SIEMENS

5－V Low－Drop Voltage Regulator
TLE 4261－2

Features

－High accuracy $5 \mathrm{~V} \pm 2 \%$
－Very low－drop voltage
－Very low quiescent current
－Low starting－current consumption
－Proof against reverse polarity
－Input voltage up to 42 V
－Overvoltage protection up to 65 V （ $\leq 400 \mathrm{~ms}$ ）
－Short－circuit－proof
－External setting of reset delay
－Integrated watchdog circuit
－Wide temperature range
－Overtemperature protection
－Suitable for automotive use
－EMC proofed（ $100 \mathrm{~V} / \mathrm{m}$ ）

Type	Ordering Code	Package
$\boldsymbol{\nabla}$ TLE 4261－2	Q67000－A9110	P－TO220－7－1
$\boldsymbol{\nabla}$ TLE 4261－2 G	Q67000－A9140	P－DSO－20－6 （SMD）
$\boldsymbol{T L E} 4261-2$ GL	Q67006－A9193	P－TO220－7－8 （SMD）

Please also refer to the new pin compatible device TLE 4271

P－TO220－7－1

P－TO220－7－8

Functional Description

TLE 4261－2 is a high accuracy 5－V low－drop voltage regulator in a P －TO220－7 or in a P － DSO package．The maximum input voltage is $42 \mathrm{~V}(65 \mathrm{~V} / \leq 400 \mathrm{~ms})$ ．The device can produce an output current of more than 500 mA ．It is short－circuit－proof and incorporates temperature protection that disables the circuit at impermissibly high temperatures．

Application Description

The IC regulates an input voltage V_{1} in the range $6 \mathrm{~V}<V_{1}<40 \mathrm{~V}$ to $V_{\text {Qrated }}=5.0 \mathrm{~V}$. A reset signal is generated for an output voltage V_{O} of $<4.75 \mathrm{~V}$. The reset delay can be set with an external capacitor. A connected microprocessor is monitored by the integrated watchdog circuit; if pulses are missing, the reset output is set low. The pulse repetition rate can be set within wide limits with the capacitor for reset delay. If this input is connected to a voltage of $>6 \mathrm{~V}$, the watchdog function is deactivated. The device also features an inhibit input, which is activated by a voltage of $>6 \mathrm{~V}$ and then works on this input through internal hysteresis up to approx. 3 V . A voltage of $<2 \mathrm{~V}$ on the inhibit input turns off the regulator, current drain then dropping to max. $50 \mu \mathrm{~A}$.

Design Notes for External Components

The input capacitor C_{1} causes a low-resistant powerline and limits the rise times of the input voltage. The IC is protected against rise times up to $100 \mathrm{~V} / \mu \mathrm{s}$. It is possible to damp the tuned circuit consisting of supply inductance and input capacitance with a resistor of approx. 1Ω in series to C_{1}.
The output capacitor maintains the stability of the regulating loop. Stability is guaranteed with a rating of $22 \mu \mathrm{~F}$ min. at an ESR of 3Ω max. in the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and controls the base of the series PNP transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the output voltage drops below 95.5% of its typical value for more than $2 \mu \mathrm{~s}$, a reset signal is triggered on pin 3 and an external capacitor discharged on pin 5 . The reset signal is not cancelled until the voltage on the capacitor has exceeded the upper switching threshold $V_{D T}$. A positive-edge-triggered watchdog circuit monitors the connected microprocessor and will likewise trigger a reset if pulses are missing. The IC can be disabled by a low level on the inhibit input and the current consumption drops to $<50 \mu \mathrm{~A}$.
The IC also incorporates a number of circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	V_{I}	Input voltage; block a capacitor directly to ground on the IC. The capacitor rating will depend on the vihicle electric system. Oscillation of the output voltage can be damped by a resistor of approx. 1Ω in series with the input capacitor.
2	INH	Inhibit; switches off the IC when low.
3	QRES	Reset output; open collector output controlled by the reset delay.
4	GND	Ground
5	DRES	Reset delay; wired to ground using a capacitor.
6	Watch	Watchdog; monitors the microprocessor when active.
7	V_{Q}	5-V output; block to ground using a capacitor of $\geq 22-\mu \mathrm{F}$. ESR is $\leq 3 \Omega$ in the operating temperature range.

