
SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

- Direct Upgrades to TL07x and TL08x BiFET Operational Amplifiers
- Faster Slew Rate (20 V/μs Typ) Without Increased Power Consumption
- On-Chip Offset-Voltage Trimming for Improved DC Performance and Precision Grades Are Available (1.5 mV, TL051A)

description/ordering information

The TL05x series of JFET-input operational amplifiers offers improved dc and ac characteristics over the TL07x and TL08x families of BiFET operational amplifiers. On-chip Zener trimming of offset voltage yields precision grades as low as 1.5 mV (TL051A) for greater accuracy in dc-coupled applications. Texas Instruments improved BiFET process and optimized designs also yield improved bandwidth and slew rate without increased power consumption. The TL05x devices are pin-compatible with the TL07x and TL08x and can be used to upgrade existing circuits or for optimal performance in new designs.

BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption.

The TL05x family was designed to offer higher precision and better ac response than the TL08x, with the low noise floor of the TL07x. Designers requiring significantly faster ac response or ensured lower noise should consider the Excalibur TLE208x and TLE207x families of BiFET operational amplifiers.

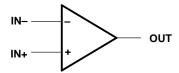
Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required, and loads should be terminated to a virtual-ground node at mid-supply. Texas Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single supplies.

The TL05x are fully specified at ± 15 V and ± 5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC-prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to the slew rate and bandwidth requirements, and also the output loading.

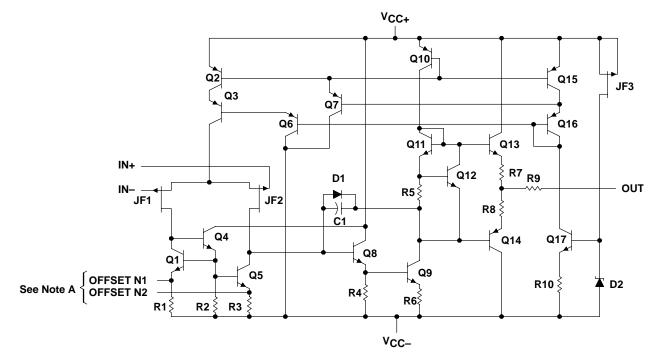
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS178A – FEBRUARY 1997 - REVISED FEBRUARY 2003

ORDERING INFORMATION


т _А	V _{IO} max AT 25°C	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		PDIP (P)	Tube of 50	TL051ACP	TL051ACP
		PDIF (P)	Tube of 50	TL052ACP	TL052ACP
	800 μV		Tube of 75	TL051ACD	051AC
		SOIC (D)	Tube of 75	TL052ACD	05040
			Reel of 2500	TL052ACDR	052AC
		DDID (D)	Tub a of 50	TL051CP	TL051CP
		PDIP (P)	Tube of 50	TL052CP	TL052CP
		PDIP (N)	Tube of 25	TL054ACN	TL054ACN
			Tube of 75	TL051CD	TLOS4C
0°C to 70°C			Reel of 2500	TL051CDR	TL051C
0°C to 70°C	1.5 mV	SOIC (D)	Tube of 75	TL052CD	TL052C
		301C (D)	Reel of 2500	TL052CDR	11.0520
			Tube of 50	TL054ACD	TL054C
			Reel of 2500	TL054ACDR	110540
		SOP (PS)	Reel of 2000	TL052CPSR	TL052
		SSOP (DB)	Reel of 2000	TL054CDBR	TL054
		PDIP (N)	Tube of 25	TL054CN	TL054CN
	4 mV	SOIC (D)	Tube of 50	TL054CD	TL054C
	4 1117	SOIC (D)	Reel of 2500	TL054CDR	110540
		SOP (NS)	Reel of 2000	TL054CNSR	TL054
		PDIP (P)	Tube of 50	TL052AIP	TL052AI
	800 μV	SOIC (D)	Tube of 75	TL052AID	05241
		SOIC (D)	Reel of 2500	TL052AIDR	052AI
		PDIP (N)	Tube of 25	TL054AIN	TL054AIN
		DDID (D)	Tube of 50	TL051IP	TL051IP
		PDIP (P)	Tube 01 50	TL052IP	TL052IP
–40°C to 85°C	1.5 mV		Tube of 75	TL051ID	TL051I
-40°C 10 65°C	VIII 6.1		Tube of 75	TL052ID	TL052I
		SOIC (D)	Reel of 2500	TL052IDR	1 LU321
			Tube of 50	TL054AID	TL054AI
			Reel of 2500	TL054AIDR	I LUD4AI
		PDIP (N)	Tube of 25	TL054IN	TL054IN
	4 mV	SOIC (D)	Tube of 50	TL054ID	TLOSAL
		SOIC (D)	Reel of 2500	TL054IDR	TL054I

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

symbol (each amplifier)

equivalent schematic (each amplifier)

NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL051x.

ACTUA	ACTUAL DEVICE COMPONENT COUNT												
COMPONENT TL051 TL052 TL054													
Transistors	20	34	62										
Resistors	10	19	37										
Diodes	2	3	5										
Capacitors	1	2	4										

[†] These figures include all four amplifiers and all ESD, bias, and trim circuitry.

TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)		18 V
Supply voltage, V _{CC} (see Note 1)		
Differential input voltage (see Note 2)		±30 V
Input voltage range, V _I (any input, see Notes 1 and 3)		±15 V
Input current, I _I (each input)		±1 mA
Output current, I _O (each output)		
Total current into V _{CC+}		
Total current out of V _{CC}		
Duration of short-circuit current at (or below) 25°C		Unlimited
Package thermal impedance, θ _{JA} (see Notes 4 and 5):	D package (8 pin)	97°C/W
,	D package (14 pin)	86°C/W
	DB package (14 pin)	96°C/W
	N package (14 pin)	80°C/W
	NS package (14 pin)	76°C/W
		85°C/W
	PS package (8 pin)	95°C/W
Operating virtual junction temperature, T _J		150°C
Lead temperature 1,6 mm (1/16inch) from case for 10	seconds	260°C
Storage temperature range		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			C SU	FFIX	I SUF	FIX	UNIT
			MIN	MAX	MIN	MAX	UNIT
V _{CC±}	Supply voltage		±5	±15	±5	±15	V
1/1.5	Common mode input voltage	$V_{CC\pm} = \pm 5 \text{ V}$	-1	4	-1	4	W
VIC	Common-mode input voltage	$V_{CC\pm} = \pm 15 \text{ V}$	-11	11	-11	11	V
TA	Operating free-air temperature		0	70	-40	85	°C

TL051C and TL051AC electrical characteristics at specified free-air temperature

						Т	L051C,	ΓL051Α(
	PARAMETER	TEST CO	NDITIONS	T _A †	٧c	c± = ±5	٧	٧c	C± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	1
			TI 0540	25°C		0.75	3.5		0.59	1.5	
	hand offer to alterna		TL051C	Full range			4.5			2.5	
VIO	Input offset voltage		TLOGAAC	25°C		0.55	2.8		0.35	0.8	mV
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TL051AC	Full range			3.8			1.8	1
	Temperature coefficient	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$	TL051C	25°C to 70°C		8			8		\u00
$\alpha_{V_{IO}}$	of input offset voltage‡		TL051AC	25°C to 70°C		8			8	25	μV/°C
	Input offset-voltage long-term drift§	1		25°C		0.04			0.04		μV/mo
		$V_{O} = 0, \qquad V_{IC} = 0,$		25°C		4	100		5	100	pА
ΙO	Input offset current	See Figure		70°C		0.02	1		0.025	1	nA
		V _O = 0,	V _{IC} = 0,	25°C		20	200		30	200	pА
ΙΒ	Input bias current	See Figure		70°C		0.15	4		0.2	4	nA
	Common-mode input			25°C	–1 to 4	-2.3 to 5.6		–11 to 11	-12.3 to 15.6		.,
VICR	voltage range			Full range	-1 to 4			–11 to 11			V
		R _L = 10 kΩ		25°C	3	4.2		13	13.9		
\/	Maximum positive peak	KL = 10 K22		Full range	3			13			V
V _{OM+}	output voltage swing	Pr = 2 kO		25°C	2.5	3.8		11.5	12.7]
		$R_L = 2 k\Omega$		Full range	2.5			11.5			
		R _L = 10 kΩ		25°C	-2.5	-3.5		-12	-13.2		
\/ 0. 4	Maximum negative peak	KL = 10 K22		Full range	-2.5			-12			V
VOM-	output voltage swing	$R_L = 2 k\Omega$		25°C	-2.3	-3.2		-11	-12		ľ
		KL = 2 KS2		Full range	-2.3			-11			
	Laura simual diffanantial			25°C	25	59		50	105		
AVD	Large-signal differential voltage amplification¶	$R_L = 2 k\Omega$		0°C	30	65		60	129		V/mV
	voltago ampimoation:			70°C	20	46		30	85		
rį	Input resistance			25°C		1012			1012		Ω
cį	Input capacitance			25°C		10			12		pF
	0	., .,		25°C	65	85		75	93		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ $V_{O} = 0$,	min, $R_S = 50 \Omega$	0°C	65	84		75	92		dB
			5 - 00 22	70°C	65	84		75	91		
	Cumply colleges as as a start as			25°C	75	99		75	99		
ksvr	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{O} = 0$,	$R_S = 50 \Omega$	0°C	75	98		75	98		dB
	10110 (4 v C C ± / 4 v (C)			70°C	75	97		75	97		
				25°C		2.6	3.2		2.7	3.2	
ICC	Supply current	$V_{O} = 0$,	No load	0°C		2.7	3.2		2.8	3.2	mA
				70°C		2.6	3.2		2.7	3.2]

[†]Full range is 0°C to 70°C.

[‡] This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

[§] Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$, extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation, and assuming an activation energy of 0.96 eV. ¶ For $V_{CC\pm} = \pm 5$ V, $V_{C\pm} = \pm 15$ V.

TL05x, TL05xA **ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS**

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL051C and TL051AC operating characteristics at specified free-air temperature

						T	L051C, 1	L051AC	;		
	PARAMETER	TEST CO	NDITIONS	T _A †	٧c	C± = ±5	٧	۷C)± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
	Desitive elements			25°C		16		13	20		
SR+	Positive slew rate at unity gain [‡]	$R_L = 2 k\Omega$,	C _L = 100 pF,	Full range		16.4		11	22.6		\//vo
	N	See Figure 1	_	25°C		15		13	18		V/μs
SR-	Negative slew rate at unity gain [‡]					16		11	19.3		
				25°C		55			56		
t _r	Rise time					54			55		
						63			63		ns
		$V_{I(PP)} = \pm 10 \text{ n}$	= ±10 mV,			55			57] 115
t _f	Fall time	$R_L = 2 k\Omega$, $C_L = 100 pF$,	2 kΩ, 100 pF			54			56		
		See Figures 1	See Figures 1 and 2			62			64		
				25°C		24			19		
	Overshoot factor			0°C		24			19		%
				70°C		24			19		
V _n	Equivalent input noise		f = 10 Hz	25°C		75			75		nV/√ Hz
٧n	voltage§	$R_S = 20 \Omega$,	f = 1 kHz	25°C		18			18	30	IIV/∀⊓Z
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√ Hz
THD	Total harmonic distortion¶	$R_S = 1 \text{ k}\Omega$, f = 1 kHz	$R_L = 2 k\Omega$,	25°C		0.003			0.003		%
				25°C		3			3.1		
В1	Unity-gain bandwidth	$V_{ } = 10 \text{ mV},$ $C_{ } = 25 \text{ pF},$	$R_L = 2 kΩ$, See Figure 4	0°C		3.2			3.3		MHz
		OL = 25 μr,	See Figure 4	70°C		2.7			2.8		
	Dhara a sanda at sad	V 40 **V	D 010	25°C		59			62		
φm		$V_I = 10 \text{ mV}, \qquad R_L = 2 \text{ k}\Omega,$ $C_L = 25 \text{ pF}, \qquad \text{See Figure 4}$	0°C		58			62		deg	
	a	CL = 25 pF, See Figu	CL = 25 pr, See Figure 4	70°C		59			62		1

[†] Full range is 0°C to 70°C.

[‡] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V. § This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

[¶] For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.

TL051I and TL051AI electrical characteristics at specified free-air temperature

	TL051I, TL051AI										
	PARAMETER	TEST CON	DITIONS	T _A †	٧c	c± = ±5	٧	٧c	C± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 0541	25°C		0.75	3.5		0.59	1.5	
V	land affect wells as		TL0511	Full range		-	5.3		-	3.3	
VIO	Input offset voltage		TI OF A A I	25°C		0.55	2.8		0.35	0.8	mV
		\\ 0	TL051AI	Full range			4.6			2.6	1
	Temperature coefficient of	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$	TL051I	25°C to 85°C		7			8		\u00
$\alpha_{\rm V_{IO}}$	input offset voltage‡	11.5 - 00 22	TL051AI	25°C to 85°C		8			8	25	μV/°C
	Input offset-voltage long-term drift§			25°C		0.04			0.04		μV/mo
		V _O = 0,	V _{IC} = 0,	25°C		4	100		5	100	pА
ΙO	Input offset current	See Figure 5	10	85°C		0.06	10		0.07	10	nA
		V _O = 0,	V _{IC} = 0,	25°C		20	200		30	200	pА
lВ	Input bias current	See Figure 5		85°C		0.6	20		0.7	20	nA
					-1	-2.3		-11	-12.3		
				25°C	to	to		to	to		
VICR	Common-mode input				4	5.6		11	15.6		V
TICK	voltage range				-1			-11			ľ
				Full range	to 4			to 11			
		+		25°C	3	4.2		13	13.9		
	Maximum positive peak	$R_L = 10 \text{ k}\Omega$		Full range	3	4.2		13	13.9		ł
V _{OM} +	output voltage swing			25°C	2.5	3.8		11.5	12.7		٧
	carpar remage enting	$R_L = 2 k\Omega$		Full range	2.5	3.0		11.5	12.7		ł
		+		25°C	-2.5	-3.5		-12	-13.2		
	Maximum nagativa nagle	$R_L = 10 \text{ k}\Omega$		Full range	-2.5 -2.5	-5.5		-12	-13.2		ł
Vom –	Maximum negative peak output voltage swing	-		25°C	-2.3	-3.2		-11	-12		V
	carpar remage enting	$R_L = 2 k\Omega$		Full range	-2.3	-5.2		-11	-12		ł
		+		25°C	25	59		50	105		
۸. ه	Large-signal differential	R _L = 2 kΩ		_40°C	30	74		60	145		V/mV
AVD	voltage amplification \P	KL = 2 K32		85°C	20	43		30	76		V/111V
	Innut registence	+			20	1012		30	1012		
r _i	Input resistance	+		25°C							Ω
ci	Input capacitance	+		25°C	05	10		75	12		pF
CMDD	Common-mode	VIC = VICRm	nin,	25°C	65 65	85		75 75	93		410
CMRR	rejection ratio	$V_O = 0$, $R_S = 50 \Omega$		-40°C	65 65	83		75 75	90		dB
		1.5 - 50 32		85°C	65 75	84		75	93		
la a co	Supply-voltage rejection	$V_{O} = 0$,		25°C	75 75	99		75	99		
ksvr	ratio (ΔV _{CC±} /ΔV _{IO})	$R_S = 50 \Omega$		-40°C	75 75	98		75	98		dB
				85°C	75	99		75	99	0.0	
],, ,		25°C		2.6	3.2		2.7	3.2	
ICC	Supply current	$V_O = 0$,	No load	-40°C		2.4	3.2		2.6	3.2	mA
				85°C		2.5	3.2		2.6	3.2	

