited Output Voltage		600	mVpp

Note: Table II Lists the RF Characteristics of typical devices as determined by fixtured measurements.

- $\underline{1}$ / 50 Ω Single-Ended Output Impedance
- 2/ Photodiode Model: CPD = 0.2pF, RPD = 15Ω
- 3/ RF Interconnect Inductance: 0.42nH
- 4/ External Bypass Capacitors Required (see assembly drawing)

TABLE III THERMAL INFORMATION

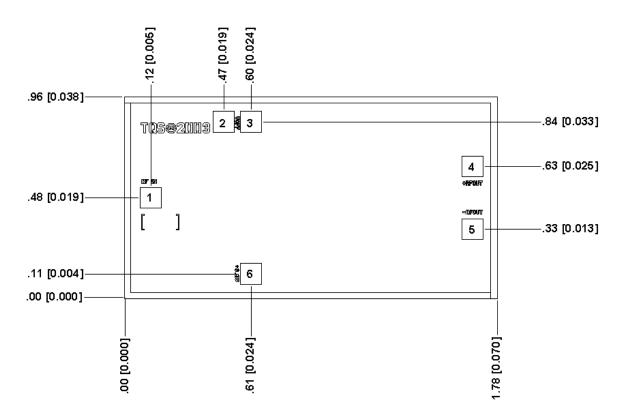
Parameter	Test Conditions	T _{CH} (°C)	R _{θJC} (°C/W)	T _M (HRS)
R _{θJC} Thermal Resistance (channel to backside of carrier)	$V^{+} = 3.3 \text{ V}$ $I^{+} = 80 \text{ mA}$ $P \text{diss} = 0.264 \text{ W}$	80	36.9	5.7 E+7


Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

TGA4815-EPU

Typical Fixtured Performance


Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

_

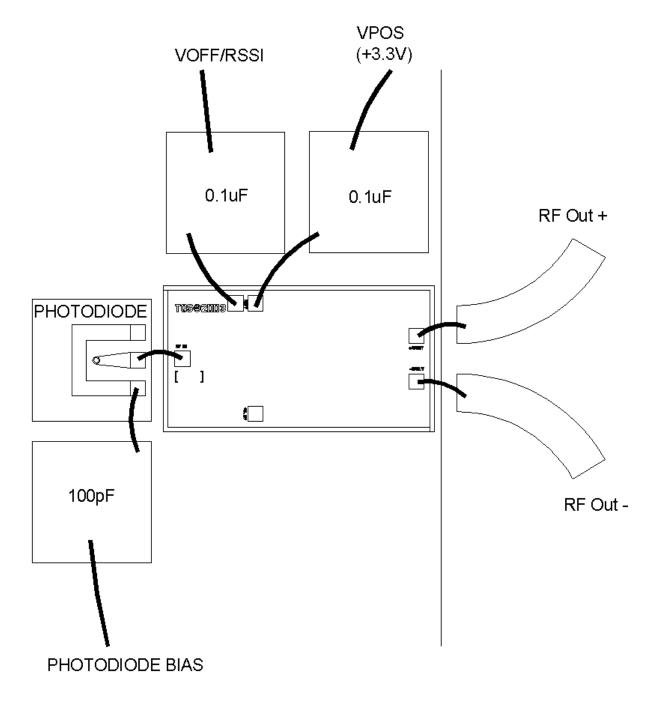
TGA4815-EPU

Mechanical Drawing

Units: millimeters [inches]

Thickness: 0.10 [0.004] (reference only)

Chip edge to bond pad dimensions are shown to center of bond pads.


Chip size tolerance: ±0.05 [0.002] RF ground through backside

Bond Pad #1	RF In	0.10 x 0.10	[0.004 x 0.004]
Bond Pad #2	VOFF/RSSI	0.10 x 0.10	[0.004 x 0.004]
Bond Pad #3	VPOS	0.10 x 0.10	[0.004 x 0.004]
Bond Pad #4	RF Out +	0.10 x 0.10	[0.004 x 0.004]
Bond Pad #5	RF Out -	0.10 x 0.10	[0.004 x 0.004]
Bond Pad #6	VPOS	0.10 x 0.10	[0.004 x 0.004]

Advance Product Information November 16, 2004 TGA4815-EPU

Chip Assembly & Bonding Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

_

Advance Product Information November 16, 2004 TGA4815-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C. (30 seconds maximum)
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.