TLE 4261-2 G

Pin No.	Symbol	Function
18	V_{I}	Input voltage; block a capacitor directly to ground on the IC. The capacitor rating will depend on the vihicle electric system. Oscillation of the output voltage can be damped by a resistor of approx. 1Ω in series with the input capacitor.
20	INH	Inhibit; switches off the IC when low.
3	QRES	Reset output; open collector output controlled by the reset delay.
$4-7$,	GND	Ground
$14-17$		DRES
9	Reset delay; wired to ground using a capacitor.	
11	Watch	Watchdog; monitors the microprocessor when active.
12	V_{Q}	$5-V$ output; block to ground using a capacitor of $\geq 22-\mu F$. ESR is $\leq 3 \Omega$ in the operating temperature range.
$1,2,8$,	N.C.	Not connected
10,13,		
19		

Block Diagram

SIEMENS

Absolute Maximum Ratings

$T_{\mathrm{J}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Input

Input voltage	V_{1}	-42	42	V	-
	V_{1}	-	65	V	$t \leq 400 \mathrm{~ms}$
Input current	I_{1}	-	1.6	A	-

Inhibit

Voltage	V_{2}	-0.3	42	V	-
Current	I_{2}	-	5	mA	-

Reset Output

Voltage	V_{R}	-0.3	42	V	-
Current	I_{R}	-	-	-	internally limited

Ground

Current	I_{GND}	-	0.5	A	-

Reset Delay

Voltage	V_{D}	-0.3	42	V	-
Current	I_{D}	-	-	-	internally limited

Output

Differential voltage	$V_{1}-V_{\mathrm{Q}}$	-5.25	V_{I}	V	-
Current	I_{Q}	-	1.4	A	-

Absolute Maximum Ratings (cont'd)
$T_{\mathrm{J}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Temperature

Junction temperature	T_{j}	-	150	${ }^{\circ} \mathrm{C}$	-
Storage temperature	$T_{\text {stg }}$	-50	150	${ }^{\circ} \mathrm{C}$	-

Operating Range

Input voltage	$V_{1}{ }^{1)}$	-	32	V	-
Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-

Thermal Resistance

System-air	$R_{\text {thSA }}$	-	$65(70)^{2}$	K/W	-
System-case	$R_{\text {thSC }}$	-	$3(15)^{2)}$	K/W	-

1) see diagram
2) Figures in parenthesis refer to TLE 4261-2 G.

Characteristics

$V_{\mathrm{I}}=13.5 \mathrm{~V} ; T_{\mathrm{j}}=25^{\circ} \mathrm{C} ; V_{5} \geq 6 \mathrm{~V}$ (unless otherwise specified)

| Parameter | Symbol | Limit Values | | | Unit | Test Condition |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | min. | typ. | max. | | |

Normal Operation

Output voltage	V_{Q}	4.9	5.0	5.1	V	$I_{\mathrm{Q}}=100 \mathrm{~mA}$ $-40^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$
Output current	I_{Q}	-	-	50	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq V_{1} \leq 2 \mathrm{~V} ; V_{2}=V_{;} ;$ $-40^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 125{ }^{\circ} \mathrm{C}$
Output current	I_{Q}	500	1000	-	mA	$V_{\mathrm{l}}=17 \mathrm{~V}$ to 28 V

Characteristics (cont'd)
$V_{\mathrm{I}}=13.5 \mathrm{~V} ; T_{\mathrm{j}}=25^{\circ} \mathrm{C} ; V_{5} \geq 6 \mathrm{~V}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Inhibit Operation

Current consumption	I_{1}	-	-	50	$\mu \mathrm{~A}$	$V_{2}=2 \mathrm{~V} ; I_{\mathrm{Q}}=0$
Current consumption	I_{2}	-	-	100	$\mu \mathrm{~A}$	$V_{2}=6 \mathrm{~V}$
Switching threshold for inhibit	V_{2}	5.0	5.5	6.0	V	IC turned ON
Switching threshold for inhibit	V_{2}	2.0	2.7	3.7	V	IC turned OFF