[†] Full range is -40°C to 85°C

[‡] This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

[§] Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$, extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation, and assuming an activation energy of 0.96 eV. ¶ For $V_{CC\pm} = \pm 5$ V, $V_{C\pm} = \pm 15$ V, $V_{C\pm} = 15$ V, $V_$

TL05x, TL05xA **ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS**

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL051I and TL051AI operating characteristics at specified free-air temperature

THD Total harmonic distortion \P RS = 1 k Ω , f = 2 k Ω , f = 1 kHz								TL051I, 1	L051AI			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		PARAMETER	TEST CO	NDITIONS	T _A †	٧c	c± = ±5	V	۷C	C± = ±15	5 V	UNIT
SR+						MIN	TYP	MAX	MIN	TYP	MAX	
SR+ at unity gain Tell R _L = 2 kΩ See Figure See Figure		Docitive eleverate			25°C		16		13	20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR+		$R_1 = 2 k\Omega$	$C_{I} = 100 \text{ pF},$	1				11			\//
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N	See Figure 1	_	25°C		15		13	18		V/μS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR-			_					11			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							55			56		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _r	Rise time					52			53		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					85°C		64			65		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{I(PP)} = \pm 10 \text{ n}$	nV,	25°C		55			57		115
	t _f	Fall time	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	kΩ, 00 pF			51			53		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							64			65		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		25°C		24			19		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Overshoot factor			–40°C		24			19		%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					85°C		24			19		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V			f = 10 Hz	25°C		75			75		n\//s/ Uz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٧n	voltage§		f = 1 kHz	25°C		18			18	30	IIV/∀⊓Z
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{N(PP)}		See Figure 3		25°C		4			4		μV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	In		f = 1 kHz		25°C		0.01			0.01		pA/√ Hz
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	THD	Total harmonic distortion¶		$R_L = 2 k\Omega$,	25°C		0.003			0.003		%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					25°C		3			3.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В1	Unity-gain bandwidth			-40°C		3.5			3.6		MHz
Phase margin at unity $V_{\parallel}=10$ mV, $R_{\perp}=2$ k Ω , $C_{\parallel}=25$ pF, See Figure 4 -40° C 58 61 deg			ο <u>Γ</u> = 25 μι,	See Figure 4	85°C		2.6			2.7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Discourant and the state of the)/ 40 m)/	D 010	25°C		59			62		
	φm			–40°C		58			61		deg	
		g 1	J_ = 20 pi ,		85°C		59			62		

[†] Full range is -40°C to 85°C.

[‡] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V. § This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

[¶] For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.

TL052C and TL052AC electrical characteristics at specified free-air temperature

						Т	L052C, 1	L052AC	;		
	PARAMETER	TEST CON	DITIONS	T _A †	٧c	C± = ±5	V	٧c	C± = ±15	i V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TL052C	25°C		0.73	3.5		0.65	1.5	
V	Input offset voltage		1L052C	Full range			4.5			2.5	mV
VIO	input onset voltage	l., -	TL052AC	25°C		0.51	2.8		0.4	0.8	IIIV
		$V_{O} = 0,$ $V_{IC} = 0,$	TLUSZAC	Full range			3.8			1.8	
a	Temperature coefficient	$R_S = 50 \Omega$	TL052C	25°C to 70°C		8			8		μV/°C
$\alpha_{V_{IO}}$	of input offset voltage‡		TL052AC	25°C to 70°C		8			6	25	μν/ С
	Input offset-voltage long-term drift§	$V_O = 0$, $R_S = 50 \Omega$	V _{IC} = 0,	25°C		0.04			0.04		μV/mo
li o	Input offset current	$V_0 = 0$,	V _{IC} = 0,	25°C		4	100		5	100	pA
liO	Input offset current	See Figure 5	νIC = 0,	70°C		0.02	1		0.025	1	nA
lun.	Input bias current	$V_0 = 0$,	V _{IC} = 0,	25°C		20	200		30	200	pA
IВ	input bias current	See Figure 5	νIC = 0,	70°C		0.15	4		0.2	4	nA
V	Common-mode input			25°C	–1 to 4	–2.3 to 5.6		–11 to 11	-12.3 to 15.6		.,
VICR	voltage range			Full range	-1 to 4			–11 to 11			V
		D: 401:0		25°C	3	4.2		13	13.9		
\/	Maximum positive peak	$R_L = 10 \text{ k}\Omega$		Full range	3			13			V
V _{OM+}	output voltage swing	B 2 kO		25°C	2.5	3.8		11.5	12.7		V
		$R_L = 2 k\Omega$		Full range	2.5			11.5			
		R _I = 10 kΩ		25°C	-2.5	-3.5		-12	-13.2		
V _{OM} _	Maximum negative peak	K_ = 10 K22		Full range	-2.5			-12			V
VOIM-	output voltage swing	R _L = 2 kΩ		25°C	-2.3	-3.2		-11	-12		v
		IV 2 N32		Full range	-2.3			-11			
	Laura simal effects of			25°C	25	59		50	105		
A_{VD}	Large-signal differential voltage amplification¶	$R_L = 2 k\Omega$		0°C	30	65		60	129		V/mV
				70°C	20	46		30	85		
rį	Input resistance			25°C		10 ¹²			1012		Ω
c _i	Input capacitance			25°C		10			12		pF
	Common-mode	\\\\ - \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		25°C	65	85		75	93		
CMRR	rejection ratio	$V_{IC} = V_{ICR}min,$ $V_{O} = 0,$	$R_S = 50 \Omega$	0°C	65	84		75	92		dB
	·			70°C	65	84		75	91		

[†]Full range is 0°C to 70°C.

[‡] This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

[§] Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$, extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation, and assuming an activation energy of 0.96 eV. ¶ For $V_{CC\pm} = \pm 5$ V, $V_{CC\pm} = \pm 15$ V, $V_{CC\pm} = 15$ V, $V_{CC\pm} =$

TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL052C and TL052AC electrical characteristics at specified free-air temperature (continued)

						Т	L052C, 1	ΓL052AC							
	PARAMETER		TEST CONDITIONS		TEST CONDITIONS		TEST CONDITIONS		٧c	C± = ±5	٧	٧cc) <u>+</u> = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX					
				25°C	75	99		75	99						
ksvr	Supply-voltage rejection ratio ($\Delta V_{CC+}/\Delta V_{IO}$)	$V_{O} = 0$,	$R_S = 50 \Omega$	0°C	75	98		75	98		dB				
	10110 (AVCO±/AVIO)			70°C	75	97		75	97						
				25°C		4.6	5.6		4.8	5.6					
ICC	Supply current (two amplifiers)	$V_{O} = 0$,	No load	0°C		4.7	6.4		4.8	6.4	mA				
	(Wo ampiniors)			70°C		4.4	6.4		4.6	6.4					
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100$		25°C		120			120	, and the second	dB				

TL052C and TL052AC operating characteristics at specified free-air temperature

						Т	L052C, 1	ΓL052AC	;						
	PARAMETER	TEST CO	NDITIONS	T _A †	٧c	C± = ±5	٧	٧c	C± = ±15	V	UNIT				
					MIN	TYP	MAX	MIN	TYP	MAX					
SR+	Slew rate at unity gain			25°C		17.8		9	20.7						
3K+	Siew rate at unity gain	$R_L = 2 k\Omega$,	$C_L = 100 pF$,	Full range				8			V/μs				
SR-	Negative slew rate	See Figure 1		25°C		15.4		9	17.8		ν/μς				
5K-	at unity gain [‡]			Full range				8							
				25°C		55			56						
t _r	Rise time			0°C		54			55						
				70°C		63			63		ns				
	V _I (PP) = 1		mV,	25°C		55			57		115				
t _f	Fall time	$R_L = 2 k\Omega,$ $C_L = 100 pF,$		0°C		54			56						
		See Figures 1	and 2	70°C		62			64						
				25°C		24			19						
	Overshoot factor			0°C		24			19		%				
			_	70°C		24			19						
Vn	Equivalent input noise		f = 10 Hz	25°C		71			71		nV/√ Hz				
٧n	voltage§	$R_S = 20 \Omega$,	f = 1 kHz	25°C		19			19	30	IIV/√⊓Z				
V _{N(PP)}	Peak-to-peak equivalent input noise current	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV				
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√ Hz				
THD	Total harmonic distortion¶	$R_S = 1 \text{ k}\Omega,$ f = 1 kHz	$R_L = 2 k\Omega$,	25°C		0.003			0.003		%				
				25°C		3			3						
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$ $C_{I} = 25 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 4	0°C		3.2			3.2		MHz				
	OL - 20 pi,	Coo i iguie 4	70°C		2.6			2.7		1					
	Dhana manala at male	1/ 40 1/	D OFO	25°C		60			63						
φm		rnase margin at unity $V_{\parallel} = 10 \text{ mV}$, $V_{\parallel} = 2 \text{ k}\Omega$, valin $V_{\parallel} = 25 \text{ pF}$. See Figure 4	Phase margin at unity $V_1 = 10 \text{ mV}$, $R_L = 2 \text{ k}\Omega$, gain $C_L = 25 \text{ pF}$, See Figure 4 0°C	$V_I = 10 \text{ mV}, R_L$ $C_L = 25 \text{ pF}, See$	$V_{\parallel} = 10 \text{ mV}, R_{\perp} = 2 \text{ k}\Omega,$	', $R_L = 2 k\Omega$, See Figure 4	mV, $R_L = 2 k\Omega$,	0°C		59			63		deg
	3~	$C_L = 25 \text{ pF}, S$	-, See Figure 4	70°C		60		63		<u> </u>					

[†] Full range is 0°C to 70°C.

[¶] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{O(RMS)} = 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{O(RMS)} = 6 \text{ V}$.

[‡] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$.

[§] This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

TL052I and TL052AI electrical characteristics at specified free-air temperature

						7	ΓL052I, 1	L052AI			
	PARAMETER	TEST CON	IDITIONS	T _A †	٧c	C± = ±5	v	٧c	C± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
				25°C		0.73	3.5	-	0.65	1.5	
 			TL052I	Full range	-		5.3			3.3	ν,
VIO	Input offset voltage	l	TLOSOAL	25°C		0.51	2.8		0.4	0.8	mV
		$V_{O} = 0,$ $V_{IC} = 0,$	TL052AI	Full range			4.6			2.6	
	T	$R_S = 50 \Omega$	TL052I	25°C to 85°C		7			6		แV/°C
$\alpha_{V_{IO}}$	Temperature coefficient‡		TL052AI	25°C to 85°C		6			6	25	μν/ С
	Input offset-voltage long-term drift§	$V_O = 0$, $R_S = 50 \Omega$	V _{IC} = 0,	25°C		0.04			0.04		μV/mo
lia	Input offset surrent	$V_{O} = 0$,	V _{IC} = 0,	25°C		4	100		5	100	pА
ΙO	Input offset current	See Figure 5		85°C		0.06	10		0.07	10	nA
l.s	Input bigg gurrant	$V_{O} = 0$,	V _{IC} = 0,	25°C		20	200		30	200	pА
ΙΒ	Input bias current	See Figure 5	-	85°C		0.6	20		0.7	20	nA
M	Common-mode input			25°C	–1 to 4	-2.3 to 5.6		–11 to 11	-12.3 to 15.6		V
VICR	voltage range			Full range	–1 to 4			–11 to 11			V
		Br = 10 kO		25°C	3	4.2		13	13.9		
V	Maximum positive peak	R _L = 10 kΩ		Full range	3			13			V
VOM+	output voltage swing	B 2 kO		25°C	2.5	3.8		11.5	12.7		V
		$R_L = 2 k\Omega$		Full range	2.5			11.5			
		R _I = 10 kΩ		25°C	-2.5	-3.5		-12	-13.2		
V _{OM} –	Maximum negative peak	IVE = 10 K22		Full range	-2.5			-12			V
V OIVI—	output voltage swing	R _L = 2 kΩ		25°C	-2.3	-3.2		-11	-12		v
		IV = 2 K22		Full range	-2.3			-11			
	l anno aine al differential			25°C	25	59		50	105		
AVD	Large-signal differential voltage amplification¶	$R_L = 2 k\Omega$		–40°C	30	74		60	145		V/mV
				85°C	20	43		30	76		
rį	Input resistance			25°C		10 ¹²			10 ¹²		Ω
ci	Input capacitance		_	25°C		10			12		pF
	Common-mode	$V_{IC} = V_{ICR}min,$		25°C	65	85		75	93		
CMRR	rejection ratio	$V_O = 0$,	$R_S = 50 \Omega$	–40°C	65	83		75	90		dB
				85°C	65	84		75	93		

[†] Full range is –40°C to 85°C.

[‡] This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters

[§] Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$, extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation, and assuming an activation energy of 0.96 eV. ¶ At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V.

TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL052I and TL052AI electrical characteristics at specified free-air temperature (continued)

PARAMETER		TEST CONDITIONS		ER TEST CONDITIONS		PARAMETER TEST CONDITIONS T_A $V_{CC\pm} = \pm 5 \text{ V}$				7	Γ L052 Ι, Ί	L052AI			
								V _{CC±} = ±15 V			UNIT				
					MIN	TYP	MAX	MIN	TYP	MAX					
	•			25°C	75	99		75	99						
ksvr	Supply-voltage rejection ratio ($\Delta V_{CC+}/\Delta V_{IO}$)	$V_{O} = 0$,	$R_S = 50 \Omega$	−40°C	75	98		75	98		dB				
	idilo (AvCC±/AvIO)			85°C	75	99		75	99						
	•			25°C		4.6	5.6		4.8	5.6					
Icc	Supply current (two amplifiers)	$V_{O} = 0$,	No load	−40°C		4.5	6.4		4.7	6.4	mA				
	(two diripinioto)			85°C		4.4	6.4		4.6	6.4					
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100$		25°C		120			120		dB				

TL052I and TL052AI operating characteristics at specified free-air temperature

	PARAMETER		NDITIONS	T _A †	٧c	C± = ±5	٧	٧c	C± = ±15	V	UNIT	
						TYP	MAX	MIN	TYP	MAX		
SR+	01			25°C		17.8		9	20.7			
5K+	Slew rate at unity gain‡	$R_I = 2 k\Omega$, $C_I = 100 pF$	$C_L = 100 pF$,	Full range				8			V/μs	
SR-	Negative slew rate at	See Figure 1		_	25°C		15.4		9	17.8		ν/μ5
5	unity gain [‡]			Full range				8				
				25°C		55			56			
t _r	Rise time			–40°C		52			53			
				85°C		64			65		ns	
		V _{I(PP)} = ±10 i	mV,	25°C		55			57		115	
tf	Fall time	$R_L = 2 k\Omega$, $C_L = 100 pF$, See Figures 1 and 2		–40°C		51			53			
				85°C		64			65			
				25°C		24%			19%			
	Overshoot factor			–40°C		24%			19%		%	
				85°C		24%			19		<u> </u>	
Vn	Equivalent input noise		f = 10 Hz	25°C		71			71		nV/√ Hz	
۷n	voltage§	$R_S = 20 \Omega$,	f = 1 kHz	25°C		19			19	30	IIV/VIIZ	
V _{N(PP)}	Peak-to-peak equivalent input noise current	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV	
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√Hz	
THD	Total harmonic distortion¶	$R_S = 1 \text{ k}\Omega$, f = 1 kHz	$R_L = 2 k\Omega$,	25°C		0.003			0.003		%	
				25°C		3		-	3			
B ₁	Unity-gain bandwidth	$V_{l} = 10 \text{ mV},$ $C_{L} = 25 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 4	–40°C		3.5			3.6		MHz	
		ο _L – 20 ρι,	CCC riguid 4	85°C		2.5			2.6		1	
	Dhana manala at cult	10> 1	D OLO	25°C		60			63		deg	
φm	Phase margin at unity gain	$V_{l} = 10 \text{ mV},$ $C_{L} = 25 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 4	–40°C		58			61			
	3∞	CL = 20 pi,	CCO i iguio 4	85°C		60			63		1	

[†] Full range is -40°C to 85°C.

[¶] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{O(RMS)} = 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{O(RMS)} = 6 \text{ V}$.

[‡] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$.

[§] This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

TL054C and TL054AC electrical characteristics at specified free-air temperature

					TL054C, TL054AC						
	PARAMETER	TEST CONDITIONS		T _A †	٧c	c± = ±5	٧	٧c	C± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 05 40	25°C		0.64	5.5		0.56	4	
	land of a first contract		TL054C	Full range			7.7			6.2	mV
VIO	Input offset voltage		TI 05 44 C	25°C		0.57	3.5		0.5	1.5	
		Va = 0	TL054AC	Full range			5.7			3.7	
	Temperature coefficient	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$	TL054C	25°C to 70°C		25			23		\//9C
$\alpha_{V_{IO}}$	of input offset voltage		TL054AC	25°C to 70°C		24			23		μV/°C
	Input offset-voltage long-term drift‡			25°C		0.04			0.04		μV/mo
1	lancet affact accompany	$V_{O} = 0$,	V _{IC} = 0,	25°C		4	100		5	100	pА
ΙO	Input offset current	See Figure 5	5	70°C		0.02	1		0.025	1	nA
1	lance bina accument	V _O = 0,	V _{IC} = 0,	25°C		20	200		30	200	pА
ΙΒ	Input bias current	See Figure 5	5	70°C		0.15	4		0.2	4	nA
V _{ICR}	Common-mode input			25°C	-1 to 4	–2.3 to 5.6		–11 to 11	-12.3 to 15.6		V
VICR	voltage range			Full range	–1 to 4			–11 to 11			V
		R _L = 10 kΩ		25°C	3	4.2		13	13.9		V
V _{OM+}	Maximum positive peak			Full range	3			13			
OWIT	output voltage swing	$R_L = 2 k\Omega$	2 kO	25°C	2.5	3.8		11.5	12.7		
		ļ <u>-</u>		Full range	2.5			11.5			
		$R_L = 10 \text{ k}\Omega$		25°C	-2.5	-3.5		-12	-13.2		
V _{OM} _	Maximum negative peak			Full range	-2.5			-12			V
OW	output voltage swing	$R_L = 2 k\Omega$		25°C	-2.3	-3.2		-11	-12		ľ
		↓		Full range	-2.3			-11			
	Large-signal differential	D 010		25°C	25	72		50	133		\//\/
AVD	voltage amplification§	$R_L = 2 k\Omega$		0°C	30	88		60	173		V/mV
_	Land and Salara			70°C	20	57 10 ¹²		30	85		
rį	Input resistance	1	-	25°C					1012		Ω
cį	Input capacitance			25°C		10			12		pF
CMDD	Common-mode	V _{IC} = V _{ICR}	min,	25°C	65	84		75	92		10
CMRR	rejection ratio	$V_O = 0$	$R_S = 50 \Omega$	0°C	65 65	84		75	92		dB
		1		70°C	65 75	84		75 75	93		
kove	Supply-voltage rejection	$V_{CC\pm} = \pm 5$	V to ±15 V,	25°C 0°C	75 75	99		75 75	99		٩D
ksvr	ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_O = 0$,	$R_S = 50 \Omega$	70°C	75 75	99		75 75	99		dB
				70°C 25°C	/5	8.1	11.2	75	8.4	11.2	
loo	Supply current	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	No load	0°C					8.5	12.8	-
ICC	(four amplifiers)	$V_O = 0$, No	No load	70°C		7.9	12.8 11.2		8.2	11.2	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	-	25°C	-	120	11.2		120	11.2	dB
	io 0°C to 70°C	140D - 100				120			120		uБ

[†] Full range is 0°C to 70°C.

[†] Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150$ °C, extrapolated to $T_A = 25$ °C using the Arrhenius equation, and assuming an activation energy of 0.96 eV. § For $V_{CC\pm} = \pm 5$ V, $V_{CC\pm} = \pm 15$ V, $V_{CC\pm} = \pm 15$ V, $V_{CC\pm} = \pm 15$ V. B

TL05x, TL05xA **ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS**

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL054C and TL054AC operating characteristics at specified free-air temperature

						TL054C, TL054C						
	PARAMETER	TEST CC	TEST CONDITIONS		٧c	C± = ±5	v	۷cc)± = ±15	V	UNIT	
					MIN	TYP	MAX	X MIN TYP MAX		MAX		
SR+	Positive slew rate			25°C		15.4		10	17.8			
SK+	at unity gain			0°C		15.7		8	17.9			
			$R_L = 2 k\Omega$, $C_L = 100 pF$,			14.4		8	17.5		V/μs	
SR-	Negative slew rate at	See Figure 1	and Note 7	25°C		13.9		10	15.9		ν/μδ	
JN-	unity gain [‡]			0°C		14.3		8	16.1			
				70°C		13.3		8	15.5			
						55			56			
t _r	Rise time			0°C		54			55			
				70°C		63			63		1	
		$V_{I}(PP) = \pm 10$ mV, $R_{L} = 2$ k Ω , $C_{L} = 100$ pF, See Figures 1 and 2		25°C		55			57		ns	
t _f	Fall time			0°C		54			56		1	
				70°C		62			64		1	
				25°C		24%			19%			
	Overshoot factor			0°C		24%			19%		%	
				70°C		24%			19		1	
.,	Equivalent input noise		f = 10 Hz	25°C		75			75		nV/√Hz	
Vn	voltage§	$R_S = 20 \Omega$,	f = 1 kHz	25°C		21			21	45	110/1002	
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV	
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√ Hz	
THD	Total harmonic distortion¶	$R_S = 1 \text{ k}\Omega$, f = 1 kHz	$R_L = 2 k\Omega$,	25°C		0.003			0.003		%	
		10 11	5 010	25°C		2.7			2.7			
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$ $C_{I} = 25 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 4	0°C		3			3		MHz	
		OL = 23 pr.,	OGE Figure 4	70°C		2.4			2.4			
	Dhose margin at	\/ı = 10 m\/	P 2 kO	25°C		61			64			
φm	Phase margin at unity gain	$V_{ } = 10 \text{ mV},$ $C_{ } = 25 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 4	0°C		60			64		deg	
	anny gani	CL = ∠o pr, See Figure 4		70°C		61			63			

[†] Full range is 0°C to 70°C.

[‡] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V. § This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

[¶] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{O(RMS)} = 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{O(RMS)} = 6 \text{ V}$.

TL054I and TL054AI electrical characteristics at specified free-air temperature

						-	ΓL054I, 1	ΓL054AI			
	PARAMETER TEST CONDITIONS		T _A †	$V_{CC\pm} = \pm 5 \text{ V}$ $V_{CC\pm} = \pm 15 \text{ V}$					V	UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 0541	25°C		0.64	5.5		0.56	4	
\/	lanut effect veltere		TL054I	Full range			8.8			7.3	\/
VIO	Input offset voltage		TI 05 441	25°C		0.57	3.5		0.5	1.5	mV
		V 0	TL054AI	Full range			6.8		-	4.8	
	Temperature coefficient of	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$	TL054I	25°C to 85°C		25			24		1400
$\alpha_{V_{\text{IO}}}$	input offset voltage	1.00 22	TL054AI	25°C to 85°C		25			23		μV/°C
	Input offset voltage long-term drift‡			25°C		0.04			0.04		μV/mo
	land of the standard	$V_{O} = 0$,	V _{IC} = 0,	25°C		4	100		5	100	pА
IIO	Input offset current	See Figure 5		85°C		0.06	10		0.07	10	nA
1	land bina adment	V _O = 0,	V _{IC} = 0,	25°C		20	200		30	200	pА
ΙΒ	Input bias current	See Figure 5		85°C		0.6	20		0.7	20	nA
	Common-mode input			25°C	-1 to 4	-2.3 to 5.6		–11 to 11	-12.3 to 15.6		
VICR	voltage range			Full range	-1 to 4			–11 to 11			V
		R _L = 10 kΩ		25°C	3	4.2		13	13.9		
V014	Maximum positive peak	K_ = 10 K22		Full range	3			13			V
V _{OM+}	output voltage swing	R _L = 2 kΩ		25°C	2.5	3.8		11.5	12.7		V
		IXL = 2 KS2		Full range	2.5			11.5			
		$R_L = 10 \text{ k}\Omega$		25°C	-2.5	-3.5		-12	-13.2		
V _{OM} –	Maximum negative peak	TL = 10 Kas		Full range	-2.5			-12			V
VOIVI—	output voltage swing	$R_L = 2 k\Omega$		25°C	-2.3	-3.2		-11	-12		·
		T.L - 2 1.22		Full range	-2.3			-11			
	Large-signal differential			25°C	25	72		50	133		
AVD	voltage amplification§	$R_L = 2 k\Omega$		–40°C	30	101		60	212		V/mV
				85°C	20	50		30	70		
rį	Input resistance			25°C		1012			1012		Ω
ci	Input capacitance			25°C		10			12		pF
	Common-mode	V _{IC} = V _{ICR} n	nin	25°C	65	84		75	92		
CMRR	rejection ratio		$R_S = 50 \Omega$	–40°C	65	83		75	92		dB
		ļ <u> </u>		85°C	65	84		75	93		
	Supply-voltage rejection	$V_{CC\pm} = \pm 5 V$	/ to ±15 V	25°C	75	99		75	99		,_
ksvr	ratio (ΔVCC±/ΔVIO)		$R_S = 50 \Omega$	-40°C	75	98		75	99		dB
		ļ -		85°C	75	99		75	99		
	Supply current	ļ,, -		25°C		8.1	11.2		8.4	11.2	8 mA
ICC	(four amplifiers)	$V_{O} = 0,$	No load	-40°C		7.9	12.8		8.2	12.8	
11. 61	0 1 1 1	A 100	-	85°C		7.6	11.2		7.9	11.2	15
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100$		25°C		120			120		dB

[†]Full range is -40°C to 85°C.

[†] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$, extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation, and assuming an activation energy of 0.96 eV. § For $V_{CC\pm} = \pm 5$ V, $V_{CC\pm} = \pm 15$ V, $V_{CC\pm} = \pm 15$ V, $V_{CC\pm} = \pm 10$ V.

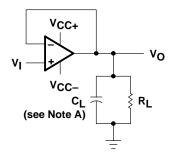
TL05x, TL05xA **ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS**

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL054I and TL054AI operating characteristics at specified free-air temperature

PARAMETER		TEST CO	NDITIONS	T _A †	٧c	C± = ±5	٧	٧cc)± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
SR+	Positive slew rate			25°C		15.4		10	17.8		
SK+	at unity gain]		–40°C		16.4		8	18		
		$R_L = 2 k\Omega$,		85°C		14		8	17.3		V/μs
SR-	Negative slew rate at	See Figure 1		25°C		13.9		10	15.9		ν/μ5
SK-	unity gain‡			–40°C		14.7		8	16.1		
				85°C		13		8	15.3		
				25°C		55			56		
t _r	Rise time			-40°C		52			53		
				85°C		64			65		
		V _{I(PP)} = ±10 r	mV, $R_L = 2 k\Omega$,	25°C		55			57		ns
tf	t _f Fall time	C _L = 100 pF, See Figures 1 and 2		–40°C		51			53		
				85°C		64			65		
				25°C		24			19		
	Overshoot factor			–40°C		24			19		%
				85°C		24			19		
\/	Equivalent input noise		f = 10 Hz	25°C		75			75		nV/√ Hz
V _n	voltage§	$R_S = 20 \Omega$,	f = 1 kHz	25°C		21			21	45	110/ \\ \\ \
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√ Hz
THD	Total harmonic distortion¶	$R_S = 1 \text{ k}\Omega$, f = 1 kHz	$R_L = 2 k\Omega$,	25°C	0	.003%		0	.003%		%
				25°C		2.7			2.7		
B ₁	Unity-gain bandwidth	$V_{ } = 10 \text{ mV},$ $C_{ } = 25 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 4	–40°C		3.3			3.3		MHz
		OL = 20 pr,	See Figure 4	85°C		2.3			2.4		
	Dhana marsin at	\\ 40 m\\	D 01-0	25°C		61			64		
φm	Phase margin at unity gain	V _I = 10 mV, C _L = 25 pF,	$R_L = 2 kΩ$, See Figure 4	–40°C		59			62		deg
	unity gain	OL = 20 pr,		85°C		61			64		

[†] Full range is -40°C to 85°C.



[‡] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V. § This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

[¶] For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_L includes fixture capacitance.

Figure 1. Slew Rate, Rise/Fall Time, and Overshoot Test Circuit

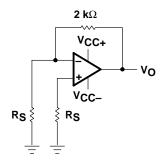


Figure 3. Noise-Voltage Test Circuit

typical values

Typical values, as presented in this data sheet represent the median (50% point) of device parametric performance.

input bias and offset current

At the picoamp-bias-current level typical of the TL05x and TL05xA, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but

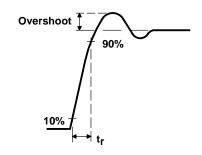
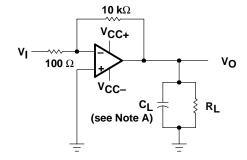



Figure 2. Rise-Time and Overshoot Waveform

NOTE A: C_L includes fixture capacitance.

Figure 4. Unity-Gain Bandwidth and Phase-Margin Test Circuit

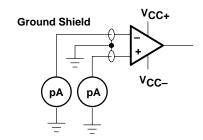
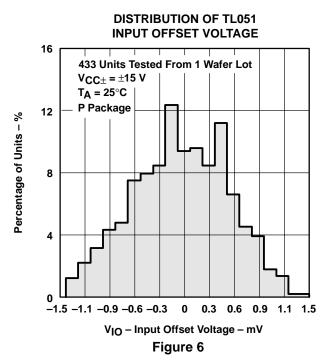


Figure 5. Input-Bias and Offset-Current Test Circuit

test-socket leakages easily can exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the socket. The device then is inserted in the socket, and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements then are subtracted algebraically to determine the bias current of the device.

noise


Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is sample tested at f = 1 kHz. Texas Instruments also has additional noise-testing capability to meet specific application requirements. Please contact the factory for details.

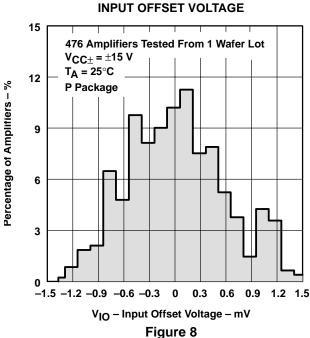
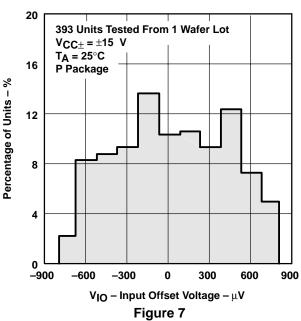
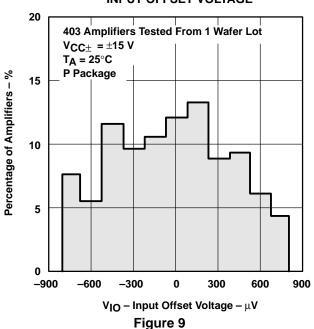
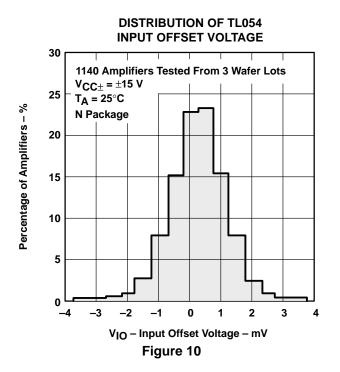
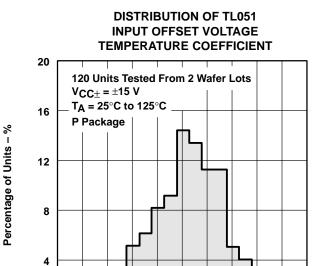

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	6–11
$\alpha_{V_{IO}}$	Temperature coefficient of input offset voltage	Distribution	12, 13, 14
I _{IB}	Input bias current	vs Common-mode input voltage vs Free-air temperature	15 16
IIO	Input offset current	vs Free-air temperature	16
VIC	Common-mode input voltage range limits	vs Supply voltage vs Free-air temperature	17 18
۷o	Output voltage	vs Differential input voltage	19, 20
V _{OM}	Maximum peak output voltage	vs Supply voltage vs Output current vs Free-air temperature	21 25, 26 27, 28
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	22, 23, 24
AVD	Large-signal differential voltage amplification	vs Load resistance vs Frequency vs Free-air temperature	29 30 31, 32, 33
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	34, 35 36
z _o	Output impedance	vs Frequency	37
ksvr	Supply-voltage rejection ratio	vs Free-air temperature	38
los	Short-circuit output current	vs Supply voltage vs Time vs Free-air temperature	39 40 41
ICC	Supply current	vs Supply voltage vs Free-air temperature	42, 43, 44 45, 46, 47
SR	Slew rate	vs Load resistance vs Free-air temperature	48–53 54–59
	Overshoot factor	vs Load capacitance	60
٧ _n	Equivalent input noise voltage	vs Frequency	61, 62
THD	Total harmonic distortion	vs Frequency	63
B ₁	Unity-gain bandwidth	vs Supply voltage vs Free-air temperature	64, 65, 66 67, 68, 69
фm	Phase margin	vs Supply voltage vs Load capacitance vs Free-air temperature	70, 71, 72 73, 74, 75 76, 77, 78
	Phase shift	vs Frequency	30
	Voltage-follower small-signal pulse response	vs Time	79
	Voltage-follower large-signal pulse response	vs Time	80

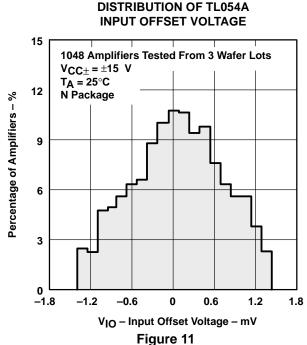







DISTRIBUTION OF TL051A INPUT OFFSET VOLTAGE

DISTRIBUTION OF TL052A INPUT OFFSET VOLTAGE


0 5

 $\alpha_{\text{V}_{\text{IO}}}$ – Temperature Coefficient – μ V/°C

Figure 12

15 20 25

-25 -20 -15 -10 -5

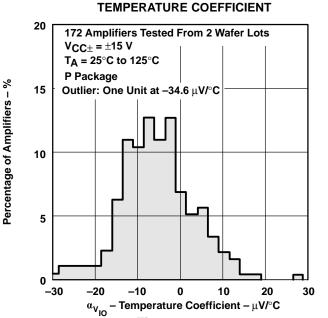
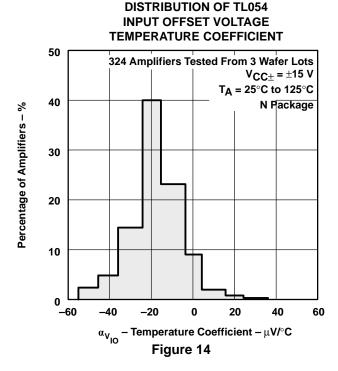


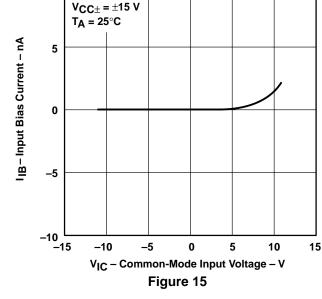
Figure 13

DISTRIBUTION OF TL052

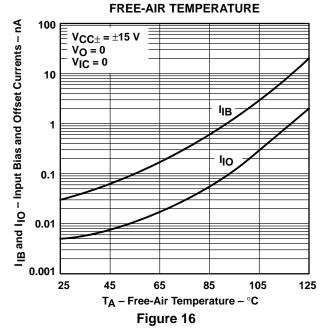
INPUT OFFSET VOLTAGE

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

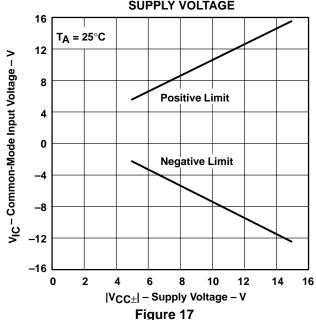

INPUT BIAS CURRENT


vs

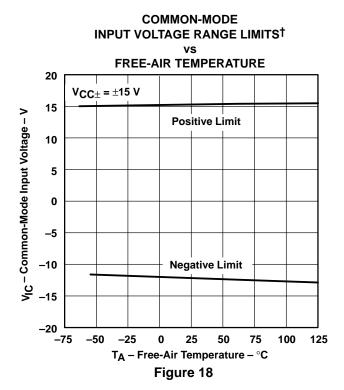
COMMON-MODE INPUT VOLTAGE

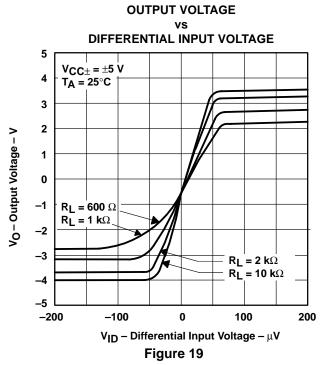

TYPICAL CHARACTERISTICS

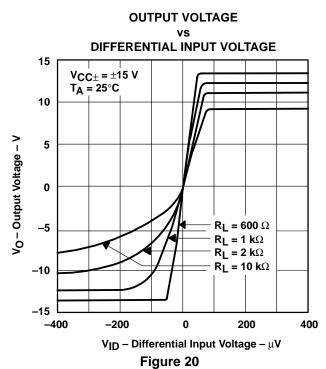
10

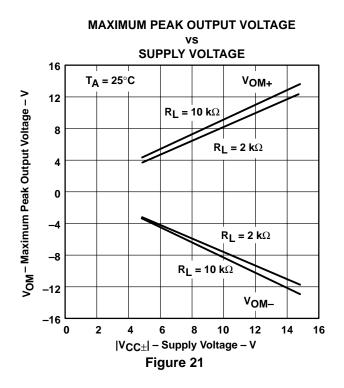


INPUT BIAS CURRENT AND INPUT OFFSET CURRENT[†] vs

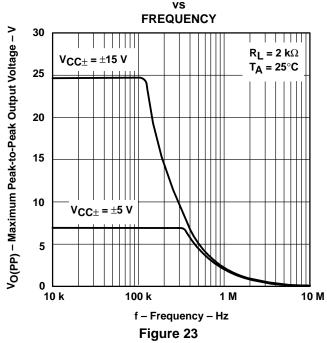


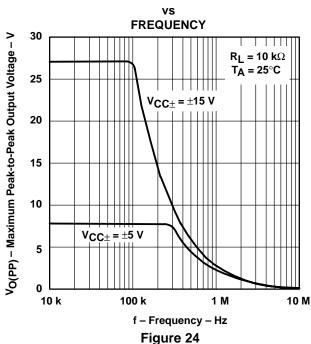


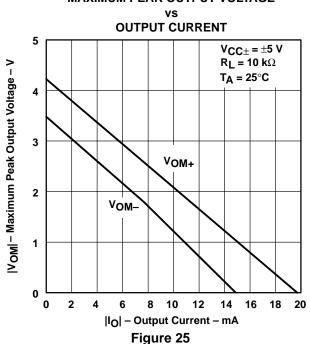



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

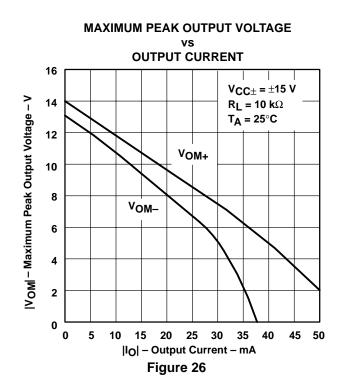


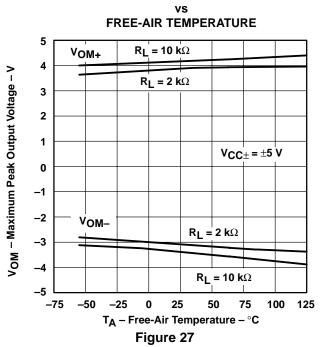

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE†

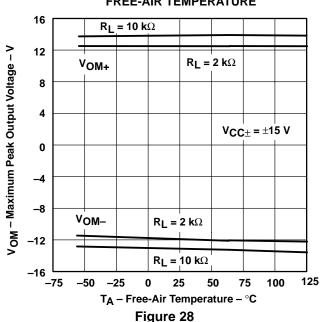

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

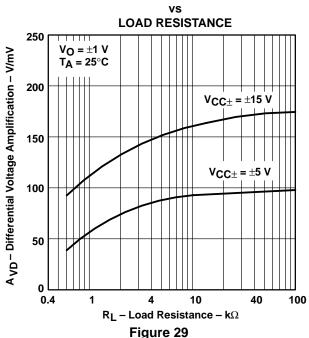
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE




MAXIMUM PEAK OUTPUT VOLTAGE

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

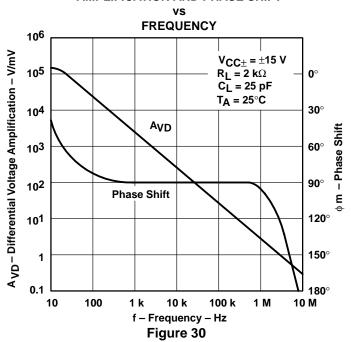


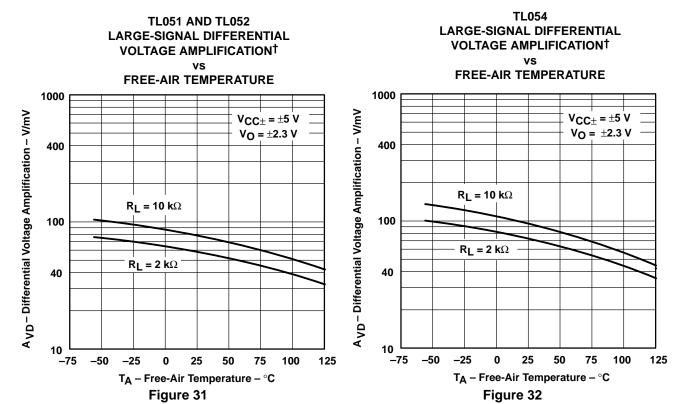


MAXIMUM PEAK OUTPUT VOLTAGE[†]

MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

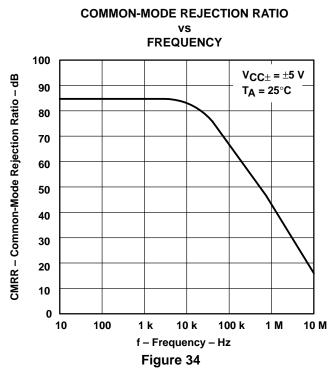



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION**† ٧S FREE-AIR TEMPERATURE 1000 $V_{CC\pm} = \pm 15 \text{ V}$ A_{VD} - Differential Voltage Amplification - V/mV $V_0 = 10 V$ $R_L = 10 \text{ k}\Omega$ 400 100 $R_L = 2 k\Omega$ 40 10 _75 -50 -25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C

Figure 33

COMMON-MODE REJECTION RATIO

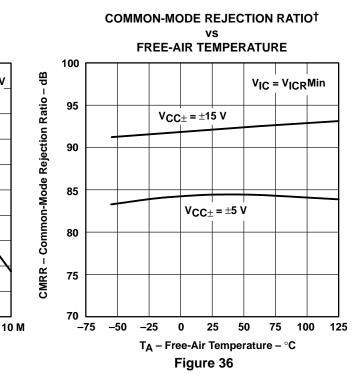
vs

10 k

Figure 35

f - Frequency - Hz

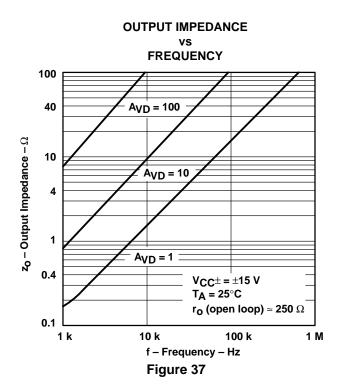
1 k

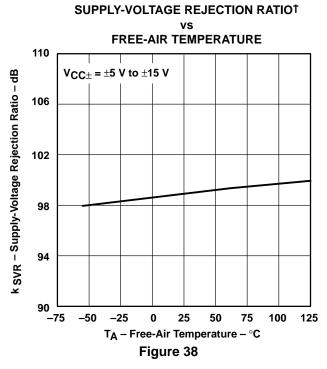

100 k

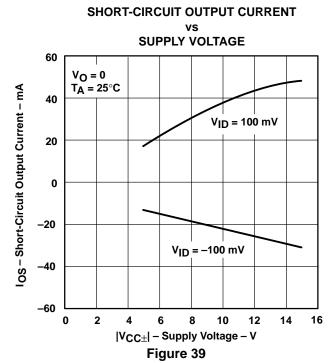
1 M

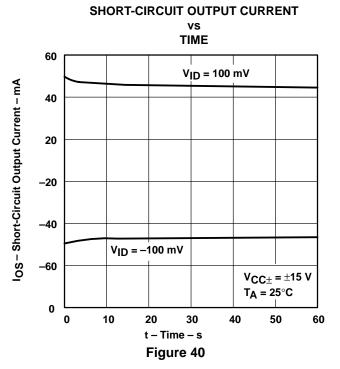
0

10

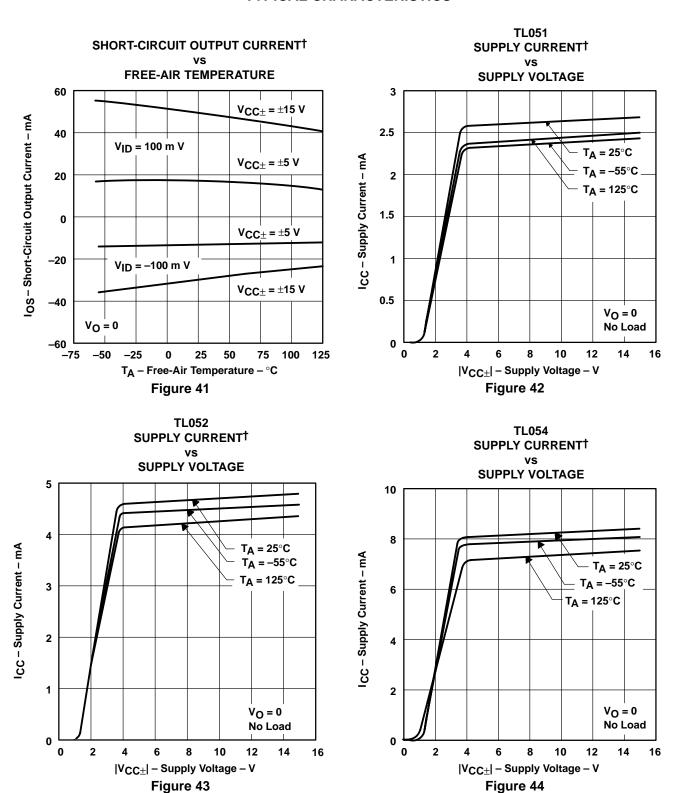

100

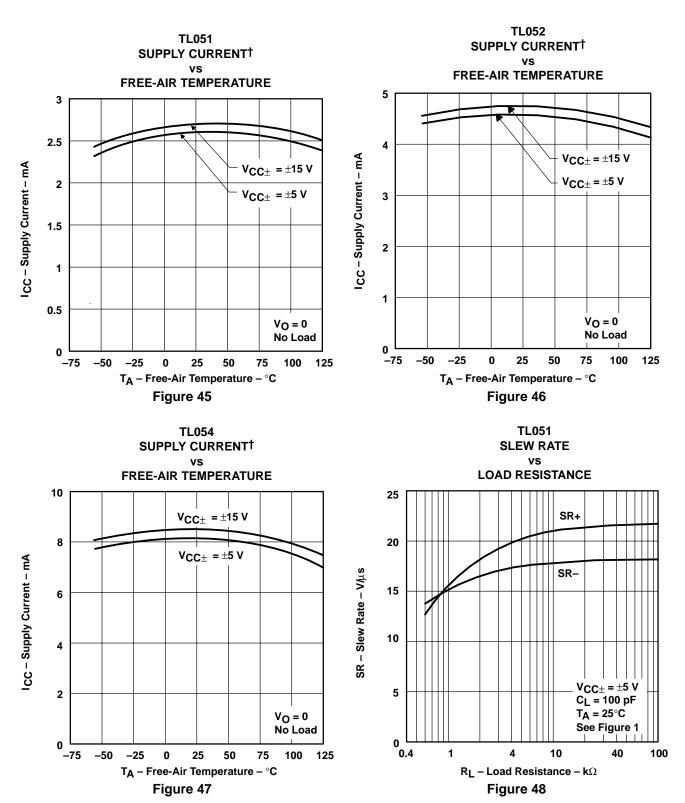


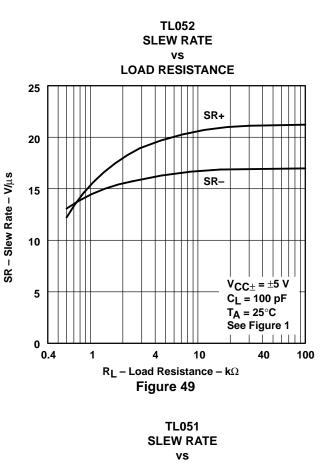

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

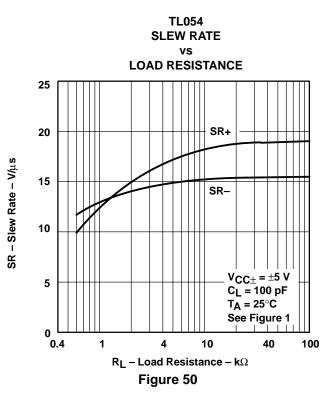


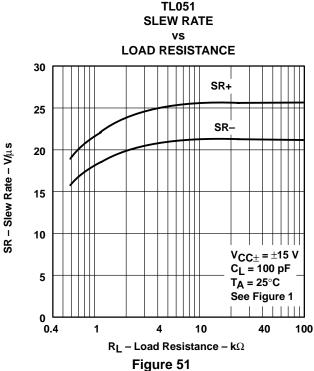
SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

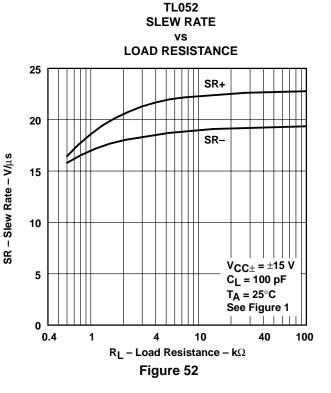


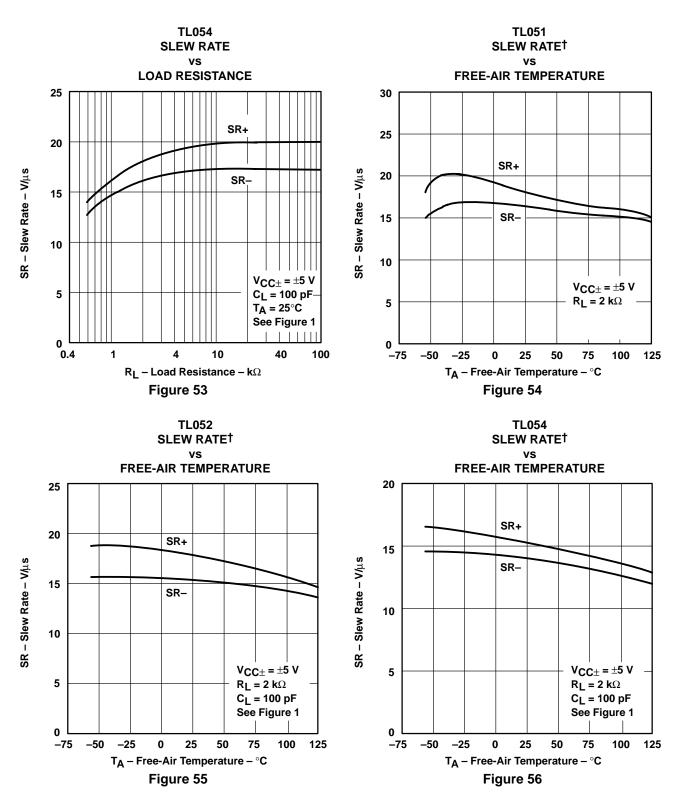

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

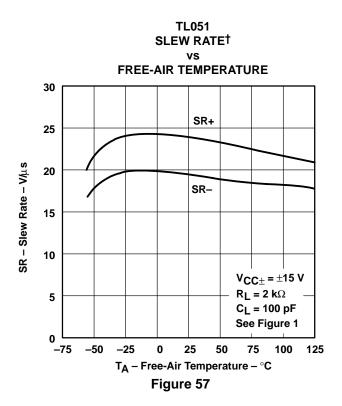

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

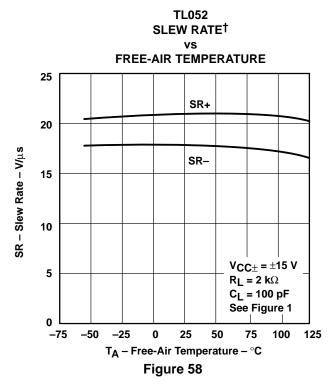


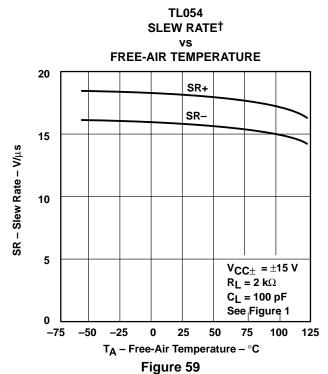


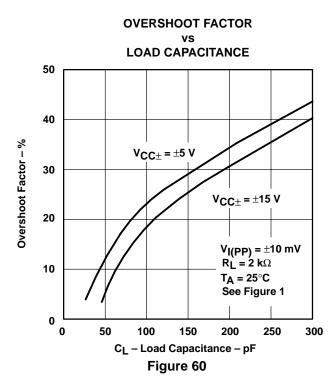

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

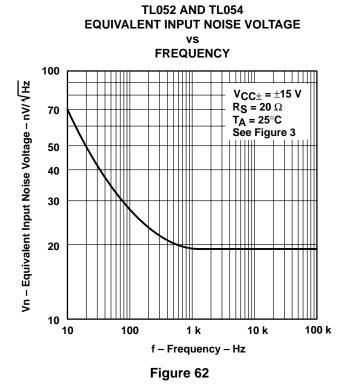




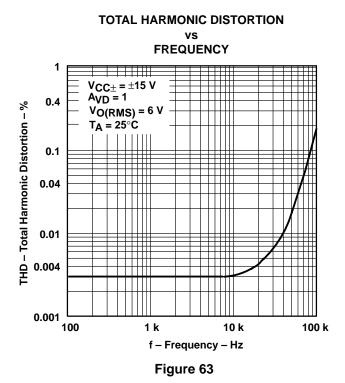


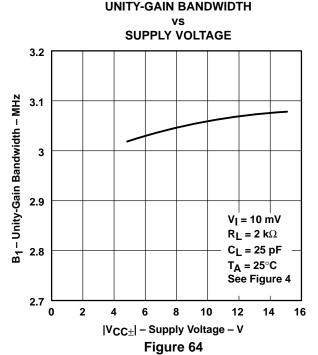


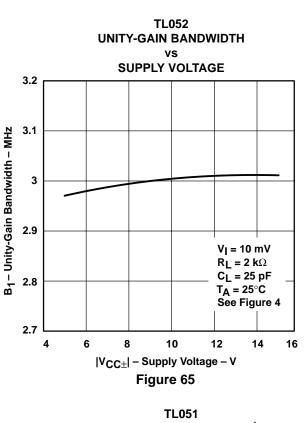

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

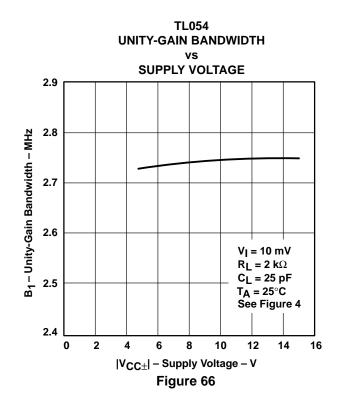


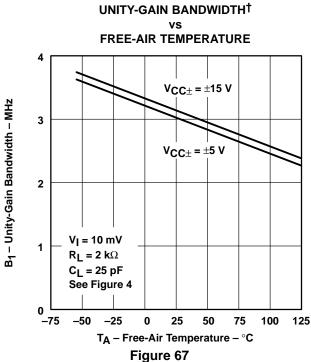
[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