Reset Generator

Switching threshold	V_{RT}	94	95.5	97	$\%$	in $\%$ of $V_{\mathrm{Q}} ;$ $I_{\mathrm{Q}}>500 \mathrm{~mA} ; V_{\mathrm{l}}=6 \mathrm{~V}$
Saturation voltage, reset output	V_{R}	-	0.25	0.40	V	$I_{\mathrm{R}}=1 \mathrm{~mA}$
Reverse current	I_{R}	-	-	1	$\mu \mathrm{~A}$	$V_{\mathrm{R}}=5 \mathrm{~V}$
Charge current	I_{D}	18.75	25	31.25	$\mu \mathrm{~A}$	$V_{\mathrm{C}}=1.5 \mathrm{~V}$
Switching threshold	V_{ST}	0.9	1	1.1	V	-
Delay switching threshold	V_{DT}	2.25	2.50	2.75	V	-
Saturation voltage, delay output	V_{C}	-	-	100	mV	$V_{\mathrm{I}}=4.5 \mathrm{~V}$ and I_{d}
Delay time	t_{D}	-	10	-	ms	$C_{\mathrm{D}}=100 \mathrm{nF}$
Delay time	t_{t}	-	2	-	$\mu \mathrm{s}$	-

Characteristics (cont'd)
$V_{\mathrm{I}}=13.5 \mathrm{~V} ; T_{\mathrm{j}}=25^{\circ} \mathrm{C} ; V_{5} \geq 6 \mathrm{~V}$ (unless otherwise specified)

| Parameter | Symbol | Limit Values | | Unit | Test Condition | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | min. | typ. | max. | | |

Watchdog

Turn-OFF voltage	V_{W}	5.2	5.6	6.0	V	-
Discharge current	I_{CD}	5.6	7.5	9.4	$\mu \mathrm{~A}$	$V_{\mathrm{C}}=1.5 \mathrm{~V}$
Switching voltage	V_{CD}	2.95	3.05	3.15	V	-
Pulse intervall	T_{W}	-	35	-	ms	$C_{\mathrm{D}}=100 \mathrm{nF}$

General Data

Turn-Off voltage	$V_{\text {IOFF }}$	41	43	45	V	$I_{\mathrm{Q}}<1 \mathrm{~mA}$
Turn-Off hysteresis	ΔV_{l}	-	6.5	-	V	-
Leakage current	I_{QS}	-	-	50	$\mu \mathrm{~A}$	$V_{\mathrm{Q}}=0 \mathrm{~V} ; V_{1}=45 \mathrm{~V}$
Reverse output current	I_{QR}	-	-	1.5	mA	$V_{\mathrm{Q}}=5 \mathrm{~V} ; V_{\text {I }}$ and V_{2} open

Application Circuit

Test Circuit

Time Responce in Watchdog Condition

Timing with Watchdog OFF

Drop Voltage versus Output Current

Current Consumption versus Input Voltage

Output Voltage versus Input Voltage

Current Consumption versus Output Current

Charge Current I_{D} and Discharge Current $I_{C D}$ versus Temperature

Pulse Interval T_{W} versus Temperature

Switching Voltage $V_{\text {CD }}$ and $V_{\text {ST }}$ versus Temperature

Output Voltage versus Temperature

Current Consumption of Inhibit at the Switching Point versus Temperature

Input Step Responce

Output Current versus Input Voltage

Load Step Responce

Package Outlines

P-TO220-7-1

(Plastic Transistor Single Outline)

1) $0^{0.75}-0.15$ at dam bar (max 1.8 from body)
2) $0.75_{-0.15}$ im Dichtstegbereich (max 1.8 vom Körper) GPT05108

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

P-TO220-7-8

(Plastic Transistor Single Outline)

1) shear and punch direction burr free surface

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our
Data Book "Package Information".

P-DSO-20-6

(Plastic Dual Small Outline)

Index Marking

1) Does not include plastic or metal protrusions of 0.15 max per side
2) Does not include dambar protrusion of 0.05 max per side

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