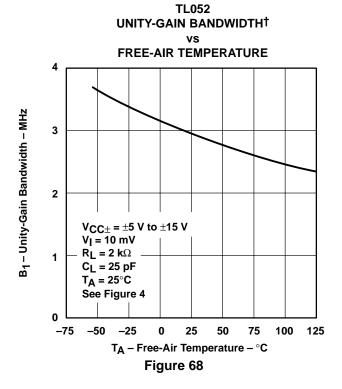


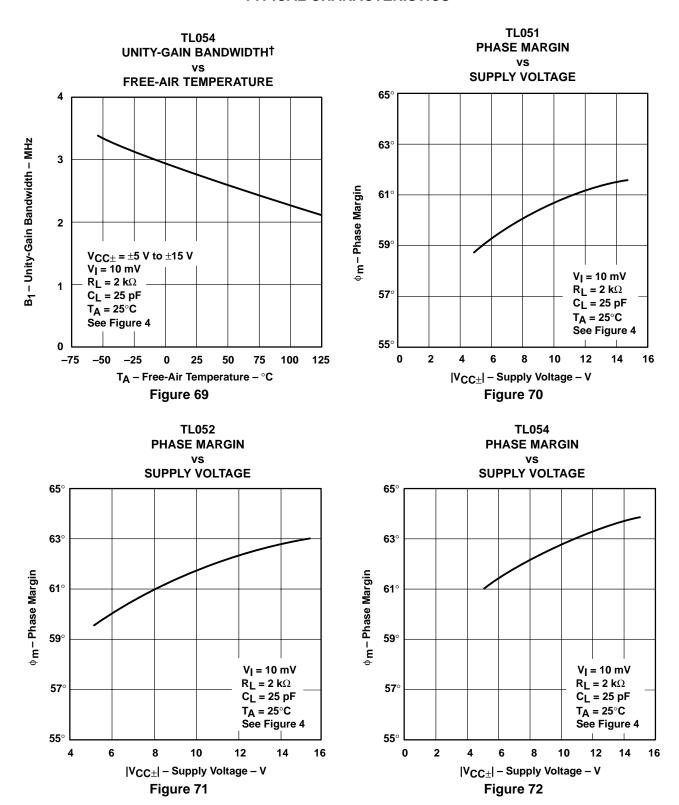

TL051 **EQUIVALENT INPUT NOISE VOLTAGE FREQUENCY** 100 Vn – Equivalent Input Noise Voltage – nV/√Hz $V_{CC\pm} = \pm 15 \text{ V}$ $R_S = 20 \Omega$ 70 T_A = 25°C See Figure 3 50 40 30 20 10 100 k 10 100 1 k 10 k f - Frequency - Hz

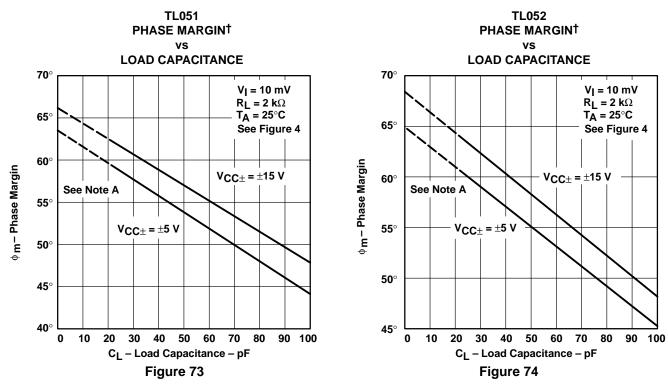

Figure 61

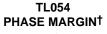



TL051

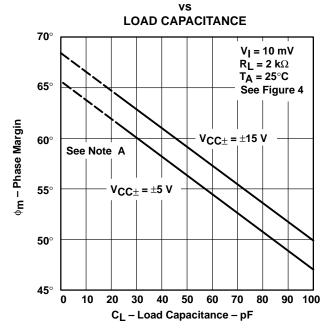
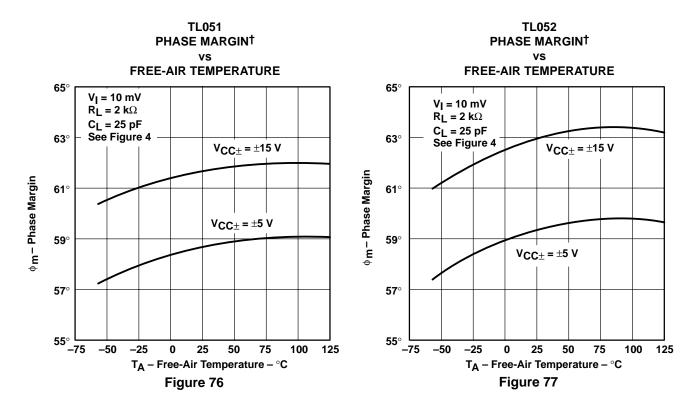


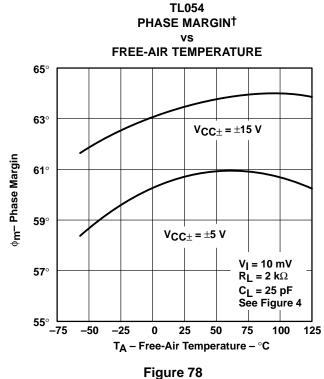



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



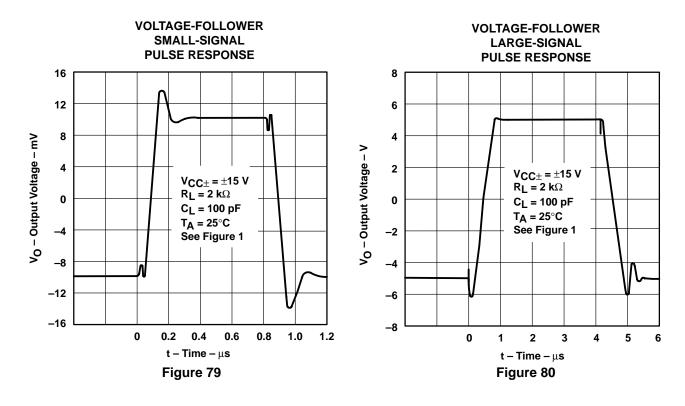
[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


Figure 75

[†] Values of phase margin below a load capacitance of 25 pF were estimated.

TYPICAL CHARACTERISTICS



† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

output characteristics

All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL05x and TL05xA drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF, and larger, may be driven if enough resistance is added in series with the output (see Figure 81 and Figure 82).

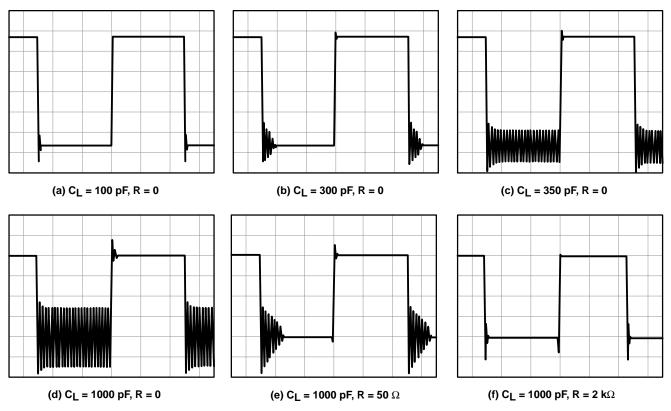


Figure 81. Effect of Capacitive Loads

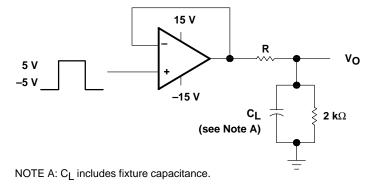


Figure 82. Test Circuit for Output Characteristics

APPLICATION INFORMATION

input characteristics

The TL05x and TL05xA are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction.

Because of the extremely high input impedance and resulting low-bias current requirements, the TL05x and TL05xA are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets easily can exceed bias current requirements and cause degradation in system performance. It is good practice to include guard rings around inputs (see Figure 83). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input.

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

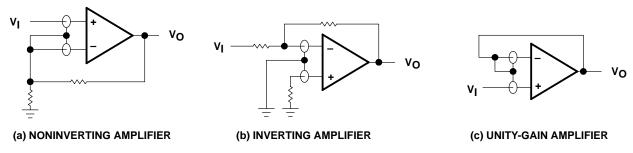
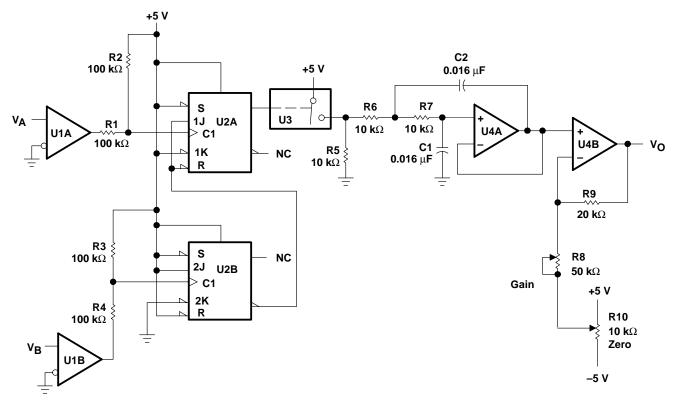


Figure 83. Use of Guard Rings

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input-bias current requirements of the TL05x and TL05xA result in a very low current noise. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω .

APPLICATION INFORMATION


phase meter

The phase meter in Figure 84 produces an output voltage of 10 mV per degree of phase delay between the two input signals V_A and V_B . The reference signal V_A must be the same frequency as V_B . The TLC3702 comparators (U1) convert these two input sine waves into ± 5 -V square waves. Then, R1 and R4 provide level shifting prior to the SN74HC109 dual J-K flip flops.

Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at one-half the frequency of V_B . Flip-flop U2A also produces a square wave at one-half the input frequency. The pulse duration of U2A varies from zero to one-half the period, where zero corresponds to zero phase delay between V_A and V_B and one-half the period corresponds to V_B lagging V_A by 360 degrees.

The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL05x (U4) integrator capacitors C1 and C2. As the phase delay approaches 360 degrees, the output of U4A approximates a square wave, and U2A has an output of almost 2.5 V. U4B acts as a noninverting amplifier with a gain of 1.44 in order to scale the 0- to 2.5-V integrator output to a 0- to 3.6-V output range.

R8 and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz frequency range.

NOTE A: U1 = TLC3702; $V_{CC\pm}$ = ± 5 V U2 = SN74HC109 U3 = TLC4066

U4, U5 = TL05x; $V_{CC\pm} = \pm 5 \text{ V}$

Figure 84. Phase Meter

APPLICATION INFORMATION

precision constant-current source over temperature

A precision current source (see Figure 85) benefits from the high input impedance and stability of Texas Instruments enhanced-JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input and the output of the TL05x. The negative feedback then forces 2.5 V across the current-setting resistor R; therefore, the current to the load simply is 2.5 V divided by R.

Possible choices for the shunt regulator include the LT1004, LT1009, and LM385. If the regulator's cathode connects to the operational amplifier output, this circuit sources load current. Similarly, if the cathode connects to the inverting input, the circuit sinks current from the load. To minimize output current change with temperature, R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be operated with split-voltage supplies.

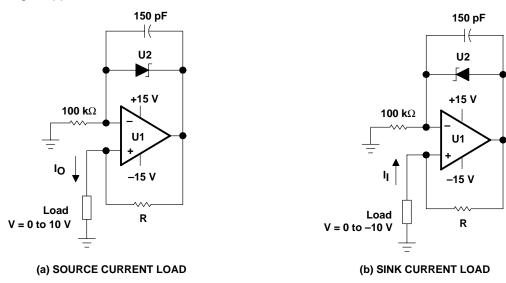


Figure 85. Precision Constant-Current Source

APPLICATION INFORMATION

instrumentation amplifier with adjustable gain/null

The instrumentation amplifier in Figure 86 benefits greatly from the high input impedance and stable input offset voltage of the TL05xA. Amplifiers U1A, U1B, and U2A form the actual instrumentation amplifier, while U2B provides offset null. Potentiometer R1 provides gain adjustment. With R1 = $2 \text{ k}\Omega$, the circuit gain equals 100, while with R1 = $200 \text{ k}\Omega$, the circuit gain equals two. The following equation shows the instrumentation amplifier gain as a function of R1:

$$A_{V} = 1 + \left(\frac{R2 + R3}{R1}\right)$$

Readjusting the offset null is necessary when the circuit gain is changed. If U2B is needed for another application, R7 can be terminated at ground. The low input offset voltage of the TL05xA minimizes the dc error of the circuit. For best matching, all resistors should be one-percent tolerance. The matching between R4, R5, R6, and R7 controls the CMRR of this application.

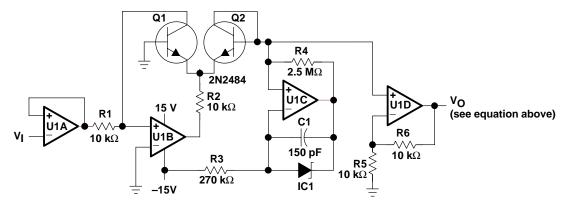
The following equation shows the output voltages when the input voltage equals zero. This dc error can be nulled by adjusting the offset null potentiometer; however, any change in offset voltage over time or temperature also creates an error. To calculate the error from changes in offset, consider the three offset components in the equation as delta offsets, rather than initial offsets. The improved stability of Texas Instruments enhanced JFETs minimizes the error resulting from change in input offset voltage with time. Assuming V_I equals zero, V_O can be shown as a function of the offset voltage:

$$V_O = V_{IO2} \left[\left(1 + \frac{R3}{R1} \right) \left(\frac{R7}{R5 + R7} \right) \left(1 + \frac{R6}{R4} \right) + \frac{R2}{R1} \left(\frac{R6}{R4} \right) \right]$$

$$-V_{IO1} \left[\frac{R3}{R1} \left(\frac{R7}{R5 + R7} \right) \left(1 + \frac{R6}{R4} \right) + \frac{R6}{R4} \left(1 + \frac{R2}{R1} \right) \right] + V_{IO3} \left(1 + \frac{R6}{R4} \right)$$

$$V_I - \frac{R4}{10 \text{ k}\Omega} \frac{R6}{10 \text{$$

Figure 86. Instrumentation Amplifier


APPLICATION INFORMATION

high input impedance log amplifier

The low input offset voltage and high input impedance of the TL05xA creates a precision log amplifier (see Figure 87). IC1 is a 2.5-V, low-current precision, shunt regulator. Transistors Q1 and Q2 must be a closely matched npn pair. For best performance over temperature, R4 should be a metal-film resistor with a low temperature coefficient.

In this circuit, U1A serves as a high-impedance unity-gain buffer. Amplifier U1B converts the input voltage to a current through R1 and Q1. Amplifier U1C, IC1, and R4 form a 1- μ A temperature-stable current source that sets the base-emitter voltage of Q2. U1D amplifies the difference between the base-emitter voltage of Q1 and Q2 (see Figure 88). The output voltage is given by the following equation:

$$V_O = -\left[1 + \frac{R6}{R5}\right] \frac{kT}{q} \left[ln \frac{V_I}{\left(R1 \times 1 \times 10^{-6}\right)} \right] \text{ where } k = 1.38 \times 10^{-23}, \ q = 1.602 \times 10^{-19}, \\ and T is Kelvin temperature$$

NOTE A: U1A through U1D = TL05xA. IC1 = LM385, LT1004, or LT1009 voltage reference

Figure 87. Log Amplifier

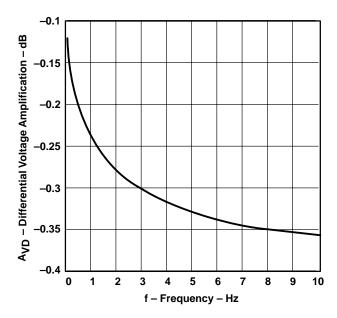
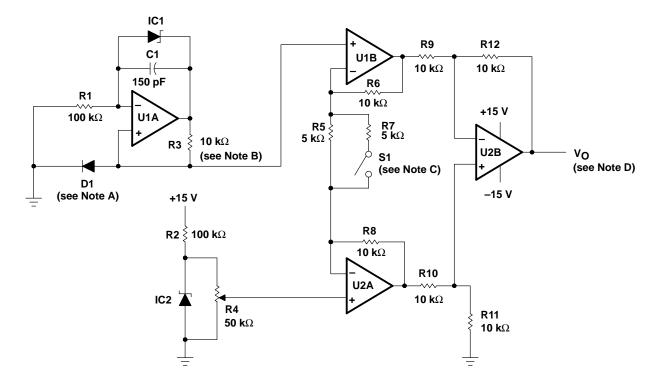


Figure 88. Output Voltage vs Input Voltage for Log Amplifier


APPLICATION INFORMATION

analog thermometer

By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise analog thermometer can be built (see Figure 89). Amplifier U1A and IC1 establish a constant current through the temperature-sensing diode D1. For this section of the circuit to operate correctly, the TL05x must use split supplies, and R3 must be a metal-film resistor with a low temperature coefficient.

The temperature-sensitive voltage from the diode is compared to a temperature-stable voltage reference set by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature. Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains constant.

Amplifiers U1B, U2A, and U2B form the instrumentation amplifier that converts the difference between the diode and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier gain equals 5 and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the amplifier gain is 9 and the output is proportional to temperature in degrees Fahrenheit. Every time S1 is changed, R4 must be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree (C or F).

NOTES: A. Temperature-sensing diode \approx (-2 mV/ $^{\circ}$ C)

- B. Metal-film resistor (low temperature coefficient)
- C. Switch open for °F and closed for °C
- D. $V_O \alpha$ temperature; 10 mV/°C or 10 mV/°F
- E. U1, U2 = TL05x. IC1, IC2 = LM385, LT1004, or LT1009 voltage reference

Figure 89. Analog Thermometer

APPLICATION INFORMATION

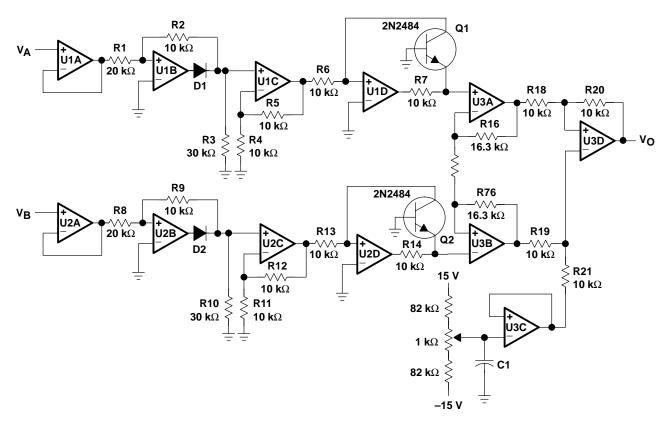
voltage-ratio-to-dB converter

The application in Figure 90 measures the amplitude ratio of two signals, then converts the ratio to decibels (see Figure 91). The output voltage provides a resolution of 100 mV/dB. The two inputs can be either dc or sinusoidal ac signals. When using ac signals, both signals should be the same frequency or output glitches will occur. For measuring two input signals of different frequencies, extra filtering should be added after the rectifiers.

The circuit contains three low-offset TL05xA devices. Two of these devices provide the rectification and logarithmic conversion of the inputs. The third TL05xA forms an instrumentation amplifier. The stage performing the logarithmic conversion also requires two well-matched npn transistors.

The input signal first passes through a high-impedance unity-gain buffer U1A (U2A). Then U1B (U2B) rectifies the input signal at a gain of 0.5, and U1C (U2C) provides a noninverting gain of 2, so that the system gain is still one. U1D (U2D), R6 (R13), and Q1 (Q2) perform the logarithmic conversion of the rectified input signal. The instrumentation amplifier formed by U3A, U3B, U3D scales the difference of the two logarithmic voltages by a gain of 33.6. As a result, the output voltage equals 100 mV/dB. The 1-k Ω potentiometer on the input of U3C calibrates the zero-dB reference level. The following equations are used to derive the relationship between the input voltage ratio, expressed in decibels, and the output voltage.

$$\begin{array}{l} \text{X dB} = 20 \, \log \! \left[\frac{\text{V}_{\text{A}}}{\text{V}_{\text{B}}} \right] = 20 \, \left[\frac{\text{In} \, \left(\text{V}_{\text{A}} \right) - \left(\text{V}_{\text{B}} \right)}{\text{In} \, \left(10 \right)} \right] \\ \\ \text{X dB} = 8.686 \, \left[\text{In} \, \left(\text{V}_{\text{A}} \right) - \text{In} \, \left(\text{V}_{\text{B}} \right) \right] \\ \\ \text{V}_{\text{BE}(\text{Q1})} = \frac{\text{kT}}{\text{q}} \, \text{In} \, \left[\frac{\text{V}_{\text{A}}}{\text{R} \times \text{I}_{\text{S}}} \right] \\ \\ \text{V}_{\text{BE}(\text{Q2})} = \frac{\text{kT}}{\text{q}} \, \text{In} \, \left[\frac{\text{V}_{\text{B}}}{\text{R} \times \text{I}_{\text{S}}} \right] \\ \\ \text{\Delta V}_{\text{BE}} = \text{V}_{\text{BE}(\text{Q1})} - \text{V}_{\text{BE}(\text{Q2})} = \frac{\text{kT}}{\text{q}} \, \left[\text{In} \, \left(\text{V}_{\text{A}} \right) - \text{In} \, \left(\text{V}_{\text{B}} \right) \right] \\ \\ \text{X dB} = \frac{8.686}{\text{kT/q}} \, \left[\text{V}_{\text{BE}(\text{Q1})} - \text{V}_{\text{BE}(\text{Q2})} \right] = 336 \, \left[\text{V}_{\text{BE}(\text{Q1})} - \text{V}_{\text{BE}(\text{Q2})} \right] \, \text{at } 25^{\circ}\text{C} \end{array}$$


where

$$k = 1.38 \times 10^{-23}$$
, $q = 1.602 \times 10^{-19}$, and T is Kelvin temperature

This gives a resolution of 1 V/dB. Therefore, the gain of the instrumentation amplifier is set at 33.6 to obtain 100 mV/dB.

APPLICATION INFORMATION

NOTE A: U1A through U3D = TL05xA, $V_{CC\pm}$ = ±15 V. D1 and D2 = 1N914.

Figure 90. Voltage Ratio-to-dB Converter

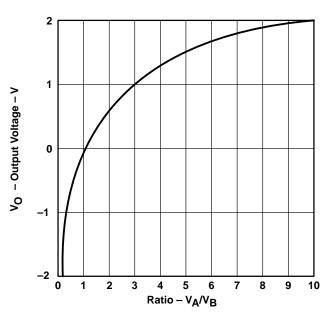


Figure 91. Output Voltage vs the Ratio of the Input Voltages for Voltage-to-dB Converter

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model-generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 6 and subcircuit Figure 92) are generated using the TL05x typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

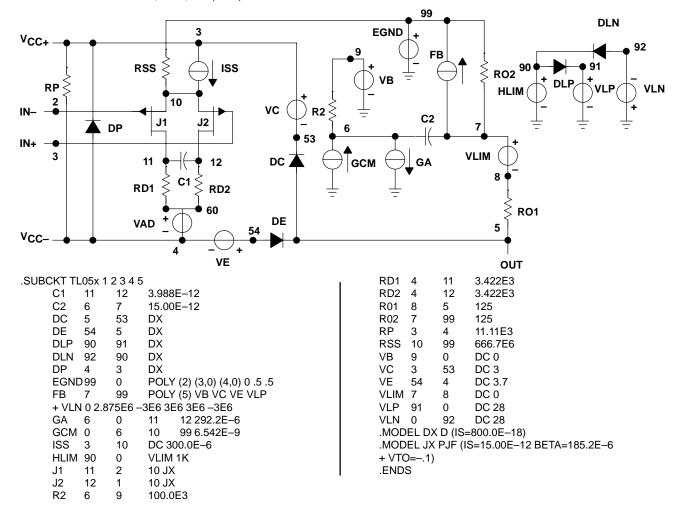


Figure 92. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

4-Jun-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³
TL051ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL051ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL051ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL051ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL051ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL051AID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL051AIP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TL051CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL051CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL051CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL051CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL051CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL051CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL051CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL051CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL051ID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL051IDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL051IP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TL052ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL052ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL052ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL052ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL052ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL052ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL052ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL052ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL052AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI

4-Jun-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL052AIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052AIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL052AIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL052AMFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
TL052AMJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
TL052CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL052CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL052CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052IDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL052IP	ACTIVE	PDIP	Р	8	50	Pb-Free	CU NIPDAU	N / A for Pkg Type

4-Jun-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp
						(RoHS)		
TL052IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL052MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
TL052MJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
TL052MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
TL054ACD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL054ACDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL054ACDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
TL054ACDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
TL054ACDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL054ACDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL054ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054ACNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054AIDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL054AIDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054AIDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054AIDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054AIN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054AINE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054AMFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
TL054AMJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
TL054CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054CDBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054CDBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054CDBRG4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL
TL054CDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL

PACKAGE OPTION ADDENDUM

4-Jun-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL054CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054CDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054CDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054CNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054CNSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054CNSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054IDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054IDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL054IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054INE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL054MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
TL054MJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
TL054MJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

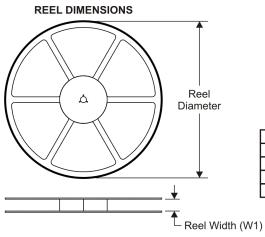
4-Jun-2007

compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

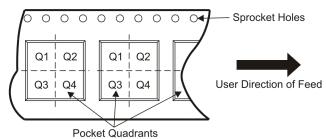
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

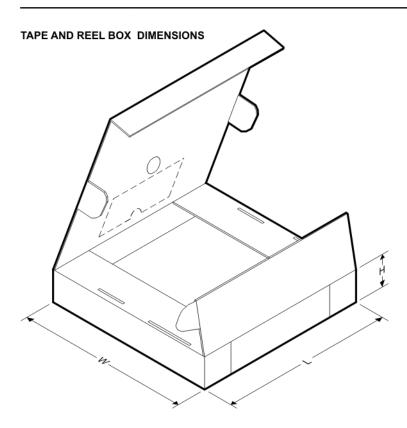
19-Mar-2008


TAPE AND REEL INFORMATION

TAPE DIMENSIONS \oplus \oplus \oplus \oplus Cavity -→ A0 **←**

	A0	Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Г	P1	Pitch between successive cavity centers

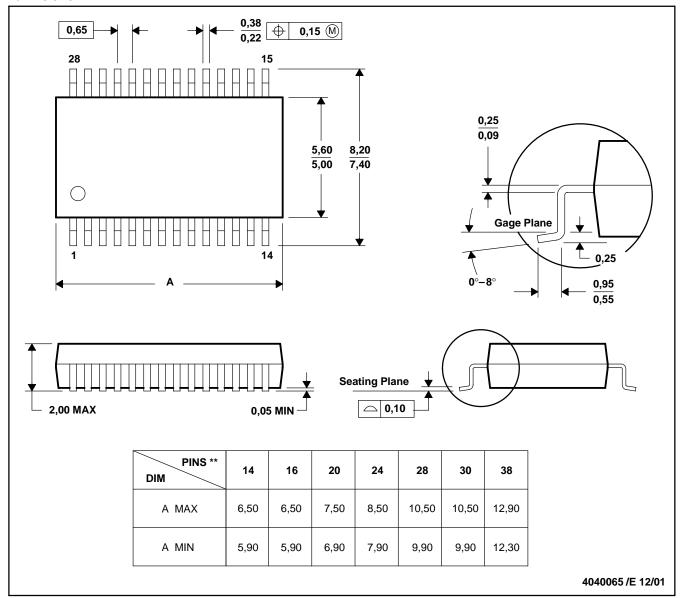
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL051CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TL052IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL054ACDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL054AIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL054CDBR	SSOP	DB	14	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TL054CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL054CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TL054IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

19-Mar-2008

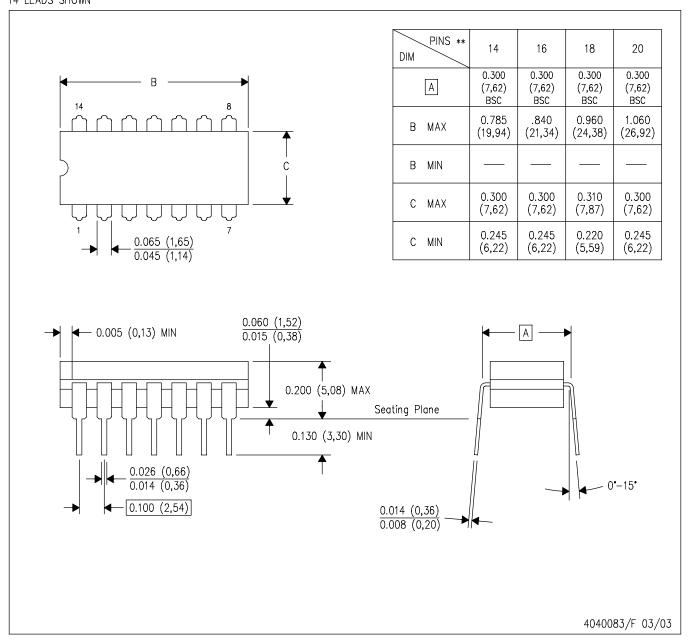

*All dimensions are nominal

All difficultions are norminal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL051CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052CPSR	SO	PS	8	2000	346.0	346.0	33.0
TL052IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL054ACDR	SOIC	D	14	2500	333.2	345.9	28.6
TL054AIDR	SOIC	D	14	2500	333.2	345.9	28.6
TL054CDBR	SSOP	DB	14	2000	346.0	346.0	33.0
TL054CDR	SOIC	D	14	2500	333.2	345.9	28.6
TL054CNSR	SO	NS	14	2000	346.0	346.0	33.0
TL054IDR	SOIC	D	14	2500	333.2	345.9	28.6

DB (R-PDSO-G**)

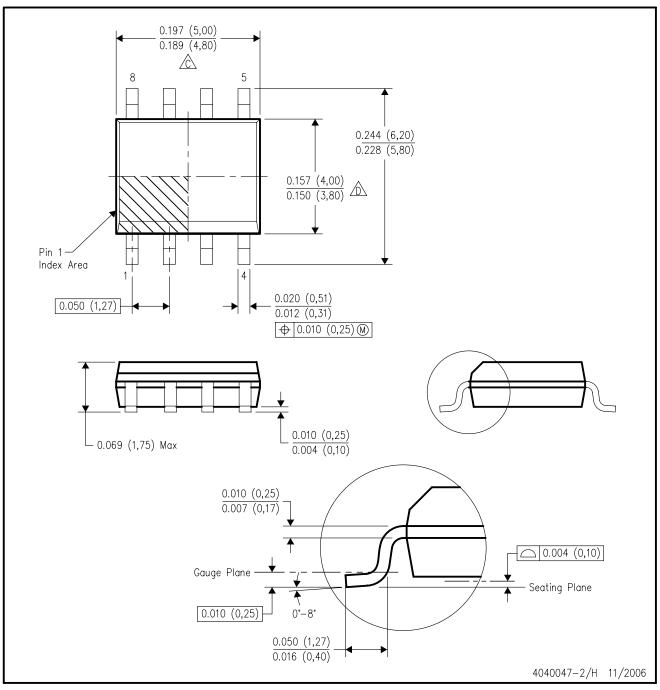
PLASTIC SMALL-OUTLINE

28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

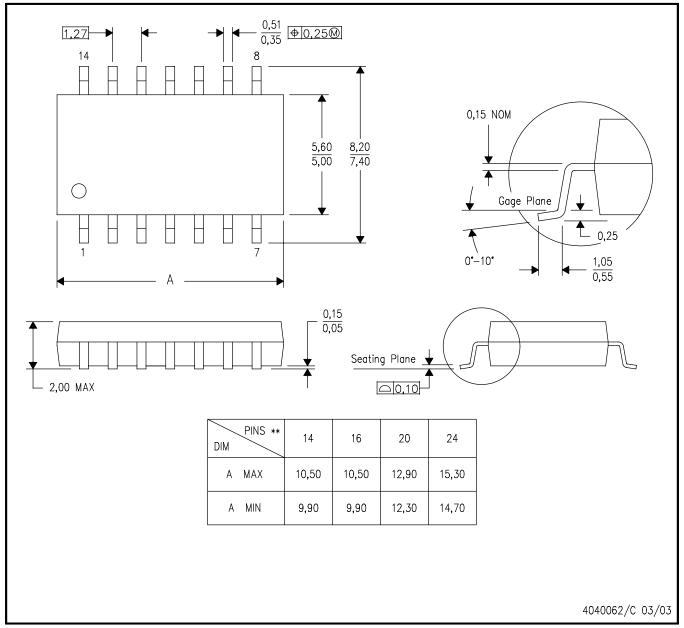

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

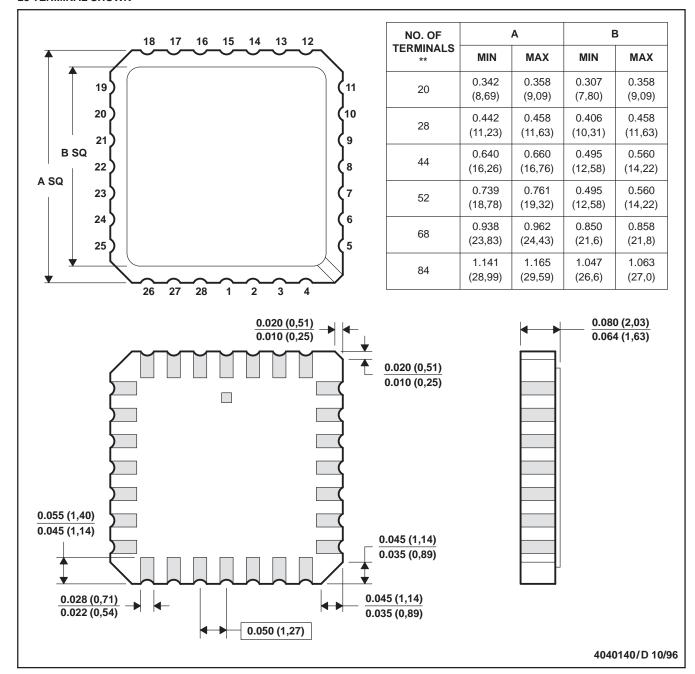


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

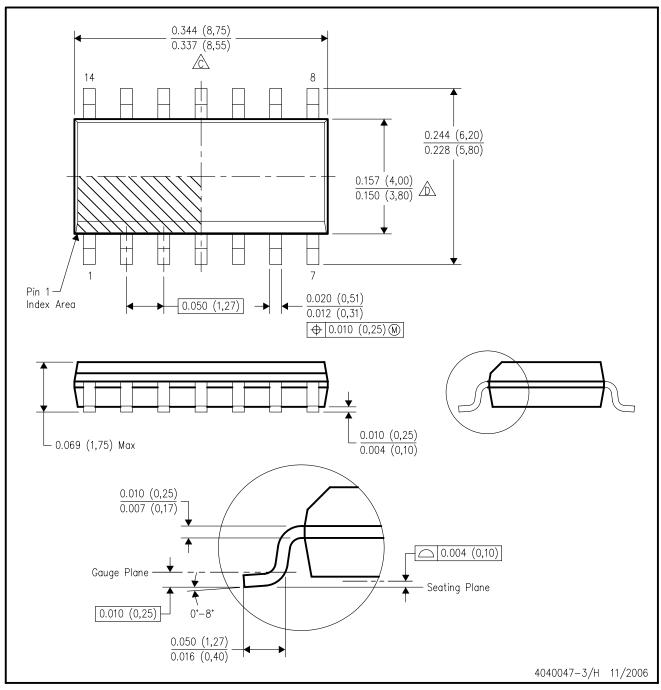
PLASTIC SMALL-OUTLINE PACKAGE


- . All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

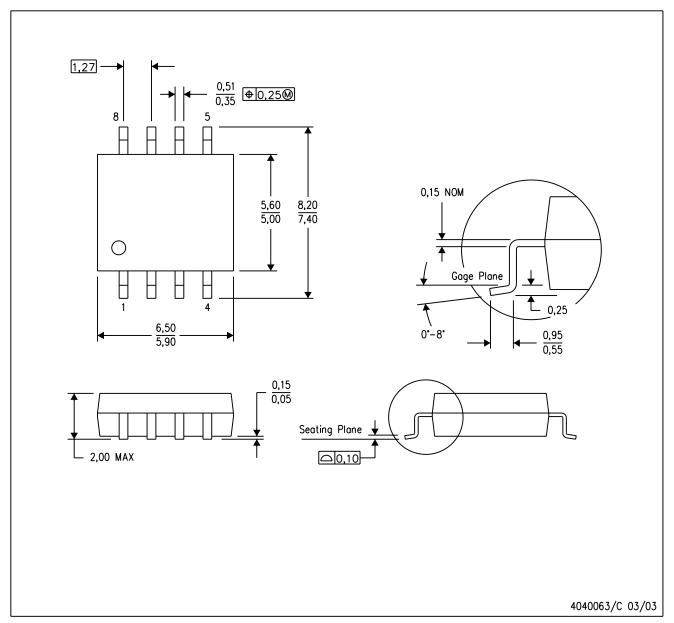
LEADLESS CERAMIC CHIP CARRIER



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. The terminals are gold plated.
 - E. Falls within JEDEC MS-004

D (R-PDSO-G14)

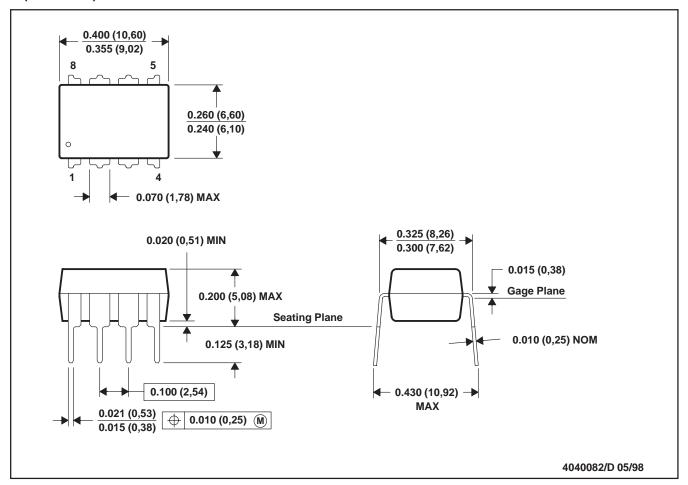
PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AB.

MECHANICAL DATA

PS (R-PDSO-G8)

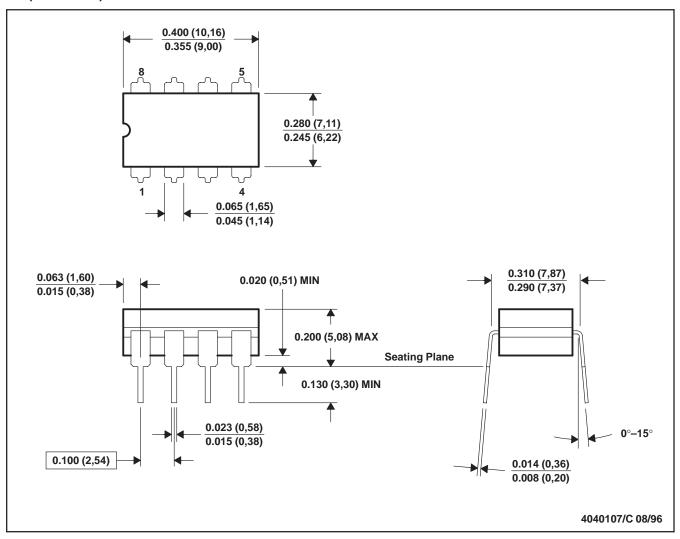
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

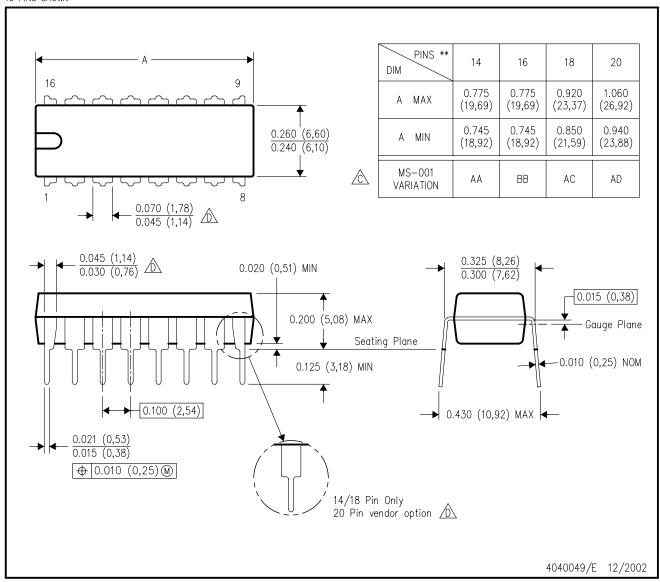

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
RF/IF and ZigBee® Solutions	www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless