
TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 1

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

TMC428 – DATASHEET
Intelligent Triple Stepper Motor Controller with

Serial Peripheral Interfaces

TRINAMIC Motion Control GmbH & Co. KG
Sternstrasse 67
D – 20357 Hamburg
GERMANY

P +49 - (0) 40 - 51 48 06 - 0
F +49 - (0) 40 - 51 48 06 - 60
www.trinamic.com
info@trinamic.com

1 Features
The TMC428 is a miniaturized high performance stepper motor controller. It controls up to three 2-
phase stepper motors. All motors can operate independently. The TMC428 allows up to 6 bit micro
step resolution – corresponding to 64 micro steps per full step – individually selectable for each motor.
Once initialized, it performs all real time critical tasks autonomously based on target positions and
velocities, which can be altered on-the-fly. So, an inexpensive microcontroller together with the
TMC428 forms a complete motion control system. The microcontroller is free to do application specific
interfacing and high level control functions. Both, the communication with the microcontroller and with
one to three daisy chained stepper motor drivers take place via two separate 4 wire serial peripheral
interfaces. The TMC428 directly connects to SPITM* smart power stepper motor drivers.

• Controls up to three 2-phase stepper motors
• Serial 4-wire interface for µC with easy-to-use protocol
• Configurable interface for SPITM motor drivers
• Different types of SPITM stepper motor driver chips may be mixed within a single daisy chain
• Communication on demand minimizes traffic to the SPITM stepper motor driver chain
• Programmable SPITM data rates up to 1 Mbit/s
• Wide range for clock frequency – can use CPU clock up to 16 MHz
• Internal 24 bit wide position counters
• Full step frequencies up to 20 kHz
• Read-out facility for actual motion parameters (position, velocity, acceleration) and driver status
• Individual micro step resolution of {64, 32, 16, 8, 4, 2, 1} micro steps via built-in sequencer
• Programmable 6 bit micro step table with up to 64 entries for a quarter sine-wave period
• Built-in ramp generators for autonomous positioning and speed control
• On-the-fly change of target motion parameters (like position, velocity, acceleration)
• Automatic acceleration dependent current control (power boost)
• Low power operation: Only 1.25 mA @ 4 MHz (typ.)
• Power down mode with transparent wake-up for normal operation
• 3.3V or 5V operation with CMOS / TTL compatible IOs (all inputs Schmitt-Trigger)
• Available in ultra small 16 pin SSOP package and small 24 pin SOP package

* SPI is Trademark of Motorola, Inc.

查询TMC428_06供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/ic/sell_search.html?keyword=TMC428_06
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 2

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Life support policy

TRINAMIC Motion Control GmbH & Co. KG does not
authorize or warrant any of its products for use in life
support systems, without the specific written consent
of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to
support or sustain life, and whose failure to perform,
when properly used in accordance with instructions
provided, can be reasonably expected to result in
personal injury or death.

© 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Information given in this data sheet is believed to be
accurate and reliable. However no responsibility is
assumed for the consequences of its use nor for any
infringement of patents or other rights of third parties
which may result form its use.

Specifications subject to change without notice.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 3

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

2 General Description
The TMC428 is a miniaturized high performance stepper motor controller with a unique price /
performance ratio for both, high volume automotive and for demanding industrial motion control
applications. Once initialized, the TMC428 controls up to three 2-phase stepper motors. Its low price
makes it attractive also for applications, where only one or two stepper motors have to be controlled
simultaneously.

The TMC428 performs all real time critical tasks autonomously. Thus a low cost microcontroller is
sufficient to perform the tasks of initialization, application specific interfacing, and to specify target
positions and velocities. The TMC428 allows on-the-fly change of all motion target parameters also
during motion. Any other parameter may be changed at any time– also during motion –which does not
make sense in any case, but this uniform access to any TMC428 register simplifies application
programming. Read-back option for all internal registers simplifies programming. With its internal
position counters , the TMC428 can perform up to 223 steps respectively micro steps fully independent
from the microcontroller. The step resolution– individually programmable for each stepper motor –
ranges from full step (1 ‘’micro step’’ is one full step), half step (2 ‘’micro steps’’ per full step), up to 6
bit micro stepping (64 micro steps per full step) for precise positioning and noiseless stepper motor
rotation (Table 8-8, page 26). Optionally, the micro step table– common for all motors –can be adapted
to motor characteristics to further reduce torque ripple.

The TMC428 has got serial interfaces for communication with the microcontroller and for the stepper
motor drivers. The serial interface for the microcontroller uses a fixed length of 32 bits with a simple
protocol, directly connecting to SPITM interfaces. The serial interface to the stepper motor drivers is
flexibly configurable for different types– even from different vendors –with up to 64 bit length for the
SPI daisy chain. TRINAMIC smart power stepper motor drivers TMC236, TMC239 and TMC246,
TMC249 perfectly fit to the TMC428. Without additional hardware, drivers with same serial interface
polarities of chip select and clock signals may be mixed in a single chain. To mix drivers with different
serial interface polarities, additional inverters (e.g. 74HC04, 74HC14) are required. For those driver
chips without serial data output, two additional variants of the TMC428 with two additional chip select
outputs are available. The TMC428 sends data to the driver chain on demand only, which minimizes
the interface traffic and reduces the power consumption.

Hint: Unused reference switch inputs should be pulled to ground (Figure 2-1). With this one can
connect reference switches that connect to +5V resp. +3.3V when pushed. Concerning different
reference switch configurations please refer to Figure 9-3, Figure 9-4, Figure 9-5.

10K

SCK_S

SDO_S

SDI_S

nSCS_S

SDO
CSN

SDI

SCK

SDO
CSN

SDI

SCK

SDO
CSN

SDI

SCK
TMC23x / TMC24x TMC23x / TMC24x TMC23x / TMC24x

REF2 REF3REF1

TEST GND

µC

SCK

MOSI

MISO

SS

SDI_C

nSCS_C

SCK_C

SDO_C

CLK

CLK V5V33

470
nF

+5 V

1K 1K

Reference Switch Inputs
(active high)

SM#3 SM#2 SM#1

TMC428-I /
TMC428-A

1K

100 nF

*For details concerning electrical connections of
the TMC236 / TMC239 / TMC246 / TMC249
refer to its datasheet.

* * *

Note: output SDO_C will
nerver be high impedance

Figure 2-1: TMC428 application environment with TMC428 in SSOP16 package

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 4

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

10K

SCK_S

SDO_S

SDI_S

nSCS_S

nSCS
SDI

SCK

nSCS
SDI

SCK

nSCS
SDI

SCK

Driver
w/o SDO

Driver
w/o SDO

REF2 REF3REF1

TEST GND

µC

SCK

MOSI

MISO

SS

SDI_C

nSCS_C

SCK_C

SDO_C

CLK

CLK V5V33

470 nF

+5 V

SM#3 SM#2 SM#1

TMC428-PI24 /
 TMC428-DI20

nSCS2

nSCS3

SDO

V5 GND

Note: output SDO_C will
nerver be high impedance

Driver
w/o SDO

Figure 2-2: Usage of drivers without serial data output (SDO) with TMC428 in larger packages
(*the DI20 package variant is not recommended for new designs)

2.1 Step Frequencies

The maximum SPITM data rate is the clock frequency divided by 16. The maximum step frequency
depends on the total length of the datagrams sent to the SPITM stepper motor driver chain. At a clock
frequency of 16 MHz, with a daisy chain of three SPITM stepper motor drivers of 16 bit datagram length
each, the maximum full step frequency is 16 MHz / 16 / (3 * 16). This is approximately 20 kHz and
that is much higher than needed for typical stepper motors. But, the micro step rate may be higher,
even if the stepper motor driver does not see all micro steps due to SPITM data rate limit, as long as the
number of skipped micro steps is less than a full step. In this respect, one should remember, that at
high step rates– respectively pulse rates –the differences between micro stepping and full step
excitation vanishes.

2.2 Modes of Motion

The TMC428 has four different modes of motion, programmable individually for each stepper motor,
named RAMPMODE, SOFTMODE, VELOCITYMODE, and HOLDMODE. For positioning applications
the RAMPMODE is most suitable, whereas for constant velocity applications the VELOCITYMODE is.
In RAMPMODE, the user just sets the position and the TMC428 calculates a trapezoidal velocity profile
and drives autonomously to the target position. During motion, the position may be altered arbitrarily.
The SOFTMODE is similar to the RAMPMODE, but the decrease of the velocity during deceleration is
done with a soft, exponentially shaped velocity profile. In VELOCITYMODE, a target velocity is set by
the user and the TMC428 takes into account user defined limits of velocity and acceleration. In
HOLDMODE, the user sets target velocities, but the TMC428 ignores any limits of velocity and
acceleration, to realize arbitrary velocity profiles, controlled completely by the user. The TMC428 has
capabilities to generate interrupts depending on different stepper motor conditions chosen by an
interrupt mask. However, status bits sent back automatically to the microcontroller each time it sends
data to the TMC428 are sufficient for polling techniques.
The TMC428 provides different modes for reference switch handling. In the default reference switch
mode, the three reference switch inputs (REF1, REF2, REF3) are defined as left side reference
switches, one for each stepper motor. In another mode, the 1st reference input (REF1) is defined as left
reference switch input of motor number one, the 2nd reference input (REF2) is defined as left reference
switch input of motor number two, and the 3rd reference input (REF3) is defined as right reference
switch of stepper motor number one. In that mode, there is no reference switch input available for
stepper motor three. With an external multiplexer 74HC157 any stepper motor may have a left and a
right reference switch.
Many serial stepper motor drivers provide different status bits (driver active, inactive, ...) and error bits
(short to ground, wire open, ...). To have access to those error bits, datagrams with a total length up to
48 bits sent back from the stepper motor driver chain to the TMC428 are buffered within two 24 bit
wide registers. The microcontroller has direct access to these registers. Although, the TMC428
provides datagrams with up to 64 bits, only the last 48 bits sent back from the driver chain are buffered
for read out by the microcontroller. This is because buffering of 3 times 16 bits is sufficient for a chain
of three stepper motor drivers (see Figure 2-1, page 3) and most other drivers sending back up to 16
bits. For a chain of three TMC236 / TMC239 / TMC246 / TMC249 all status bits are accessible. From

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 5

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

the software point of view, the TMC428 provides a set of registers, accessed by a microcontroller (µC)
via a serial interface in an uniform way. Each datagram contains address bits, a read-write selection
bit, and data bits, to access the registers and the on-chip memory. Each time, the µC sends a
datagram to the TMC428, it simultaneously receives a datagram from the TMC428. This simplifies the
communication with the TMC428 and makes the programming easy. Most microcontrollers have an
SPITM hardware interface, which directly connects to the serial four wire microcontroller interface of the
TMC428. For microcontrollers without SPITM hardware, a software doing the serial communication is
completely sufficient and can easily be implemented.

2.3 Notation of Number Systems & Notation of Two to the Power of n

Decimal numbers are used as usual without additional identification. Binary numbers are identified by a
prefixed % character. Hexadecimal numbers are identified by a prefixed $ character. So, for example
the decimal number 42 in the decimal system is written as %101010 in the binary number system, and
it is written as $2A in the hexadecimal number system. With this, TMC428 datagrams are written as 32
bit numbers (e.g. $1234ABCD = %00010010001101001010101111001101). In addition to the basic
arithmetic operators (+, -, *, /) the operator two to the power of n is required at different sections of this
data sheet. For better readability instead of 2n the notation 2^n is used.

2.4 Signal Polarities

Per default, signals– external and internal –are high active, but the polarity of some signals is
programmable to be inverted. A pre-fixed lower case ‘n’ indicates low active signals (e.g. nSCS_C,
nSCS_S). For example the polarity of nSCS_S can be inverted by programming, but also the polarity of
datagram bits can be inverted by programming (see section 9, page 27).

2.5 Units of Motion Parameters

Motion parameters position, velocity, and acceleration are given as integer values within TMC428
specific units. Section 8.14 page 26 explains, how to calculate steps, steps per second, steps per
second square from given TMC428 integer values. With a given stepper motor resolution one can
calculate physical units for angle, angular velocity, angular acceleration.

2.6 Representation of Signed Values by Two’s Complement

Those motion parameters that have to cover negative and positive motion direction as well, are
processed as signed numbers represented by two’s complement as usual. Signed motion parameters
are x_target, x_actual, v_target, v_actual, a_actual. Limit motion parameters as v_min, v_max, a_max,
a_threshold, are represented as unsigned binary numbers.

2.7 Tables of Contents

A table of contents, a table of figures, and a table of tables are located at the end of the data sheet.

3 Package Variants
The TMC428 is available in three different package variants, qualified for the industrial temperature
range. An additional variant is available for the automotive temperature range. The package outlines
and dimensions are included within this data sheet (page 45-47.)

part number Package JEDEC Drawing
TMC428-I SSOP16 – 150 mils, 16 pins, plastic package, industrial (-40°C ... +85°C) MO-137 (150 mils)
TMC428-A SSOP16 – 150 mils, 16 pins, plastic package, automotive (-40°C ... +125°C) MO-137 (150 mils)
TMC428-PI24 SOP24 – 300 mils, 24 pins, plastic package, industrial (-40°C ... +85°C) MS-013 (300 mils)
TMC428-DI20 DIL20 – 300 mils, 20 pins, plastic package, industrial (-40°C ... +85°C)

[This package variant is not recommended for new designs]
MS-001 (300 mils)

Table 3-1: TMC428 package variants

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 6

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

4 Pinning
There are three package variants of the TMC428 available. The smaller SSOP16 package is sufficient
for TRINAMIC stepper motor drivers (TMC236 / TMC239 / TMC246 / TMC249) with up to three drivers
in a chain and for most SPITM stepper motor drivers from other vendors. Some SPITM stepper motor
drivers from other vendors have no serial data output and can not simply be arranged in a daisy chain
to drive more than one motor. The two package variants SOP24 and DIL20 have two additional driver
selection outputs (nSCS2, nSCS3) for those stepper motor drivers without serial data output. All inputs
are Schmitt-Trigger. Possibly unused inputs (REF1, REF2, REF3, SDI_S) need to be connected to
ground.

TM
C

 428-P
I24
V33

nSCS_C

GND

SDI_C

TEST

V5

SCK_C

SDI_S

SDO_C

CLK

nSCS_S

REF2

REF1

REF3

SCK_S

SDO_S

TRIN
A

M
IC

3

4

5

6

7

8

9

10

23

15

16

17

20

21

22

14

1

2

11

12

24

13

18
nSCS2

19
nSCS3

SOP24 (300 MILS)

V5

GND

n.c.

n.c.

n.c.

n.c.

TM
C

428-I/A

V33

nSCS_C

GND

SDI_C

TEST V5

SCK_C

SDI_S

SDO_C

CLK nSCS_S

REF2

REF1

REF3

SCK_S

SDO_S

TRIN
A

M
IC

1

2

3

4

5

6

7

8

16

10

11

12

13

14

15

9

SSOP16 (150 MILS)

DIL20 (300 MILS)

TEST
10

V5
9

REF3
8

REF2
7

REF1
6

1
nSCS3

2
V5

SDI_S
5

GND
4

V33
3

TM
C

 428-D
I20

TRIN
A

M
IC

CLK
11

SCK_S
18

12
GND

nSCS_C
13

SCK_C
14

15
SDI_C

SDO_C
16

17
SDO_S

nSCS_S
19

20
nSCS2

Figure 4-1: TMC428 pin out (*the DIL20 package variant is not recommended for new designs)

Pin SSOP16 SOP24 DIL20* In/Out Description
Reset - - - - internal power-on reset
CLK 5 7 11 I clock input
nSCS_C 6 9 13 I low active SPI chip select input driven from µC
SCK_C 7 10 14 I serial data clock input driven from µC
SDI_C 8 11 15 I serial data input driven from µC
SDO_C / nINT 9 14 16 O serial data output to µC input / multiplexed nINTERRUPT

output if communication with µC is idle (resp. nSCS_C = 1)
Important Note: SDO_C will never be high impedance, but
this function can added with a single gate 74HCT1G125
(pls. refer Figure 4, page 9)

nSCS_S 12 17 19 O SPI chip select signal to stepper motor driving chain
nSCS2 - 18 20 O SPI chip select signal (SOP24 & DIL20 package only)
nSCS3 - 19 1 O SPI chip select signal (SOP24 & DIL20 package only)
SCK_S 11 16 18 O serial data clock output to SPI stepper motor driver chain
SDO_S 10 15 17 O serial data output to SPI stepper motor driver chain
SDI_S 16 23 5 I serial data input from SPI stepper motor driver chain

Note: pull-up/-down resistor at SDI_S avoids high
impedance

REF1 1 2 6 I reference switch input 1
REF2 2 3 7 I reference switch input 2
REF3 3 4 8 I reference switch input 3
V5 13 5, 20 2, 9 +5V supply / +3.3V supply
V33 14 21 3 470 nF ceramic capacitor pin / +3.3V supply
GND 15 8, 22 4, 12 ground
TEST 4 6 10 I must be connected to GND as close as possible to the chip
n.c. - 1, 12, 13, 24 - - not connected

Table 4-1: TMC428 pin out (*the DIL20 package variant is not recommended for new designs)

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 7

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

5 Functional Description and Block Diagram

From the software point of view, the TMC428 provides a set of registers of different units and on-chip
RAM (see Figure 5-1), accessed via the serial µC interface in an uniform way. The serial interface uses
just a simple protocol with fixed length datagrams for read and write access. The serial interface to the
stepper motor driver chain has to be configured by an initialization sequence which writes the
configuration into the on-chip RAM. Once configured the serial driver interface works autonomously.
The internal multiple port RAM controller of the TMC428 takes care of access scheduling. So, the user
may read and write registers and on-chip RAM at any time. The registers hold global configuration
parameters and the motion parameters. The on-chip RAM stores the configuration of the serial driver
interface and the micro step table.

The ramp generator monitors the motion parameters stored in its registers and calculates velocity
profiles controlling the pulse generator. The pulse generator then generates step pulses taking into
account user defined motion parameter limits. The serial driver interface sends datagrams to the
stepper motor driver chain whenever a step pulse comes. The micro step unit (including sequencer)
processes step pulses from the pulse generator– representing micro steps, half steps, or full steps
depending on the selected step resolution –and makes the results available to the serial driver
interface. The ramp generator also interfaces the reference switch inputs. Unused reference switches
have to be connected to ground. A pull-down resistor is necessary at the SDI_S input of the TMC428
for those serial peripheral interface stepper motor drivers that set their serial data output to high
impedance ‘Z’ while inactive.

The interrupt controller continuously watches reference switches and ramp generator conditions and
generates an interrupt if required. To save pins, the interrupt signal is multiplexed to the SDO_C signal.
This output becomes the low active interrupt signal called nINT while nSCS_C is high (see Figure 6-1,
page 8). So, if the microcontroller disables the interrupt during access to the TMC428 and enables the
interrupt otherwise, the multiplexed interrupt output of the TMC428 behaves like a dedicated interrupt
output. For polling, the TMC428 sends the status of the interrupt signal to the microcontroller with each
datagram.

To drive a stepper motor to a new target position, one just has to write the target position into the
associated register by sending a datagram to the TMC428. To run a stepper motor with a target
velocity, one just has to write the velocity into the register assigned to the stepper motor.

nSCS_C
SCK_C
SDI_C

SDO_C

serial µC interface

CLK

TEST

multiple
ported RAM

interrupt
controller

serial driver interface

nSCS_S
SCK_S
SDO_S
SDI_S

[nSCS3]
[nSCS2]

10K

micro step unit
(including
sequencer)

ramp generator
&

pulse generator

R
EF

1
R

EF
2

R
EF

3

voltage
regulator

V5

GND

V33

470nF

power-on
reset

Figure 5-1: TMC428 functional block diagram

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 8

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

6 Serial Peripheral Interfaces
The four pins named SCS_C, SCK_C, SDI_C, SDO_C form the serial microcontroller interface of the
TMC428. The communication between the microcontroller and the TMC428 takes place via 32 bit
datagrams of fixed length. Concerning communication, the µC is the master and the TMC428 is the
slave, with the TMC428 in turn being the master for the stepper motor driver daisy chain. Similar to the
microcontroller interface, the TMC428 uses a four wire serial interface for communication with the
stepper motor driver daisy chain. The four pins named SCS_S, SCK_S, SDO_S, SDI_S form the serial
stepper motor driver interface. Stepper motor drivers with parallel inputs can be used in connection
with the TMC428 with some additional glue logic.

6.1 Automatic Power-On Reset

The TMC428 performs an automatic power-on reset. For details see section Power-On-Reset, page
50. The TMC428 cannot be accessed before the power-on-reset is completed and the clock is stable.
All register bits are initialized with ‘0’ during power on reset, except the SPI clock pre-divider clk2_div
(see section 9.7, page 29) that is initialized with 15.

6.2 Serial Peripheral Interface for µC

The serial microcontroller interface of the TMC428 behaves as a simple 32 bit shift register. It shifts
serial data SDI_C in with the rising edge of the clock signal SCK_C and copies the content of the 32 bit
shift register with the rising edge of the selection signal nSCS_C into a buffer register. The serial
interface of the TMC428 immediately sends back data read from registers or read from internal RAM
via the signal SDO_C. The signal SDO_C can be sampled with the rising edge of SCK_C, but SDO_C
becomes valid at least four CLK clock cycles after SCK_C becomes low as outlined in the timing
diagram Figure 6-1. For detailed timing parameters see Table 6-1, page 10. The SPI signals from the
µC interface may be asynchronous to the clock signal CLK of the TMC428.

Because of on-the-fly processing of the input data stream, the serial microcontroller interface of the
TMC428 requires the serial data clock signal SCK_C to have a minimum low / high time of three clock
cycles. The data signal SDI_C driven by the microcontroller has to be valid at the rising edge of the
serial data clock input SCK_C. The maximum duration of the serial data clock period is unlimited.
While the µC interface of the TMC428 is idle, the SDO_C signal is the (active low) interrupt status nINT
of the integrated interrupt controller of the TMC428. The timing of the multiplexed interrupt status
signal nINT is characterized by the parameters tIS an tSI (see Table 6-1, page 10).

Hint: If the microcontroller and the TMC428 work on different clock domains that run asynchronous to
each other, the timing of the SPI interface of the microcontroller should be made conservative in the
way that the length of one SPI clock cycle equals 8 or more clock cycles of the TMC428 clock CLK.
This make the system robust concerning frequency drift, jitter, etc.

tSDtSD

CLK

sdi_c_bit#31

tSCKCL tSCKCHtSUCSC tHDCSC

1 x SDI_C sampled
one full 32 bit datagram

nINTSDO_C

SDI_C

SCK_C

nSCS_C

sdi_c_bit#30 . . . sdi_c_bit#1

30 x sampled SDI_C

sdi_c_bit#0

1 x SDI_C sampled

tCLK

tDATAGRAMuC

sdo_c_bit#31 sdo_c_bit#30 ... sdo_c_bit#1 sdo_c_bit#0
tPD

nINT
tIS

tSD

tSI

tHDCSC tSUCSC

Figure 6-1: Timing diagram of the serial µC interface

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 9

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

A complete serial datagram frame has a fixed length of 32 bit. While the data transmission from the
microcontroller to the TMC428 is idle, the low active serial chip select input nSCS_C and also the serial
data clock signal SCK_C are set to high. While the signal nSCS_C is high, the TMC428 assigns the
status of the internal low active interrupt signal named nINT to the serial data output SDO_C (see
Figure 6-1). The serial data input SDI_C of the TMC428 has to be driven by the microcontroller.

Important Hint: In contrast to most other SPITM compatible devices, the SDO_C signal of the TMC428
is always driven. So, it will never be high impedance ‘Z’. If high impedance is required for the SDO_C
connected to the microcontroller, it can simply be realized using a single gate 74HCT1G125.

SCK_S

SDO_S

SDI_S

nSCS_S
REF2 REF3REF1

TEST GNDCLK V5V33

TMC428
SCK_C

SDI_C

nSCS_C

SDO_C

74HCT1G125

SCK_C

SDI_C

nSCS_C

SDOZ_C

Figure 4 : Making the TMC428 SDO_C output high impedance with single gate 74HCT1G125

The signal nSCS_C has to be high for at least three clock cycles before starting a datagram
transmission. To initiate a transmission, the signal nSCS_C has to be set to low. Three clock cycles
later the serial data clock may go low. The most significant bit (MSB) of a 32 bit wide datagram comes
first and the least significant bit (LSB) is transmitted as the last one. A data transmission is finished by
setting nSCS_C high three or more CLK cycles after the last rising SCK_C slope. So, nSCS_C and
SCK_C change in opposite order from low to high at the end of a data transmission as these signals
change from high to low at the beginning. The timing of the serial microcontroller interface is outlined in
Figure 6-1.

6.3 Serial Peripheral Interface to Stepper Motor Driver Chain

The timing of the serial stepper motor interface is similar to that of the microcontroller interface. It
directly connects to SPITM smart power stepper motor drivers. The SPITM datagram is configurable
individually for each stepper motor driver chip of the daisy chain. It is simply configurable by sending a
fixed sequence of datagrams to the TMC428 to initialize it after power-up. Once initialized, the TMC428
autonomously generates the datagrams for the stepper motor driver daisy chain without any additional
interventions of the microcontroller.

The SPITM datagram for each stepper motor driver is composed of so called primary signal bits
provided by the micro step unit of the TMC428 individually for each stepper motor. Each primary signal
bit is represented by a five bit code word called primary signal code. The order of primary signal bits
forming the SPITM datagrams for the stepper motor driver daisy chain is defined by the order of primary
signal code words in the configuration RAM area.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 10

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

CLK

tCLK

SCK_S

nSCS_S

SDI_S

SDO_S

sdi_s_bit#0

tPD tPD tPD

1 x sampled SDI_S

tSUSCSdrv tHDSCSdrv tCKSL tCKSH

sdo_s_bit#0

sdi_s_bit#n-1

sdo_s_bit#n-1sdo_s_bit#1

sdi_s_bit#1

sdo_s_bit#n

sdi_s_bit#n

m datagram bits

one full stepper motor driver datagram

tDATAGRAMdrv

1 x sampled SDI_Sm x sampled SDI_S

Figure 6-3: Timing diagram of the serial stepper motor driver interface

To switch to the next motor, an additional bit called next motor bit (NxM-Bit) is prefixed to the five bit
wide primary signal code words. So, the total data word width is six bit. Each NxM-Bit effects an
increment of an internal stepper motor address until the processing for all stepper motors within the
daisy chain is completed. A parameter called LSMD (last stepper motor driver) defines the total
number of stepper motors within the daisy chain. So, the codes written into the serial interface
configuration RAM area represent the mapping of control signals provided by the micro step units to
control bits of the drivers. It might be noted here, that configuring the serial driver interface is much
easier as it might seem here. It is explained in detail, illustrated by examples below (see section 11
Stepper Motor Driver Datagram Configuration, page 36).

Symbol Parameter Min Typ Max Unit
tSUCSC Setup Clocks for nSCS_C 3 ∞ CLK periods
tHDCSC Hold Clocks for nSCS_C 3 ∞ CLK periods
tSCKCL Serial Clock Low 3 ∞ CLK periods
tSCKCH Serial Clock High 3 ∞ CLK periods
tSD SDO_C valid after SCK_C low 2.5 3.5 CLK periods
tIS nINTERRUPT status valid after nSCS_C low 2.5 CLK periods
tSI SDO_C valid after nSCS_C high 4.5 CLK periods
tDAMAGRAMuC Datagram Length 3+3 + 32*6 = 198 ∞ CLK periods
tDAMAGRAMuC Datagram Length 12.375 ∞ µs
fCLK Clock Frequency 0 16 MHz
tCLK Clock Period tCLK = 1 / fCLK 62.5 ∞ ns
tPD CLK-rising-edge-to-Output Propagation Delay 5 ns

Table 6-1: Timing characteristics of the serial microcontroller interface

Symbol Parameter Min Typ Max Unit
tSUSCSdrv 8 16 256 CLK periods
tHDSCSdrv 8 16 256 CLK periods
tCKSL 8 16 256 CLK periods
tCKSH 8 16 256 CLK periods
tDAMAGRAMdrv Datagram Length 8+8+1*16+8+8=48 512+64*512+512= 33792 CLK periods
tDAMAGRAMdrv Datagram Length @ fCLK = 16

MHz
3 2112 µs

tPD CLK-rising-edge to Outputs Delay 5 ns

Table 6-2: Timing characteristics of the serial stepper motor driver interface

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 11

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

The timing of the serial driver interface is programmable in a wide range. The clock divider provides 16
up to 512 clock cycles (tCLK) for a serial driver interface data clock period. The default duration of a
clock period (tSCKCL+tSCKCH) of the signal nSCS_S is 16+16=32 clock periods of the clock signal
CLK. The minimal duration of a serial interface clock period (tSCKCL+tSCKCH) is 8+8=16 clock cycles
of signal CLK as outlined in Figure 6-3. Also, the polarities of the signals nSCS_S and SCK_S are
programmable to use driver chips from other vendors with inverted polarities without additional glue
logic. The input SDI_S of the serial driver interface must always be driven to a defined level. So, to
avoid high impedance (‘Z’) at that input pin while the stepper motor driver chain is idle, a pull-up
resistor or a pull-down resistor of 10 KΩ is required at that input.

6.4 Datagram Structure

The microcontroller (µC) communicates with the TMC428 via the four wire (nSCS_C, SCK_C, SDI_C,
SDO_C) serial interface. Each datagram sent to the TMC428 via the pin SDI_C and each datagram
received from the TMC428 via the pin SDO_C is 32 bits long. The first bit sent is the MSB (most
significant bit named sdi_c_bit#31 at Figure 6-1). The last bit sent is the LSB (least significant bit
named sdi_c_bit#0 in Figure 6-1). During reception of a datagram, the TMC428 immediately sends
back a datagram of the same length to the microcontroller. This datagram is the result of the request
from the microcontroller.

With each 32 bit wide datagram the microcontroller sends to the TMC428, it simultaneously receives a
32 bit wide datagram. A read request is distinguished from a write request by one datagram bit named
RW. The TMC428 immediately sends back requested read data in the lower 24 datagram bits. Status
bits are sent back in the higher 8 datagram bits. Datagrams sent from the microcontroller to the
TMC428 have the form:

M
SB 32 bit DATAGRAM sent from µC to the TMC428 via pin SDI_C

LSB

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

R
R

S ADDRESS

R
W

 DATA

Table 6-3 : 32 bit DATAGRAM structure sent from µC (MSB sent first)

The 32 bit wide datagrams sent to the TMC428 are assorted in four groups of bits: RRS (register RAM
select) selecting either registers or on-chip RAM; ADDRESS bits addressing memory within the
register set or within the RAM area; RW (read / not write (RW=1 : read / RW=0 : write)) bit
distinguishing between read access and write access; DATA bits for write access– for read access
these bits are don’t care and should be set to ‘0‘. Different internal registers of the TMC428 have
different lengths. So, for some registers only a subset of these 24 data bits is used. Unused data bits
should be set to ‘0‘ for clearness. Some addresses select more than a single register mapped together
into the 24 data bit space.

The 32 bit wide datagrams received by the µC from the TMC428 contain two groups of bits: STATUS
BITS and DATA BITS. The status bits, sent back with each datagram, carry the most important
information about internal states of the TMC428 and the settings of the reference switches. These
datagrams have the form:

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 12

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

M
SB

32 bit DATAGRAM sent back from the TMC428 to µC via pin SDO_C

LSB

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

STATUS BITS DATA BITS
SM3 SM2 SM1

IN
T

C
D

G
W

R

S3
xEQ

t3
R

S2
xEQ

t2
R

S1
xEQ

t1

Table 6-4: 32 bit DATAGRAM structure received by µC (MSB received first)

The status bit INT is the internal high active interrupt controller status output signal. Handling of
interrupt conditions without using interrupt techniques is possible by polling this status bit. The interrupt
signal is also directly available at the SDO_C pin of the TMC428 if nSCS_C is high. The pin SDO_C
may directly be connected to an interrupt input of the microcontroller. Since the SDO_C / nINT output
is multiplexed, the microcontroller has to disable its interrupt input while it sends a datagram to the
TMC428, because the SDO_C signal– driven by the TMC428 –alternates during datagram
transmission. For initialization purposes, the TMC428 enables direct communication between the
microcontroller and the stepper motor driver chain by sending a so called cover datagram (see
sections 9.2 and 9.3). The position cover_position and actual length cover_len of a cover datagram
is specified by writing them into a common register. Writing an up to 24 bit wide cover datagram to the
register cover_datagram will fade in that cover datagram into the next datagram sent to the stepper
motor driver chain. As a default setting, the TMC428 only sends datagrams on demand. Optionally,
continuous update– periodic sending of datagrams to the stepper motor driver chain –is also possible.
So, the status bit named CDGW (cover datagram waiting) is a handshake signal for the microcontroller
in regard to the datagram covering mechanism. This feature is necessary to enable direct data
transmission from a microcontroller to the stepper motor driver chips for initialization purposes. The
CDGW status bit also gives the status of the datagram_high_word and datagram_low_word (see
section 9.1).

The status bits RS3, RS2, RS1 represent the settings of the reference switches. But, the reference
switch inputs REF3, REF2, REF1 are not mapped directly to these status bits. Rather, the reference
switch inputs may have different functions, depending on programming (see pages 22 - 24). The three
status bits xEQt3, xEQt2, xEQt1 indicate individually for each stepper motor, if it has reached its target
position. The status bits RS3, RS2, RS1 and bits xEQt3, xEQt2, xEQt1 can trigger an interrupt or
enable simple polling techniques.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 13

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

6.5 Simple Datagram Examples
The % prefix– normally indicating binary representation in this data sheet –is omitted for the following
datagram examples. Assuming, one would like to write (RW=0) to a register (RRS=0) at the address
%001101 the following data word %0000 0000 0000 0001 0010 0011, one would have to send the
following 32 bit datagram

 01100110000000000000000100100011

to the TMC428. With inactive interrupt (INT=0), no cover datagram waiting (CDGW=0), all reference
switches inactive (RS3=0, RS2=0, RS1=0), and all stepper motors at target position (xEQt3=1,
xEQt2=1, xEQt1=1) the status bits would be %10010101 the TMC428 would send back the 32 bit
datagram:
 10010101000000000000000000000000

To read (RW=1) back the register written before, one would have to send the 32 bit datagram

 01100111000000000000000000000000

to the TMC428 and would get back from it the datagram

 10010101000000000000000100100011.

Write (RW=0) access to on-chip RAM (RRS=1) to an address %111111 occurs similar to register
access, but with RRS=1. To write two 6 bit data words %100001 and %100011 to successive pair-wise
RAM addresses %1111110 and %1111111 (%100001 to %1111110 and %100011 to %1111111)
which are commonly addressed by one datagram (see pages 14 and 35), one would have to send the
datagram

 11111110000000000010001100100001.

To read (rw=1) from that on-chip memory address, one would have to send the datagram
 11111111000000000000000000000000.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 14

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

7 Address Space Partitions
The address space is partitioned in different ranges. Each of the up to three stepper motors has a set
of registers individually assigned to it, arranged within a contiguous address space. An additional set of
registers within the address space holds some global parameters common for all stepper motors. One
dedicated global parameter register is essential for the configuration of the serial four wire stepper
motor driver interface. One half of the on-chip RAM address space holds the configuration parameters
for the stepper motor driver chain. The other half of the on-chip RAM address space is provided to
store a micro step table if required. The first seven datagram bits (sdi_c_bit#31 and sdi_c_bit#30 ...
sdi_c_bit#25, respectively RRS and ADDRESS) address the whole address space of the TMC428.

address ranges (incl. RRS) assignment
%000 0000 . . . %000 1111 16 registers for stepper motor #1
%001 0000 . . . %001 1111 16 registers for stepper motor #2
%010 0000 . . . %010 1111 16 registers for stepper motor #3
%011 0000 . . . %011 1110 15 common registers
 %011 1111 1 global parameter register

registers
with up to
24 bits

%100 0000 . . . %101 1111 32 addresses of 2x6 bit for driver chain configuration
%110 0000 . . . %111 1111 32 addresses of 2x6 bit for microstep table

RAM
128x6 bit

Table 7-1: TMC428 address space partitions

The stepper motors are controlled directly by writing motion parameters into associated registers. Only
one register write access is necessary to change a target motion parameter. E.g. to change the target
position of one stepper motor, the microcontroller has to send only one 32 bit datagram to the
TMC428. The same is true for changing a target velocity. Some parameters are packed together in a
single data word at a single address. Those parameters– initialized once and unchanged during
operation –have to be changed commonly. Access to on-chip RAM addresses concern two successive
RAM addresses. So, always two data words are modified with each write access to the on-chip RAM.
Once initialized after power-up, the content of the RAM is usually left unchanged.

7.1 Read and Write

Read and write access is selected by the RW bit (sdi_c_bit#24) of the datagram sent from the µC to
the TMC428. The on-chip configuration RAM and the registers are writeable with read-back option.
Some addresses are read-only. Write access (RW=0) to some of those read-only registers triggers
additional functions, explained in detail later.

7.2 Register Set

The register address mapping is given in Table 7-2 on page 15. These registers are initialized internally
during power-up. During power-up initialization, the TMC428 sends no datagrams to the stepper motor
driver chain.

Note: The RAM has to be initialized before writing target parameters to the register set.

7.3 RAM Area

The RAM address mapping is given in Table 10-1 page 35. The on-chip RAM is NOT initialized
internally during power-up. This has to be done by the microcontroller before operation.

Note: There are unused addresses within the address space of the TMC428. Access to these
addresses has no effect. How ever, access should be avoided, because this address space may be
used for future devices.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 15

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Important Hint: All register bits are initialized with ‘0’ during power on reset, except the SPI clock pre-
divider clk2_div (see section 9.7, page 29) that is initialized with 15.

32 bit DATAGRAM sent from a µC to the TMC428 via pin SDI_C

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

R
R

S

ADDRESS

R
W

 DATA

smda IDX three stepper motor register sets (SMDA={00, 01, 10})
0 0 0 0 x_target
0 0 0 1 x_actual
0 0 1 0 v_min
0 0 1 1 v_max
0 1 0 0 v_target
0 1 0 1 v_actual
0 1 1 0 a_max
0 1 1 1 a_actual
1 0 0 0 is_agtat is_aleat is_v0 a_threshold
1 0 0 1 1 pmul pdiv
1 0 1 0 lp ref_conf rm
1 0 1 1 interrupt_mask interrupt_flags
1 1 0 0 pulse_div ramp_div usrs
1 1 0 1 dx_ref_tolerance

0

0

1

0

1

0

1 1 1 0 x_latched
JDX common registers (SMDA=11)

0 0 0 0 datagram_low_word
0 0 0 1 datagram_high_word
0 0 1 0 cw cover_position cover_len
0 0 1 1 cover_datagram
1 0 0 0 power-down

1 1

1 1 1 0 l3 r3 l2 r2 l1 r1

polarities

0

1 1 1 1 1 1

R
W

=0 : W
R

ITE access / R
W

=1 : R
EAD

 access

m
ot1r

refm
ux

 cont_update

clk2_div

cs_C
om

Ind
D

AC
_AB

FD
_AB

PH
_AB

SC
K_S

nSC
S_S

LSMD

R
R

S ADDRESS

R
W

 DATA

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Table 7-2: TMC428 register address mapping

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 16

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

8 Register Description
The registers hold binary coded numbers. Some are unsigned (positive) numbers, some are signed
numbers in two’s complement, and some are control bits or single flags. The functionality of different
registers depends on the ramp mode (s. page 22).

8.1 x_target (IDX=%0000)

This register holds the current target position in units of full steps, respectively micro steps. The unit of
the target position depends on the setting of the associated micro step resolution register usrs. If the
difference x_target - x_actual is unequal zero, the TMC428 moves the stepper motor in that direction
of x_target so that the difference becomes zero. The condition | x_target - x_actual | < 223 must be
satisfied for motion into the correct direction. Both, target position x_target and current position
x_actual may be altered on the fly. Usually x_target is modified to start a positioning. To move from
one position to another, the ramp generator of TMC428 automatically generates ramp profiles in
consideration of the velocity limits v_min and v_max and acceleration limit a_max.

Note: The registers x_target, x_actual, v_min, v_max, and a_max are initialized with zero after
power up. Thus, no step pulses are generated because motion is prohibited.

8.2 x_actual (IDX=%0001)

The current position of each stepper motor is available by read out of the registers called x_actual.
The actual position can be overwritten by the microcontroller. This feature is for reference switch
position calibration under control of the microcontroller.

8.3 v_min (IDX=%0010)

This register holds the absolute value of the velocity at or below which the stepper motor can be
stopped abruptly. The parameter v_min is relevant only for deceleration while reaching a target
position. It should be set greater than zero. This control value allows to reach the target position faster
because the stepper motor is not slowed down below v_min before the target is reached. Also
consider, that due to the finite numerical representation of integral relations, the target position can not
be reached exactly, if the calculated velocity is less than one, before the target is reached. So, setting
v_min to at least one assures reaching each target position exactly. The unit of velocity parameters
(v_max, v_target, and v_actual) is steps per time unit. The scale of velocity parameters (v_min,
v_max, v_target, v_actual) is defined by the parameter pulse_div (see page 26 for details) and
depends on the clock frequency of the TMC428.

v_max

t

v(t)

t0 t1

a_
max

v_min

t3 t4t2

∆∆∆∆v

t7 t8t5

∆∆∆∆va_
max

- a_max

- a_max

t6

acceleration constant velocity deceleration acceleration deceleration

∆∆∆∆t01 ∆∆∆∆t56

Figure 8-1: Velocity ramp parameters and velocity profiles

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 17

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

8.4 v_max (IDX=%0011)

This parameter sets the maximum motor velocity. The absolute value of the velocity will not exceed
this limit, except if the limit v_max is changed during motion to a value below the current velocity.

Note: To set target position x_target and current position x_actual to an equivalent value (e.g. to set
both to zero at a reference point), the assigned stepper motor should be stopped first, and the
parameter v_max should be set to zero to hold the assigned stepper motor at rest before writing into
the register x_target and x_actual.

8.5 v_target (IDX=%0100)

In modes RAMP_MODE and SOFT_MODE this register holds the current target velocity calculated
internally by the ramp generator. In mode VELOCITY_MODE a target velocity can be written into this
register. Then the associated stepper motor accelerates until it reaches the target velocity specified. In
VELOCITY_MODE the velocity is changed according to the motion parameter limits if the register
v_target is changed. In HOLD_MODE the register v_target is ignored.

8.6 v_actual (IDX=%0101)

This read-only register holds the current velocity of the associated stepper motor. Internally, the ramp
generator of the TMC428 processes with 20 bits while only 12 bits can be read out as v_actual. So, an
actual velocity of zero read out by the microcontroller means that the current velocity is in an interval
between zero and one. Because of this, the actual velocity should not be used to detect a stop of a
stepper motor. For stop detection there is a dedicated bit within the interrupt register, which can simply
be read out by the micro processor or generate an interrupt. Writing zero to register v_actual, which is
possible in HOLD_MODE only, immediately stops the associated stepper motor, because hidden bits
are set to zero with each write access to the register v_actual. In HOLD_MODE only, this register is a
read-write register. In HOLD_MODE, motion parameters are ignored and the microcontroller has the
full control to generate a ramp. In that mode, the TMC428 only handles the microstepping and
datagram generation for the associated stepper motor of the daisy chain.

8.7 a_max (IDX=%0110)

The absolute value of the maximum acceleration is defined by this register. It ranges from 0 to 2047.
The unit of the acceleration is change of step frequency per time unit divided by 256. The scale of
acceleration parameters (a_max, a_actual, a_threshold) is defined by the parameter ramp_div (see
section 8.14, page 26 for details) and depends on the clock frequency of the TMC428. Setting a_max
to zero during motion of the stepper motor results in the inability of the stepper motor to stop, because
it cannot change its velocity.

8.7.1 a_max_lower_limit & a_max_upper_limit for ramp_div ≠≠≠≠ pulse_div

Under special conditions, the parameter a_max might have a lower limit (>1) and might an upper limit
(<2047) concerning deceleration in RAMP_MODE and SOFT_MODE if the difference between
ramp_div and pulse_div is more than one. This is because the deceleration ramp is internally limited
to 2^19 steps respectively micro steps, which is sufficient for most applications. The lower limit
concerning the deceleration is given by

a_max_lower_limit = 2^(ramp_div - pulse_div –1)

With v_max set to 2048 / √2 (≈ 1448) or lower, the a_max_lower_limit is half of this value. If
ramp_div - pulse_div – 1 ≤ 0 the limit a_max_lower_limit is 1 and the parameter a_max may be set
to down to 1 and of course to 0. On the other side, the upper limit of a_max is given by

 a_max_upper_limit = 2^(ramp_div - pulse_div + 12) – 1

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 18

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

So, if ramp_div - pulse_div + 1 ≥ 0 the a_max_upper_limit is > 2048 and the parameter a_max
might be set to any value up to 2047.

Important Note: So, a_max can be set without restrictions within its range of 0 to 2047 for those
combinations of ramp_div and pulse_div with | ramp_div - pulse_div | ≤≤≤≤ 1.

The parameter a_max must not be set below a_max_lower_limit except a_max is set to 0. The
condition a_max ≥ a_max_lower_limit as well as a_max ≤ a_max_upper_limit must be satisfied to
reach any target position without oscillations. If that condition is not satisfied, oscillations around a
target position may occur. For description of the parameters ramp_div and pulse_div see page 26.

So, a_max_lower_limit and a_max_upper_limit restrict the allowed range of a_max only for those
cases where ramp_div is non-equal to pulse_div and differ more than one. These both limits of
a_max concern the deceleration phase for RAMP_MODE and SOFT_MODE only. As long as
ramp_div ≥≥≥≥ pulse_div – 1 is valid, any value of a_max within its range (0,1, ..., 2047) is allowed and
there exists a valid pair {pmul, pdiv} for each a_max. Qualitative verbalized, this is because the
acceleration scaling determined by ramp_div is compatible with the step velocity scaling determined
by pulse_div. In other words, large ramp_div stands for low acceleration where large pulse_div
stands for low velocity and low acceleration is compatible with low speed and high speed as well, but
high acceleration is more compatible with high speed.

Important Note: Changing at least one parameter out of the triple {a_max, ramp_div, pulse_div}
requires re-calculation of the parameter pair {pmul, pdiv} to update the associated register. For
description of the parameters pmul and pdiv see section 8.10, page 19.

8.8 a_actual (IDX=%0111)

The actual acceleration, which the TMC428 actually applies to a stepper motor, can be read out by the
microcontroller from this read-only register for monitoring purposes. The actual acceleration is used to
select scale factors for the coil currents. Internally, it is updated with each clock. The returned value
a_actual is smoothed to avoid oscillations of the readout value. Thus, returned a_actual values
should not be used directly for precise calculations.

8.9 is_agtat & is_aleat & is_v0 & a_threshold (IDX=%1000)

These parameters represent current scaling values Is and are applied to the motor depending on the
ramp phase: The parameter is_agtat is applied if the acceleration (a) is greater than (gt) a threshold
acceleration (at). This is to increase current during acceleration phases. The parameter is_aleat is
applied if the acceleration is lower than or equal to (le) the threshold acceleration. This is the nominal
motor current. The third parameter is_v0 is applied if the stepper motor is at rest, to save power, to
keep it cool, and to avoid noise probably caused by chopper drivers. The parameter a_threshold is the
threshold used to compare with the current acceleration to select the current scale factor. The three
parameters is_agtat, is_aleat, and is_v0 are bit vectors of three bit width. One of these is selected
conditionally and assigned to an interim bit vector i_scale. The current scaling factor Is is defined in
Table 8-1.

i_scale Is
0 0 0 1 = 100 %
0 0 1 1 / 8 = 12.5 %
0 1 0 2 / 8 = 25 %
0 1 1 3 / 8 = 37.5 %
1 0 0 4 / 8 = 50 %
1 0 1 5 / 8 = 62.5 %
1 1 0 6 / 8 = 75 %
1 1 1 7 / 8 = 87.5 %

Table 8-1: Coil current scale factors

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 19

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Important Notes: The maximum current scaling factor 1 is selected by i_scale = %000. This is the
power-on default. The minimum current scaling factor 1/8 = 0.125 is selected by i_scale = %001. The
current scaling factor Is proportionally reduces the effective number of micro steps per full step. For
example, with i_scale = %100 (= 4/8 = 50%) the number of effective micro steps per full step is
halved.

One of the three scale factors is_agtat, is_aleat, and is_v0 is selected according to Table 8-2. If the
velocity is zero, the parameter is_v0 is used for scaling. If the velocity is not zero, either is_aleat or
is_agtat is used for scaling, depending on the absolute value of the acceleration and the acceleration
threshold a_threshold.

v = 0 Is := is_v0
| a | ≤ athreshold Is := is_aleat v ≠ 0
| a | > athreshold Is := is_agtat

Table 8-2: Current scale selection scheme

The automatic motion dependent current scale feature of the TMC428 is provided primarily for micro
step operation. It may also be applied for full step or half step drivers, if those provide current control
bits. For those drivers, one could initialize the micro step table with a constant function, square function
or sine wave using the two most significant DAC bits.

The configuration bit continuous_update of the stepper motor global parameter register (Table
9-1, page 30) must be set to ‘1’ to make sure that the coil current is scaled for v=0 if all motors are at
rest.

8.10 pmul & pdiv (IDX=%1001)

The stepper motors are driven with a trapezoidal velocity profile, which may become triangular if the
maximum velocity is not reached (see Figure 8-1, page 16). Depending on the difference between the
target position x_target and the actual position x_actual, the ramp generator continuously calculates
target velocities v_target for the pulse generator (see Figure 8-2, page 20). The pulse generator then
generates (micro) step pulses taking into account the motion parameter limits (v_min, v_max,
a_max). With a target velocity proportional to the difference of target position x_target and current
position x_actual, the stepper motor approaches the target position. This also works, if the target
position is changed during motion. The stepper motor moves to a target position until the difference
between the target position x_target and the current position x_actual vanishes.

With the right proportionality factor p, target positions are quickly reached and without overshooting
them. The proportionality factor primarily depends on the acceleration limit a_max and on the two clock
divider parameters pulse_div and ramp_div. These two separate clock divider parameters– set to the
same value for most applications –give an extremely wide dynamic range for acceleration and velocity.
These two separate parameters allow reaching very high velocities with very low acceleration.

If the proportionality factor p is set too small, this results in a slow approach to the target position. If set
too large, it causes overshooting and even oscillations around the target position. The calculation of
the proportionality factor is simple:

The representation of the proportionality factor p by the two parameters p_mul and p_div is some kind
of a fixed point representation. It is

p = p_mul / p_div

with

p_mul = {128, 128+1, 128+2, 128+3, ..., 128+127}

and

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 20

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

 p_div = {23, 24, 25, ..., 214, 215, 216}.

Instead of direct storage of the parameters p_mul and p_div, the TMC428 stores two parameters
called pmul and pdiv, with

p_mul = 128 + pmul and p_div = 23+pdiv= 2^(3+pdiv)

where
 pmul = {0, 1, 2, 3, ..., 127} and pdiv = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

The reason why p_mul ranges from 128 to 255 is, that p is divided by p_div which is a power of two
ranging from 8 to 65536. So, values of p less than 128 can be achieved by increasing p_div.

Note: The parameters pmul and pdiv share a single address (IDX=%1001, see Table 7-2, page 15).
The MSB of p_mul is fixed set to ‘1’. So, sending pmul internally sets p_mul = 128 + pmul. In other
words, %10000000 = 128 is ORed as bit vector with the content of the register pmul.

v_max

RAMP GENERATOR PULSE GENERATOR (micro) step pulses
v_target

x_target

x_actual

pdivpmul a_maxv_min

pulse_divramp_div
clk32

clock_div32clk

Figure 8-2: Ramp generator and pulse generator

The parameter p has to be calculated for a given acceleration. This calculation is not done by the
TMC428 itself, because this task has to be done only once for a given acceleration limit. The
acceleration limit is a stepper motor parameter, which is usually fixed in most applications. If the
acceleration limit has to be changed nevertheless, the microcontroller could calculate on demand a
pair of p_mul and p_div for each acceleration limit a_max and given ramp_div and pulse_div. Also,
pre-calculated pairs of p_mul and p_div read from a table maybe sufficient.

8.11 Calculation of p_mul and p_div

The proportionality factor p = p_mul / p_div depends on the acceleration limit a_max and frequency
pre-divider parameters ramp_div and pulse_div. So, a pair of p_mul / p_div has to be calculated
once for each provided acceleration limit a_max. There may exist more than one valid pair of p_mul
and p_div for a given a_max. To accelerate, the ramp generator accumulates the acceleration value
to the actual velocity with each time step. Internally, the absolute value of the velocity is represented by
11+8 = 19 bits, while only the most significant 11 bits and the sign are used as input for the step pulse
generator. So, there are 211 = 2048 values possible to specify a velocity, ranging from 0 to 2047. The
ramp generator accumulates a_max divided by 28 = 256 at each time step to the velocity during
acceleration phases. So, the acceleration from velocity = 0 to maximum velocity = 2047 spans over
2048* 256 / a_max pulse generator clock pulses. Within that acceleration phase, the pulse generator
generates S = ½ * 2048* 256 / a_max * T steps for the (micro) step unit. The parameter T is the clock

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 21

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

divider ratio T = 2ramp_div / 2pulse_div = 2ramp_div - pulse_div = 2^(ramp_div-pulse_div). During acceleration, the
velocity has to be increased until the velocity limit v_max is reached or deceleration is required to
reach the target position exactly (see Figure 8-1). The TMC428 automatically decelerates, if required
using the difference between current position and target position and the proportionality parameter p,
which has to be p = 2048 / S. With this, one gets p = 2048 / ((½ * 2048* 256 / a_max) *
2^(ramp_div-pulse_div)). This expression can be simplified to

p = a_max / (128 * 2^(ramp_div-pulse_div)).

To avoid overshooting, the parameter p_mul should be made approximately 5% smaller than
calculated. Alternatively, one can arrange p reduced by an amount of 5%. If the proportionality
parameter p is too small, the target position will be reached slower, because the slow down ramp starts
earlier. The target position is approached with minimal velocity v_min, whenever the internally
calculated target velocity becomes less than v_min. With a good parameter p the minimal velocity
v_min is reached a couple of steps before the target position. With parameter p set a little bit to large
and small v_min overshooting of one step respectively one micro step may occur. Decrementation of
the parameter pmul avoids such one-step overshooting.

Note: Changing at least one parameter out of the triple {a_max, ramp_div, pulse_div} requires re-
calculation of the parameter pair {pmul, pdiv} to update the associated register if necessary.

∆∆∆∆v

v_max

v(t)

v_min

p too small
p too large

p good

t1t0 t2

Figure 8-3: Proportionality parameter p and outline of velocity profile(s)

On first approach, to represent the parameter p = p_mul / p_div = (128+pmul) / 2^(3+pdiv) one
chooses a pair of pmul and pdiv that approximates p, with pmul in range 0 ... 127 representing p_mul
in range 128 ... 255 and pdiv one out of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} representing p_div
one out of {8, 16 , 32 ,64, 128 , 256, 512, 1024, 2048, 4096, 8192, 16384, 32786, 65536}. There are
only 128 * 14 = 1792 pairs of (pmul, pdiv). So, one can simply try all possible pairs (pmul, pdiv) with a
program and choose a matching pair. To find a pair, one calculates

p = a_max / (128 * 2^(ramp_div-pulse_div))

and

p’ = p_mul / p_div = (128+pmul) / 2^(3+pdiv)

and

q = p’ / p

for each pair (pmul , pdiv) and select one of the pairs satisfying the condition 0.95 < q < 1.0. So, the
value q interpreted as a function q(a_max, ramp_div, pulse_div, pmul, pdiv) gives the quality
criterion required. Although q = 1.0 indicates that (pmul , pdiv) perfectly represents the desired p for a
given a_max, this could cause overshooting because of finite numerical precision. In case of high

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 22

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

resolution microstepping, overshooting of one micro step is negligible in most applications. To avoid
overshooting, use pmul-1 instead of the selected pmul or select a pair (pmul, pdiv) with q = 0.95. The
first given source code example ‘pmulpdiv.c’ showing programming in C language based on this brute
force approach. Some conversions of the base present equations help to reduce the calculation effort
drastically.

8.11.1 Optimized Calculation of p_mul and p_div

With the equations above, one can simplify the calculation of the parameters pmul and pdiv using the
expression

 pmul = p * 2^3 * 2^pdiv – 128

with
 p = a_max / (128 * 2^(pulse_div – ramp_div)).

To avoid overshooting, use

p_reduced = p * (1 – p_reduction[%])

with p_reduction approximately 5% instead of unreduced p. With this, one gets

pmul = p_reduced * 2^3 * 2^pdiv – 128 = 0.95 * p * 2^3 * 2^pdiv – 128.

With this, pmul becomes a function of the parameter pdiv. To find a valid pair {pmul, pdiv} one just
has to choose that pair {pmul, pdiv} out of 14 pairs for pdiv = {0, 1, 2, 3, ..., 13} with pmul within the
valid range 0 ≤ pmul ≤ 127. An example ‘pmulpdiv.c’ showing programming in C language can be
found on page 53. This source code can directly be copied from the PDF datasheet file.

8.12 lp & ref_conf & ramp_mode (rm) (IDX=%1010)

The bit called lp (latched position) is a read only status bit. The configuration words ref_conf and
ramp_mode are accessed via a common address, because these parameters normally are initialized
only once. The configuration bits ref_conf select the behavior of the reference switches, while the two
bits ramp_mode (rm) select one of the four possible stepping modes.

ramp_mode mode function
%00 RAMP_MODE default mode for positioning applications with trapezoidal ramp
%01 SOFT_MODE similar to RAMP_MODE, but with soft target position approaching
%10 VELOCITY_MODE mode for velocity control applications, change of velocities with linear ramps
%11 HOLD_MODE velocity is controlled by the microcontroller, motion parameter limits are ignored

Table 8-3 - Outline of TMC428 motion modes

The mode called RAMP_MODE is provided as the default mode for positioning tasks, while the
VELOCITY_MODE is for applications, where stepper motors have to be driven precisely with constant
velocity. The SOFT_MODE is similar to the standard RAMP_MODE except that the target position is
approached exponentially reduced velocity. This feature can be useful for applications where vibrations
at the target position have to be minimized. The HOLD_MODE is provided for motion control
applications, where the ramp generation is completely controlled by the microcontroller.

The TMC428 has three reference switch inputs REF1, REF2, REF3. Without additional hardware,
three reference switches are available. These switches can be used as reference switches and can be

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 23

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

used as automatic stop switches as well. Per default, one reference switch input is assigned
individually to each stepper motor as a left reference switch (see Figure 9-3, page 32). The reference
switch input REF3 can alternatively be assigned as the right reference switch of stepper motor number
one (see Figure 9-4, page 32). In that configuration a left and a right reference switch is assigned to
stepper motor one, a left reference switch is assigned to stepper motor two, and no reference switch is
assigned to stepper motor three. The bit named mot1r in the stepper motor global parameter register
(rrs=1 & address=%111111) selects one of these configurations. With additional hardware, up to six
reference switches– a left and a right one assigned to each stepper motor –are supported. The
additional hardware is just a 74HC157, where three of four 2-to-1-multiplexers are used (see Figure
9-5, page 32). The feature of multiplexing is controlled by the bit named refmux in the stepper motor
global parameter register (rrs=1 & address=111111).

A reference switch can be used as an automatic stop switch. The reference switch indicates the
reference position within a given tolerance. The automatic stop function of the switches can be enabled
or disabled. Also a reference tolerance range (see register dx_ref_tolerance, page 27) can be
programmed, to allow motion within the reference switch active range during reference point search.
When a reference switch is triggered, the actual position can be stored automatically. This allows
precise determination of the reference point. This is initiated by writing a dummy value to register
x_latched (see page 27). The read-only status bit lp (latch position waiting) then indicates that the next
active edge at the selected reference switch will trigger latching the position x_actual. The lp bit is
automatically reset after position latching.

negative direction

mechanical inaccuracy of switches
(switching hysteresis)

x1 x2

motor

traveller

left switch

xleft

dx_ref_tolerance

positive direction

x3 x4
xright

right switch

xtraveler

Figure 8-4: Left switch and right switch for reference search and automatic stop function

ref_conf mnemonic function
0 : Stops a motor if velocity is negative (v_actual < 0) and the left reference switch becomes

active.
DISABLE_STOP_L

1 : Left reference switch is disabled as a an automatic stop switch.
0 : Stops a motor if velocity is positive (v_actual > 0) and the right reference switch becomes

active.
DISABLE_STOP_R

1 : Right reference switch is disabled as an automatic stop switch.
0 : Stopping takes place immediately, motion parameter limits are ignored. SOFT_STOP
1 : Stopping takes place in consideration of motion parameter limits, stops with linear ramp.
0 : The left reference switch controls reference switch functions. REF_RnL
1 : The right (not left) reference switch controls reference switch functions.
0 : This is the power-on default of the lp (latched position waiting) bit. lp
1 : A write access initialized x_latched to latch the position if the reference switch becomes active.

It is set to ‘0’ after a position is latched.

Table 8-4: Reference switch configuration bits (ref_conf)

Note: Definition of the reference switch by the configuration bit REF_RnL has no effect on the stop
function of the reference switches if DISABLE_STOP_L=’0’ respectively DISABLE_STOP_R=’0’. The

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 24

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

bit REF_RnL (reference switch Right not Left) defines which switch is the reference switch: If set to ‘1’,
the right, else (set to ‘0’) the left one is the reference switch.

The bits contained in ref_conf control the semantic and the actions of the reference/stop switch
modes for interrupt generation as explained later. The stepper motor stops if the reference/stop switch,
which corresponds to the actual driving direction, becomes active. The configuration bits named
DISABLE_STOP_L respectively DISABLE_STOP_R disable these automatic stop functions. If the bit
SOFT_STOP is set, motor stop forced by a reference switch is done within motion parameter limits
while otherwise stopping is abruptly.

Hint: There is a functional difference between reference switches and stop switches. Reference
switches are used to determine a reference position for a stepper motor. Stop switches are used for
automatic stopping a motor when reaching a limit. The signals of switches are processed via the inputs
named REF1, REF2, REF3 might be used as automatic stop switches, reference switches, or both.

32 bit DATAGRAM sent from a µC to the TMC428

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

R
R

S ADDRESS

R
W

 DATA

smda 1 0 1 0 lp ref_conf rm

0

latched position (w
aiting)

R

EF_R
nL

SO
FT_STO

P
D

ISA
B

LE_STO
P_R

D

ISA
B

LE_STO
P_L

%
00 : R

A
M

P, %
01 : SO

FT,
 %

10 : VELO
C

ITY, %
11 : H

O
LD

Table 8-5: lp & ref_conf & ramp_mode (rm) data bit positions

8.13 interrupt_mask & interrupt_flags (IDX=%1011)

The TMC428 provides one interrupt register of eight flags for each stepper motor. Interrupt bits are
named INT_<mnemonic>. An interrupt bit can set back to ‘0’ by writing ‘1’ to it. Each interrupt bit can
either be enabled (‘1’) or disabled (‘0’) individually by an associated interrupt mask bit named
MASK_<mnemonic>. The interrupt flags are forced to ‘0’ if the corresponding mask bit is disabled
(‘0’). The bit mapping of the interrupt mask bits and interrupt bits itself is diagrammed in Table 8-7 on
page 25. The interrupt out SDO_C / nINT is set active low – where the interrupt status bit INT is set
active high - when at least one interrupt flag of one motor becomes set. The interrupt mask enables or
disables each interrupt mask individually. So, if the interrupt status is inactive, nINT is high (‘1’) and
INT is low ('0'). The interrupt status is mapped to the most significant bit (31) of each datagram sent
back to the µC (see Table 6-4, page 12) and it is only available at the SDO_C / nINT pin of the
TMC428 if the pin nSCS_C is high.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 25

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Demultiplexing of the multiplexed interrupt status signal at the pin SDO_C / nINT can be done using
additional hardware. It is not necessary if the microcontroller always disables its interrupt while it sends
a datagram to the TMC428.

interrupt bit mnemonic function
INT_POS_END stepper motor reached target position

INT_REF_WRONG reference switch signal was active outside the reference switch tolerance range
(dx_ref_tolerance)

INT_REF_MISS reference switch signal missing at null position
INT_STOP stop forced by reference switch during motion

INT_STOP_LEFT_LOW high to low transition of left reference switch
INT_STOP_RIGHT_LOW high to low transition of right reference switch
INT_STOP_LEFT_HIGH low to high transition of left reference switch

INT_STOP_RIGHT_HIGH low to high transition of right reference switch

Table 8-6: interrupt bit mnemonics

32 bit DATAGRAM sent from a µC to the TMC428

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

R
R

S ADDRESS

R
W

 DATA

smd
a 1 0 1 1 interrupt mask interrupt flags

0

M
A

SK
_STO

P_R
IG

H
T_H

IG
H

M

A
SK

_STO
P_LEFT_H

IG
H

M

A
SK

_STO
P_R

IG
H

T_LO
W

M

A
SK

_STO
P_LEFT_LO

W

M
A

SK
_STO

P
M

A
SK

_R
EF_M

ISS
M

A
SK

_R
EF_W

R
O

N
G

M

A
SK

_PO
S_EN

D

IN
T_STO

P_R
IG

H
T_H

IG
H

IN

T_STO
P_LEFT_H

IG
H

IN

T_STO
P_R

IG
H

T_LO
W

IN

T_STO
P_LEFT_LO

W

IN
T_STO

P
IN

T_R
EF_M

ISS
IN

T_R
EF_W

R
O

N
G

IN

T_PO
S_EN

D

Table 8-7: interrupt register & interrupt mask

An interrupt flag is set to ‘1’ if its assigned interrupt condition occurs and the corresponding interrupt
mask is set (‘1’). Interrupt flags are reset to ‘0’ by a write access (RW=’0’) to the interrupt register
address (IDX=%1011) with a ‘1’ at the position of the bit to be cleared. Writing a ‘0’ to the
corresponding position leaves the interrupt flag untouched.

If an end position is reached while the interrupt mask MASK_POS_END is ‘1’, the bit named
INT_POS_END is set to one. The switches processed via the inputs REF1, REF2, REF3 can be used
as stop switches for automatic motion limiting, as reference switches and for both. If a reference switch
becomes active out of the reference switch tolerance range– defined by the dx_ref_tolerance register
–the interrupt flag INT_REF_WRONG is set if its interrupt mask bit MASK_REF_WRONG is set. The
interrupt flag INT_REF_MISS is set if the reference switch is inactive at the 0 position and the mask
MASK_REF_MISS is enabled. The INT_STOP flag is set, if the reference switch has forced a stop and
if the interrupt mask MASK_STOP is set. The INT_STOP_LEFT_LOW flag is set if the reference
switch changes from high to low and if the interrupt mask bit MASK_STOP_LEFT_LOW is set. The
interrupt flag INT_STOP_RIGHT_LOW is similar to INT_STOP_LEFT_LOW but for the right reference
switch. The INT_STOP_LEFT_HIGH indicates that the left reference switch input changes from low to

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 26

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

high if the mask MASK_STOP_LEFT_HIGH is set. The INT_STOP_RIGHT_HIGH indicates it for the
right reference switch if the mask MASK_STOP_LEFT_HIGH is set.

8.14 pulse_div & ramp_div & usrs (IDX=%1100)

The frequency of the external clock signal (see Figure 4-1, page 6, pin CLK) is divided by 32 (see
Figure 8-2, page 20, block clk_div32). This clock drives two programmable clock dividers for the ramp
generator and for the pulse generator. The pulse generator clock– defining the maximum step pulse
rate –is determined by the parameter pulse_div. The pulse rate R is given by

R[Hz] = f_clk[Hz] * velocity / (2^pulse_div * 2048 * 32)

where f_clk[Hz] is the frequency of the external clock signal. The parameter velocity is in range 0 to
2047 and represents parameters v_min, v_max and absolute values of v_target and v_actual. So,
the pulse generator of the TMC428 would generate one step pulse with each pulse generator clock
pulse if the velocity could be set to 2048. The full step frequency RFS[Hz] = R[Hz] / 2^usrs. The
change ∆∆∆∆R in the pulse rate per time unit (pulse frequency change per second – the acceleration) is
given by

∆∆∆∆R[Hz/s] = f_clk[Hz] * f_clk[Hz] * a_max / (2^(pulse_div+ramp_div+29)).

The constant 29 within the exponent is because 2^29 = 2^5 * 2^5 * 2^8 * 2^11 = 32*32*256*2048,
where 32 comes from fixed clock pre-dividers, 256 comes from velocity accumulation clock pre-divider,
and 2048 comes from velocity accumulation clock divider programmed by a_max. The parameter
a_max is in range 0 to 2047. So, the parameter ramp_div scales the acceleration parameter a_max,
where the parameter pulse_div scales the velocity parameters. ∆∆∆∆RFS[Hz] = ∆∆∆∆R[Hz] / 2^usrs.

usrs [microsteps /
full step]

significant DAC bits
(controlling current

amplitude)
comment

0 0 0 1 - full step (constant current amplitude)
0 0 1 2 5 (MSB) half step
0 1 0 4 5 (MSB), 4
0 1 1 8 5 (MSB), 4, 3
1 0 0 16 5 (MSB), 4, 3, 2
1 0 1 32 5 (MSB), 4, 3, 2, 1
1 1 0
1 1 1

64 5 (MSB), 4, 3, 2, 1, 0 (LSB)

microstepping

Table 8-8: micro step resolution selection (usrs) parameter

The angular velocity of a stepper motor can be calculated based on the full step frequency Rfs[Hz] for
a given number of full steps per rotation. Similar, the angular acceleration of a stepper motor can be
calculated based on the change of full step frequency per second ∆∆∆∆RFS[Hz]. The three bit wide
parameter usrs (micro (µ) step resolution selection, where u represents µ) determines the micro step
resolution for its associated stepper motor according to Table 8-8. There is an individual set of 6 DAC
bits provided for each of the two phases (coils) for current control to provide up to 64 micro steps per
full step. Depending on the micro step resolution, a subset of 6 DAC bits is significant. Using full
stepping, the current amplitude is constant for both phases (coils) of a stepper motor and the polarity of
one phase (coil) changes with each full step. The micro step counters are initialized to 0 during power-
on reset. With each micro step an associated counter accumulates the programmed micro step
resolution value usrs.

Generally, the number of steps S during linear acceleration a to a velocity v is given by S = ½ * v^2 / a.
With v = R[Hz] and a = ∆∆∆∆R[Hz/s] one gets S = ½ * velocity^2 / a_max * 2^ramp_div / 2^pulse_div /
2^3. The number of full steps SFS is SFS = S / 2^usrs.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 27

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

8.15 dx_ref_tolerance (IDX=%1101)

The switches processed via the inputs REF1, REF2, REF3 can be used as stop switches for automatic
motion limiting and as reference switches defining a reference position for the stepper motor. To allow
the motor to drive near the reference point, it is possible to exclude a motion range of steps from the
stop switch function. The parameter dx_ref_tolerance disables automatic stopping by a switch around
the origin (see Figure 8-4, page 23). To use the dx_ref_tolerance fare from the origin, the actual
position has to be suitable adapted, e.g. to use it for a left side reference switch. Additionally, the
parameter dx_ref_tolerance affects interrupt conditions as described before (section 8.13, page 24).

8.16 x_latched (IDX=%1110)

This read-only register stores the actual position read from the register x_actual if the reference switch
becomes active. The reference switch is defined by the bit REF_RnL of the configuration register lp &
ref_conf & ramp_mode. Writing a dummy value to the (read-only) register x_latched initializes the
position storage mechanism. Then the actual position is saved with the next rising edge signal of the
reference switch depending on the actual motion direction of the stepper motor. The actual position is
latched if the switch defined as the reference switch by the REF_RnL bit (see Table 8-4: Reference
switch configuration bits (ref_conf), page 23). The status bit lp signals, if latching of a position is
pending. An event at the reference switch associated to the actual motion direction takes effect only
during motion (when v_actual ≠ 0).

8.17 Unused Address (IDX=%1111)

This register address (idx=%1111) within each stepper motor register block {smda=%00, %01, %10} is
unused. Writing to this register has no effect. However, access should be avoided, because this
address space may be used for future devices. Reading this register gives back the actual status bits
and 24 data bits set to ‘0’.

9 Global Parameter Registers
The registers addressed by RRS=0 with SMDA=%11 are global parameter registers. To emphasize
this difference, the JDX is used as index name instead of IDX.

9.1 datagram_low_word (JDX=%0000) & datagram_high_word (JDX=%0001)

The TMC428 stores datagrams sent back from the stepper motor driver chain with a total length of up
to 48 bits. The register datagram_low_word holds the lower 24 bits of this 48 bits and the register
datagram_high_word holds the higher 24 bits of the 48 bits. These registers together form a 48 bit
shift register, where the data from pin SDI_S are shifted left into it with each datagram bit sent to the
stepper motor driver chain via the signal SDO_S. A write to one of these read-only registers initializes
them, to update their contents with the next datagram received from the drivers chain.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

last TMC246 driver of the chain (stepper motor #1)

LD2 LD1 LD0 1 OT OTPW UV OCHS OLB OLA OCB OCA

datagram_high_word

datagram_low_word

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

first TMC246 driver of the chain (stepper motor # 3)second TMC246 driver of the chain (stepper motor # 2)

LD2 LD1 LD0 1 OT OTPW UV OCHS OLB OLA OCB OCALD2 LD1 LD0 1 OT OTPW UV OCHS OLB OLA OCB OCA

SDI_S

Figure 9-1: Example of status bit mapping for a chain of three TMC246 or TMC249

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 28

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

The CDGW (= Cover DataGram Waiting, see section 9.3 on page 28) status bit is set to 1 until a
datagram is received from the stepper motor driver chain. For read out of datagram_low_word and
datagram_high_word the CDGW status bit is important to be able to detect when a datagram transfer
has been completed after an initial write to one of the two registers. The fact that the CDGW is formed
by logical OR between the cover datagram status and the status of the datagram_low_word and
datagram_high_word causes no restriction concerning its usage. This is because a write to the
cover_datagram register forces sending a datagram which results in an update of the
datagram_low_word and datagram_high_word registers. One the other side, if the
cover_datagram mechanism is not used, the CDGW status bit is exclusively available as the status
signal of datagram_low_word and datagram_high_word.

9.2 cover_pos & cover_len (JDX=%0010)

The TMC428 provides direct sending of datagrams from the microcontroller to the stepper motor
drivers. This may be necessary for initialization of different driver chips and useful for reconfiguration
purposes. A datagram with up to 24 bits can be transferred to the stepper motor driver by covering one
datagram sent to the driver chain. The parameter cover_pos defines the position of the first datagram
bit to be covered by the cover_datagram (JDX=%0011) of length cover_len. In contrast to the
datagram numbering order of bits, the position count for the cover datagram starts with 0. The
cover_datagram bits indexed from cover_len-1 to 0 cover the datagram sent to the drivers chain.

Important Note: A step bit used to control stepper motor drivers must not be
covered while a motor is running.

This is because the coverage of a step bit would cause losing that associated step if the step bit is
active. The TMC428 stores cover_pos+1 instead of cover_pos due to internal requirements. So, one
writes cover_pos but reads back cover_pos+1. The cw (= cover waiting) bit available by read out of
this register. The CDGW status bit (see section 9.3) is the result of logical OR between cw and an
internal signal that indicates the status of the stepper motor serial driver chain send register.

9.3 cover_datagram (JDX=%0011)

This register holds up to 24 bit of a cover datagram. A cover datagram covers the next datagram sent
to the stepper motor driver chain. If no datagrams are sent to the drivers chain, the cover datagram is
sent immediately if a cover datagram is written into this register. The status of the cover datagram is
mapped to the status bits sent back with each datagram (see Table 6-4, page 12, CDGW status bit).
This status bit is also available for readout of cover_pos & cover_len (JDX=%0010), where CDGW is
the most significant data bit (23).

0 1 2 3 4 5 6 7 8 9 10 11 12 34 35 36 37 38 6 5 4 3 2 1 0 47

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
(MSB)

5 4 3 2 1 0
(LSB)

length = 7: cover_len = 7

up to 24 cover_datagram bits

39 40 41 42 43 45 46datagram bits #39 to #46 covered by cover_datagram bits #6 to #0

position=39: cover_pos = 39

cover datagram bits #6 to #0 cover the 7 datagram bits #39 to #46

48 datagram bits send to the stepper motor driver chain

MSB of the cover datagram (here bit #6) is sent first.

Figure 9-2: Cover datagram example

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 29

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

The CDGW (= Cover DataGram Waiting) status bit has to be checked before writing a new cover
datagram into this register, to be sure that no cover datagram is waiting to be processed. The CDGW
bit is set to 1 until the cover_datagram is sent. The CDGW status bit is also be used as a status bit for
the datagram_low_word and datagram_high_word (see section 9.1 on page 27). An example for
the cover datagram is given in Figure 9-2 on page 28. In that example 7 bits cover 7 bits of a 48 bit
datagram from bit number 39 to bit number 46. A cover datagram with length=0 forces sending an
unchanged datagram to the driver chain.

9.4 Unused Addresses (JDX={%0011, ..., %0111, %1001, ..., %1101})

There are unused addresses within the address range of the global parameter registers. Access to
these addresses has no effect. How ever, access should be avoided, because this address space may
be used for future devices.

9.5 power_down (JDX=%1000)

A write to the register address named power_down sets the TMC428 into the power down mode until
it detects a falling edge at the pin nSCS_C. During power down, all internal clocks are stopped, all
outputs remain stable, and all register contents are preserved.

9.6 Reference Switches l3 & r3 & l2 & r2 & l2 & r1 (JDX=%1110)

The current state of all reference switches– demultiplexed internally by the TMC428 if left and right
reference switches are used –can be read from this read-only register. The bit named
continuous_update of the Stepper Motor Global Parameter Register (JDX=%1111) is important
for reading out of reference switches as explained below.

9.7 Stepper Motor Global Parameter Register (JDX=%1111)

This register holds different configuration bits for the stepper motor driver chain. The absolute address
(RRS & ADDRESS) of the stepper motor global parameter register is %01111110 = $7E (see Table
7-2, page 15, and Table 9-1, page 30). For the datagram configuration the number of stepper motor
drivers is important. It is represented by the parameter LSMD (Last Stepper Motor Driver). The
parameter LSMD has to be set to %00 for one stepper motor driver, %01 for two stepper motor
drivers, and %10 for three stepper motor drivers (see Table 9-2).

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 30

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

32 bit DATAGRAM sent from a µC to the TMC428

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

R
R

S ADDRESS

R
W

 DATA

1 1 1 1 1 1 clk2_div polarities LSMD

0

m
ot1r

refm
ux

continuous_update

csC

om
m

onIndividual
polarity_D

A
C

_A
B

polarity_FD

polarity_PH

_A
B

polarity_sck_s

polarity_nscs_s

last stepper m
otor driver

Table 9-1: Stepper motor global parameter register

LSMD number of stepper motor drivers

%00 (=0) 1
%01 (=1) 2
%10 (=2) 3
%11 (=3) NOT ALLOWED

Table 9-2: Global parameter LSMD (last stepper motor driver)

Five bits are used to control signal polarities. The polarity of the selection signal nSCS_S for the
stepper motor driver chain is controlled by the polarity bit polarity_nscs_s. The nSCS_S signal is low
active if this bit is set to ‘0’ and it is high active, if this bit is set to ‘1’.

The polarity of the stepper motor driver chain clock signal SCK_S is defined by the bit polarity_sck_s.
If this bit is ‘0’, the clock polarity is according to Figure 6-3 on page 10. The clock signal SCK_S is
inverted if it is set to ‘1’. The bit polarity_PH_AB defines the polarity of the phase bits for the stepper
motor. Inverting this bit changes the rotation direction of the associated stepper motor. The bit
polarity_FD defines the polarity of the fast decay controlling bit. If it is ‘0’ fast decay is high active and
if it is ‘1’ fast decay is low active. The bit named polarity_DAC_AB defines the polarity of the DAC bit
vectors. If it is ‘0’ the DAC bits are high active and if it is ‘1’ the DAC bits are inverted – low active.

The bit named csCommonIndividual defines either if a single chip select signal nSCS_S is used in
common for all stepper motor driver chips (TMC236, TMC239, TMC246, TMC249) or three chip select
signals nSCS_S, nSCS2, nSCS3 are used to select the stepper motor driver chips individually. This
feature is useful only for the TMC428 within the larger packages, where the two additional chip select
signals nSCS2, nSCS3 are available (see Figure 2-2). The one common chip select signal nSCS_S is
used if the bit named csCommonIndividual=‘0’. The polarity control bit for the nSCS_S signal must
be set to polarity_nscs_s=’0’ if csCommonIndividual=’1’. The chip select polarity is always negative
for three individual chips select signals.

The eight bits named clk2_div determine the clock frequency of the stepper motor driver chain clock
signal SCK_S. The frequency f_sck_s[Hz] of the stepper motor driver chain clock signal SCK_S is
f_sck_s[Hz] = f_clk[Hz] / (2 * (clk2_div+1)). A value of 255 (%11111111, $FF) is the upper limit for
the parameter clk2_div. With clk2_div = 255 the clock frequency of SCK_S is at minimum. Due to
internal processing, a value of 7 (%00000111, $07) is the lower limit for the clock divider parameter

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 31

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

clk2_div. With clk2_div = 7 the clock frequency of SCK_S is at maximum. A value of clk2_div = 7 is
sufficient for the drivers TMC236 / TMC239 / TMC246 / TMC249.

Note: For most applications, a setting of clk2_div = 7 is recommended.

For smooth motion even at high step frequencies the frequency f_sck_s[Hz] of the clock signal
SCK_S should be as high as possible that is compatible with the used drivers. The frequency
f_sck_s[Hz] of SCK_S does not become higher for clk2_div < 7, but the signal SCK_S becomes
asymmetric with respect to its duty cycle. An asymmetric duty cycle may cause malfunction of stepper
motor drivers, where stepper motor driver chips may work correctly in particular at low clock
frequencies of CLK. So, the range of clk2_div is {7, 8, 9, . . ., 253, 254, 255}.

The default value after power-on reset is clk2_div = 15. The clock frequency f_sck_s[Hz] of SCK_S
should be set as high as possible by choosing the parameter clk2_div in consideration of the data
clock frequency limit defined by the slowest stepper motor driver chip of the daisy chain. If step
frequencies reach the order of magnitude of the maximum datagram frequency– determined by the
clock frequency of SCK_S and by the datagram length –the step frequencies may jitter, which is an
inherent property of that serial communication. Up to which level variations of step frequencies are
acceptable depends on the application. Using microstepping driver chips– as provided by TMC236 /
TMC239 / TMC246 / TMC249 driver chips –avoids this problem.

The datagram frequency is f_datagram[Hz] = f_sck_s[Hz] / (1 + datagram_length[bit] + 1). This
formula is an approximation for the upper limit. For clk2_div = 7 the processing of the NxM bit requires
1 SPI clock cycle, where the processing of the NxM bit requires 1.5 SPI clock cycles for clk2_div > 7.
So, for a chain of three drivers with 12 bit datagram length each, the upper limit of the datagram
frequency is f_datagram[Hz] = f_sck_s[Hz] / (1 + 3*(12+1) + 1) = f_sck_s[Hz] / 41.

The TMC428 sends datagrams to the stepper motor driver chain on demand only. No datagrams are
send if continuous_update is ‘0’ during rest periods. This reduces the communication traffic. The
multiplexed reference switch inputs are processed while datagrams are sent to the stepper motor
driver chain only. If reference switches are configured to stop associated stepper motors automatically,
the configuration bit continuous_update must be set to ‘1’ to force periodic sending of datagrams to
the stepper motor driver chain and to sample the reference switches periodically, if all stepper motors
are at rest. With this, a stepper motor restarts if its associated reference switch becomes inactive.
Without continuous update, a stepper motor stopped by a reference switch would stay at rest until a
datagram is sent to the stepper motor driver chain, if its reference switch is inactive. Then, the relevant
stepper motor can be moved into the direction opposite to the reference switch or it can be moved in
both directions by disabling the automatic stop function. The continuous update datagram frequency is
f_cupd_s[Hz] = f_clk[Hz] * (1 / 2^ramp_div_0 + 1 / 2^ramp_div_1 + 1 / 2^ramp_div_2) / 32768
where ramp_div_0, ramp_div_1, ramp_div_2 are the ramp_div settings of the three stepper motors.

The bit continuous_update is also important for the automatic coil current scaling (see page 18). This
bit must be set to ‘1’ to be sure that the coil current is also scaled if all motors are at rest.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 32

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

R
EF

_S
W

3_
LE

FT

R
EF

_S
W

2_
LE

FT

R
EF

_S
W

1_
LE

FT

SCK_S

SDO_S

SDI_S

nSCS_S
REF2 REF3REF1

TEST GND

SDI_C

nSCS_C

SCK_C

SDO_C CLK V5V33

TMC428

+VCC+VCC+VCC

Figure 9-3: Reference switch configuration ‘left-side-only’ for mot1r=0 (and refmux=0)

SCK_S

SDO_S

SDI_S

nSCS_S
REF2 REF3REF1

TEST GND

SDI_C

nSCS_C

SCK_C

SDO_C CLK V5V33

TMC428

+VCC

R
EF

_S
W

1_
R

IG
H

T

+VCC

R
EF

_S
W

2_
LE

FT

R
EF

_S
W

1_
LE

FT

+VCC

no reference switch for stepper motor 3

Figure 9-4: Reference switch configuration ‘two-one-null’ for mot1r=1 (and refmux=0)

A1

SCK_S

SDO_S

SDI_S

nSCS_S
REF2 REF3REF1

TEST GND

SDI_C

nSCS_C

SCK_C

SDO_C CLK V5V33

TMC428

A0A < MUX

B

C

D

B1
B0

C1
C0

D1
D0

SEL1/ /0
/EN

REF1_LEFT REF1_RIGHT

REF2_LEFT
REF2_RIGHT

REF3_LEFT
REF3_RIGHT

+VCC
74HC157

Figure 9-5: Reference switch multiplexing with 74HC157 (refmux=1)

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 33

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

motor 1 motor 2 motor 3 refmux mot1r

left switch right switch left switch right switch left switch right switch
0 0 REF1 % REF2 % REF3 %
0 1 REF1 REF3 REF2 % % %
1 0 REF1_LEFT REF1_RIGHT REF2_LEFT REF2_RIGHT REF3_LEFT REF3_RIGHT
1 1 RE1_LEFT REF1_RIGHT REF2_LEFT REF2_RIGHT REF3_LEFT REF3_RIGHT

Table 9-3: Association of reference inputs depending on configuration bits refmux & mot1r

If continuous_update is ‘1’, internal reference switch bits are updated periodically, even if all stepper
motors are at rest. Additionally, the chip select signal nSCS_S for the stepper motor driver chain is
also the control signal for a multiplexer in case of using the reference switch multiplexing option (see
Figure 9-5). So, the continuous_update must be set to ‘1’ if automatic stop by reference switches is
enabled, if six multiplexed reference switches are used, and to get the states of reference switches
while all stepper motors are at rest.

The bit named refmux must be set to ‘1’ to enable reference switch multiplexing (see Figure 9-5). For
the two variants TMC428-PI24 and TMC428-DI20, the reference switch multiplexing also works for
csCommonIndividual=’1’ using three separate driver selection signals (nSCS_S, nSCS2, nSCS3) if
the signal nSCS_S is connected to the multiplexer 74HC157 according to Figure 9-8.

If reference switch multiplexing is enabled, mot1r is ignored. With refmux set to ‘0’, the association of
the reference switch inputs REF1, REF2, REF3 depends on the setting of the configuration bit mot1r.
The power-on default value of mot1r is ‘0’. With that default value, REF1 is associated to the left
reference switch of stepper motor #1, REF2 is associated to the left reference switch of stepper motor
#2, and REF3 is associated to the left reference switch of stepper motor #3.

If mot1r is set to ‘1’ the input REF1 is also associated with the left reference switch of stepper motor
#1. REF2 is also associated to the left reference switch of stepper motor #2. But, the input REF3 is
associated to the right reference switch of stepper motor #1 and no reference switch input is
associated to stepper motor number#3 (see Figure 9-4). After power-on-reset, per default refmux=0
and mot1r=0 selects the single reference switch configuration outlined in Figure 9-3, where each
reference switch input (REF1, REF2, REF3) is assigned individually to one each stepper motor as the
left reference switch.

9.8 Triple Switch Configuration

The programmable tolerance range around the reference switch position is useful for a triple switch
configuration, as outlined in Figure 9-6. In that configuration two switches are used as automatic stop
switches, and one additional switch is used as the reference switch between the left stop switch and
the right stop switch. The left stop switch and the reference switch are wired or. After successful
reference search, programming a tolerance range into the register dx_ref_tolerance allows to disable
automatic stop within the range of the reference switch only.

negative direction

x'1 x'2

left stop
switch

x'left x1 x2

reference switch

x0

positive direction

x3 x4
xright

right stop
switch

dx_ref_tolerance

motor

traveller

xtraveler

Figure 9-6: Triple switch configuration 'left stop switch - reference switch - right stop switch'

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 34

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

positive directionnegative direction

mechanical inaccuracy of switches
(switching hysteresis)

x1 x2

reference
switch

dx2dx1

dx_ref_tolerance

xref xmax

motor

traveller

xtraveler

Figure 9-7: Reference search

9.9 Reference Search

The goal of the reference search is to determine the position xref of a reference switch (see Figure
9-7). Due to mechanical inaccuracy of switches, the reference switch is active within a range x1 < xref <
x2, where x1 and x2 may vary. If the traveler is within the range x1 < xtraveler < x2 before reference
search, it is necessary to go outside this range, because the associated reference switch is active. A
dummy write access to x_latched initializes the position latch register. Then, with the traveler within
the range x2 < xtraveler < xmax and the initialized register x_latched, the position x2 can simply be
determined by motion with a target position x_target set to -xmax. When reaching the position x2, this
position is latched automatically. With stop switch enabled, the stepper motor automatically stops if the
position x2 is reached. Then, the dx_ref_tolerance has to be set, so that motion within the active
reference switch range x1 < xref < x2 is allowed and to move the traveler to a position xtraveler < x1 if
desired. Then the register x_latched has to be initialized again to latch the position x1 by a motion to a
target position xtraveler < x1. When the positions x1 and x2 are determined the reference position xref =
(x1 + x2) / 2 can be set. Finally, one should move to the target position x_target = xref and set x_target
:= 0 and x_actual := 0 when reached.

9.10 Simultanous Start of up to Three Stepper Motors

Starting stepper motors simultaneously can be acheved by sending successive datagrams starting the
stepper motors. If the delay between those datagrams is of the magnitude of some microseconds, the
stepper motors can be considered as started simultaneously. Feeding the reference switch signals
through or gates (see Figure 9-8) allows exact simultaneous start of the stepper motors under software
control.

SCK_S

SDO_S

SDI_S

nSCS_S
REF2 REF3REF1

TEST GND

SDI_C

nSCS_C

SCK_C

SDO_C CLK V5V33

TMC428

A1
A0A < MUX

B

C

D

B1
B0

C1
C0

D1
D0

SEL1/ /0
/EN

REF1_LEFT REF1_RIGHT

REF2_LEFT
REF2_RIGHT

REF3_LEFT
REF3_RIGHT

+VCC
74HC157

hold

74HC32

Figure 9-8: Reference switch gateing for exact simultanous stepper motor start

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 35

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

10 RAM Address Partitioning and Data Organization
The on-chip RAM capacity is 128 x 6 bit. These 128 on-chip RAM cells of 6 bit width are addressed via
64 addresses of 2 x 6 bit (see Table 10-1). So, from the point of view of addressing the on-chip RAM
via datagrams, the address space enfolds 64 addresses of 24 bit wide data, where only 2 x 6 = 12 bits
are relevant. These 64 addresses are partitioned– selected by the RRS (Register RAM Select,
datagram bit 31)– into two address ranges of 32 addresses. The registers of the TMC428 are
addressed with RRS=’0’. The on-chip RAM is addressed with RRS=’1’. The 64 on-chip RAM
addresses are partitioned into two separate ranges by the most significant address bit of the datagram
(bit 30).

The first 32 addresses are provided for the configuration of the serial stepper motor driver chain. Each
of these 32 addresses stores two configuration words, composed of the so called NxM (Next Motor) bit
together with the 5 bit wide primary signal code. While sending a datagram, the primary signal code
words are read internally beginning with the first address of the driver chain datagram configuration
memory range. Each primary signal code word selects a signal provided by the micro step unit. If the
NxM bit is ‘1’ an internal stepper motor addressing counter is incremented. If this internal counter is
equivalent to the LSMD (last stepper motor driver) parameter, the datagram transmission is finished
and the counter is preset to %00 for the next datagram transmission to the stepper motor driver chain.

The second 32 addresses are provided to store the micro step table, which usually is a quarter sine
wave period as a basic approach or the quarter period of a periodic function optimized for
microstepping of a given stepper motor type. Different stepper motors may step with different micro
step resolutions, but the micro step look up table (LUT) is the same for all stepper motors controlled by
one TMC428. Any quarter wave period stored in the micro step table is expanded automatically to a full
period wave together with its 90° phase shifted wave.

32 bit DATAGRAM sent from a µC to the TMC428 via pin SDI_C

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

DATA R
R

S

ADDRESS

R
W

 data @ odd RAM
addresses data @ even

RAM addresses

1 0

32 x (2x6 bit)

driver chain
datagram

configuration
range

N
xM

_1

signal_codes

N
xM

_0

signal_codes

1 1

32 x (2x6 bit)

quarter
period sine
wave LUT

range

quarter sine wave

values
(amplitude)

quarter sine wave

values
(amplitude)

Table 10-1: Partitioning of the on-chip RAM address space

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 36

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

11 Stepper Motor Driver Datagram Configuration
A number of control signals is required to drive 2-phase stepper motors. The serial driver interface
forms the link between the TMC428 an the stepper motor driver chain. The stepper motor driver
datagram configuration simply defines the order of the control signals serially sent from TMC428 to the
stepper motor driver chain. To define the serial order of the control signals, so called primary signal
codes have to be written into the stepper motor driver datagram configuration area of the on-chip
configuration RAM of the TMC428.

Which control signals are required in a given application, depends on the choice of stepping mode– full
step, half step, micro step –and on additional options depending on the stepper motor driver chips
used. So, the TMC428 primarily provides a full set of control signals individually for each of the up to
three stepper 2-phase stepper motors respectively stepper motor driver chips of the daisy chain.
Mnemonics for primary signal codes are given in Table 11-1. Names of these signals may differ to the
signal names of the used stepper motor drivers. Figure 11-1 on page 36 outlines the principle of
connecting the control signals– internally provided by the TMC428 as parallel signals –with the signals
used to control the digital part of a stepper motor driver.

Serial Driver Interface

Zero
One

DAC_A_0
DAC_A_1

...

PH_A
FD_A

DAC_B_0
DAC_B_1

...

PH_B
FD_B

Direction
Step

3 x

Micro Stepping Unit
(incl. sequencer)

TMC428
Multiple

Ported RAM

Serial-to-Parallel
Interface(s)

CA3

PHA

MDA

Stepper Motor Driver
Control Logic

Stepper Motor Driver (Chain)
e.g. TMC236 / TMC239 / TMC246 / TMC249

MSB

LSB

CA2
CA1
CA0

CB3

PHB

MDB

CB2
CB1
CB0

status signals DAC_A_5

PH_A

FD_A

DAC_A_4
DAC_A_3
DAC_A_2

DAC_B_5

PH_B

FD_B

DAC_B_4
DAC_B_3
DAC_B2

CA3

PHA

MDA

CA2
CA1
CA0

CB3

PHB

MDB

CB2
CB1
CB0

n

status signals

control signals

status signals n

Figure 11-1: Serially transmitted control and status signals between TMC428 and driver chain

PRIMARY SIGNAL CODE MNEMONIC

hex bin
FUNCTION

DAC_A_0 $00 %00000 DAC A, bit 0 (LSB)
DAC_A_1 $01 %00001 DAC A, bit 1
DAC_A_2 $02 %00010 DAC A, bit 2
DAC_A_3 $03 %00011 DAC A, bit 3
DAC_A_4 $04 %00100 DAC A, bit 4
DAC_A_5 $05 %00101 DAC A, bit 5 (MSB)
PH_A $06 %00110 phase polarity bit A
FD_A $07 %00111 fast decay bit A

C
O

IL A

DAC_B_0 $08 %01000 DAC B, bit 0 (LSB)
DAC_B_1 $09 %01001 DAC B, bit 1
DAC_B_2 $0A %01010 DAC B, bit 2
DAC_B_3 $0B %01011 DAC B, bit 3
DAC_B_4 $0C %01100 DAC B, bit 4
DAC_B_5 $0D %01101 DAC B, bit 5 (MSB)
PH_B $0E %01110 phase polarity bit B
FD_B $0F %01111 fast decay bit B

C
O

IL B

Zero $10 %10000 constant ‘0’

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 37

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

One $11 %10001 constant ‘1’
Direction $12 %10010 0 : up / 1 : down resp. counter clockwise / clockwise
Step $13 %10011 step bit for step/direction control of drivers

$14 %10100
$15 %10101
$16 %10110
$17 %10111
$18 %11000
$19 %11001
$1A %11010
$1B %11011
$1C %11100
$1D %11101
$1E %11110

UNUSED (these
codes might be
used for future

devices)

$1F %11111

‘1’ for TMC428-I, TMC428-A,
TMC428-PI24, TMC428-DI20

Table 11-1: Primary signal codes

The control signals for each of the two coils of a 2-phase stepper motor are 6 bits for the DAC
controlling the current of a coil, a phase polarity bit, and a fast decay bit for those stepper motor driver
chips with a fast decay feature for the coil current. These signals are available individually for each coil
(COIL A and COIL B). Constant configuration bits named Zero and One are provided. Additionally,
step and direction bits are available. One unique 5 bit code word– named primary signal code –is
assigned to each primary control signal (see Table 11-1).

The micro step unit (including sequencer) provides the full set of control signals for three stepper motor
driver chips. A subset of these control signals is selected by the stepper motor driver datagram
configuration, which is stored within the first 32 addresses representing 64 values of the on-chip RAM
(see Table 10-1, page 35). The stepper motor drivers are organized in a daisy chain. So the
addressing of the stepper motor driver chips within the daisy chain is by its position.

As mentioned before, the TMC428 sends datagrams to the stepper motor driver chain on demand. To
guarantee the integrity of each datagram sent to the stepper motor driver chain, the status of all
primary control signals is buffered internally before sending. Afterwards, the transmission starts with
selection of the buffered primary control signals of the first motor (smda=%00) by reading the first
primary signal code word (even data word at on-chip RAM address %00000) from on-chip
configuration RAM area. The primary signal codes select the primary signals provided for the first
stepper motor. The first stepper motor is addressed until the NxM (next motor) bit is read from on-chip
configuration RAM. The stepper motor driver address is incremented with each NxM=’1’ as long as the
current stepper motor driver address is below the value set by the parameter LSMD (last stepper
motor driver). If the stepper motor driver address is equivalent to the LSMD parameter, a NxM=’1’
indicates the completion of the transmission. With that, the stepper motor driver address counter of the
serial interface is reinitialized to %00 and the unit waits for the next transmission request.

So, the order of primary signal codes in the on-chip RAM configuration area determines the order of
datagram bits for the stepper motor driver chain, whereas the prefixed NxM bit determines the stepper
motor driver positions. If no NxM bit with a value of ‘1’ is stored within the on-chip RAM, the TMC428
will send endlessly. So, the on-chip RAM has to be configured first. After power-on reset, the registers
of the TMC428 are initialized in a way, that no transmission of datagrams to the motor driver chain is
required. Access to on-chip RAM is always possible, also during transmission of datagrams to the
driver chain.

11.1 Initialization of on-chip-RAM by µC after power-on

All registers are initialized by the automatic power-on reset. The registers are initialized, and the
stepper motors are at rest. The on-chip RAM is not initialized by the power-on reset. Writing to
registers may involve action of the stepper motor units initiated by the TMC428 resulting in sending

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 38

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

datagrams to the stepper motor driver chain. Those datagrams have a random power-on configuration
of the on-chip-RAM. So, before trying to move a motor, the on-chip RAM must be initialized first.

11.2 An Example of a Stepper Motor Driver Datagram Configuration

The following example demonstrates, how to configure the datagram and shows what has to be stored
within the on-chip RAM to represent the desired configuration. That example refers to a driver chain of
three TRINAMIC stepper motor drivers of type TMC236, TMC239, TMC246, TMC249. From the
TMC428 datagram configuration point of view, there is no difference between these drivers. All these
drivers have a serial interface of 12 bits length. The configuration is as follows. For the first and the
second stepper motor driver of the chain the fast decay control bit (FD_A, FD_B) is fixed to ‘0’. For the
third driver the fast decay control bit are used. The corresponding content of the configuration on-chip
RAM is outlined in Table 11-2. The sequence to be sent to the TMC428 for this configuration is
outlined in Table 11-3.

Hint: The stepper motor driver datagram configuration can be accessed at any time without conflict,
e.g. to changed between a configuration using fast decay versus a configuration where fast decay is
disabled.

position
within

datagram

driver NxM
bit

TMC428
signal
code

RAM
address

RAM
data

TMC428
mnemonic of

primary signal

 TMC23x /
TMC24x
Bit Name

0 0 $10 $00 $10 Zero → MDA
1 0 $05 $01 $05 DAC_A_5 → CA3
2 0 $04 $02 $04 DAC_A_4 → CA2
3 0 $03 $03 $03 DAC_A_3 → CA1
4 0 $02 $04 $02 DAC_A_2 → CA0
5 0 $06 $05 $06 PH_A → PHA
6 0 $10 $06 $10 Zero → MDB
7 0 $0D $07 $0D DAC_B_5 → CB3
8 0 $0C $08 $0C DAC_B_4 → CB2
9 0 $0B $09 $0B DAC_B_3 → CB1

10 0 $0A $0A $0A DAC_B_2 → CB0
11

driver#1 (SM
D

A
=%

00)

1 $0E $0B $2E PH_B → PHB
12 0 $10 $0C $10 Zero → MDA
13 0 $05 $0D $05 DAC_A_5 → CA3
14 0 $04 $0E $04 DAC_A_4 → CA2
15 0 $03 $0F $03 DAC_A_3 → CA1
16 0 $02 $10 $02 DAC_A_2 → CA0
17 0 $06 $11 $06 PH_A → PHA
18 0 $10 $12 $10 Zero → MDB
19 0 $0D $13 $0D DAC_B_5 → CB3
20 0 $0C $14 $0C DAC_B_4 → CB2
21 0 $0B $15 $0B DAC_B_3 → CB1
22 0 $0A $16 $0A DAC_B_2 → CB0
23

driver#2 (SM
D

A
=%

01)

1 $0E $17 $2E PH_B → PHB
24 0 $07 $18 $07 FD_A → MDA
25 0 $05 $19 $05 DAC_A_5 → CA3
26 0 $04 $1A $04 DAC_A_4 → CA2
27 0 $03 $1B $03 DAC_A_3 → CA1
28 0 $02 $1C $02 DAC_A_2 → CA0
29 0 $06 $1D $06 PH_A → PHA
30 0 $0F $1E $0F FD_B → MDB
31 0 $0D $1F $0D DAC_B_5 → CB3
32 0 $0C $20 $0C DAC_B_4 → CB2
33 0 $0B $21 $0B DAC_B_3 → CB1
34 0 $0A $22 $0A DAC_B_2 → CB0
35

driver#3 (SM
D

A
=%

10)

1 $0E $23 $2E PH_B → PHB
With LSMD = %10 the (third) NxM bit at address $23 (position 35) finishes the datagram transmission

Table 11-2: Datagram example and RAM contents for three stepper motor driver chain

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 39

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

 binary datagram specification : hexadecimal datagram

%10000000----------000101--010000 : $80000510
%10000010----------000011--000100 : $82000304
%10000100----------000110--000010 : $84000602
%10000110----------001101--010000 : $86000D10
%10001000----------001011--001100 : $88000B0C
%10001010----------101110--001010 : $8a002E0A
%10001100----------000101--010000 : $8c000510
%10001110----------000011--000100 : $8e000304
%10010000----------000110--000010 : $90000602
%10010010----------001101--010000 : $92000D10
%10010100----------001011--001100 : $94000B0C
%10010110----------101110--001010 : $96002E0A
%10011000----------000101--000111 : $98000507
%10011010----------000011--000100 : $9a000304
%10011100----------000110--000010 : $9c000602
%10011110----------001101--001111 : $9e000D0F
%10100000----------001011--001100 : $a0000B0C
%10100010----------101110--001010 : $a2002E0A

Table 11-3: Configuration datagram sequence for the example (with '-' (don't cares))

12 Initialization of the Micro Step Look-Up-Table
The TMC428 provides a look-up-table (LUT) of 64 values of 6 bit for micro stepping. The micro step
LUT can be adapted by storing an arbitrary quarter period of a periodic function to match individual
stepper motor characteristics. It is common to use one period of a sine wave function for micro
stepping. With that function, the current of one phase is driven with the sine function whereas the other
phase is driven with the cosine function.

To initialize the LUT for micro stepping one simply has to load a quarter sine wave period into the
micro step LUT. Two successive values of the sine wave function are included in one datagram similar
to the primary signal code words for the stepper motor driver chain configuration. The TMC428
automatically expands the quarter sine wave period to a full sine and cosine function. The necessary
data values y(i) to represent a ¼ sine wave period for the micro step LUT are defined by

 y(i) = int[½ + 64 * sin(¼ * 2 * π * i / 64)] with i = { 0, 1, 2, 3, ..., 60, 61, 62, 63 },

where the conditional replacement y(i) := 63 for y(i) > 63 has to be done. The last five values (which
are calculated to be 64) have to be replaced by 63. With this replacement one finally gets y(i) = { 0, 2,
3, 5, 6, 8, 9, 11, 12, 14, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 59, 60, 60, 61, 61, 62, 62, 62, 63, 63,
63, 63, 63, 63, 63, 63 }.

32 bit DATAGRAM sent from a µC to the TMC428 via pin SDI_C

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

DATA R
R

S ADDRESS

R
W

 (x)10
data @ odd

RAM addresses (x)10
data @ even

RAM addresses
0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 5 0 0 0 1 0 1 3 0 0 0 0 1 1

0 0 0 1 0 8 0 0 1 0 0 0 6 0 0 0 1 1 0

0 0 0 1 1 11 0 0 1 0 1 1 9 0 0 1 0 0 1

1 1

0 0 1 0 0

0

14 0 0 1 1 1 0 12 0 0 1 1 0 0

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 40

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

…

…

…

…

…
 …

…

…

…

…

…
 …

…

…

…

…

…

1 1 0 1 1 62 1 1 1 1 1 0 62 1 1 1 1 1 0

1 1 1 0 0 63 1 1 1 1 1 1 63 1 1 1 1 1 1

1 1 1 0 1 63 1 1 1 1 1 1 63 1 1 1 1 1 1

1 1 1 1 0 63 1 1 1 1 1 1 63 1 1 1 1 1 1

1 1 1 1 1

63 1 1 1 1 1 1 63 1 1 1 1 1 1

Table 12-1: Scheme of ¼ sine wave period with 6 bit resolution and 64 (32 x 2) values

These 64 values represent a quarter sine period in the interval [0 ... π/4[which is expanded
automatically by the TMC428 to a full sine cosine period (see section 12.1, page 41). The table is sent
to the on-chip RAM of the TMC428 by 32 datagrams:

 % binary representation of the datagram : decimal represented pair of values : $ hexadecimal
 (separated by & character) representation

% 11 00000 0 00000000 00 000010 00 000000 : 2 & 0 : $C0000200
% 11 00001 0 00000000 00 000101 00 000011 : 5 & 3 : $C2000503
% 11 00010 0 00000000 00 001000 00 000110 : 8 & 6 : $C4000806
% 11 00011 0 00000000 00 001011 00 001001 : 11 & 9 : $C6000B09
% 11 00100 0 00000000 00 001110 00 001100 : 14 & 12 : $C8000E0C
% 11 00101 0 00000000 00 010001 00 010000 : 17 & 16 : $CA001110
% 11 00110 0 00000000 00 010100 00 010011 : 20 & 19 : $CC001413
% 11 00111 0 00000000 00 010111 00 010110 : 23 & 22 : $CE001716

% 11 01000 0 00000000 00 011010 00 011000 : 26 & 24 : $D0001A18
% 11 01001 0 00000000 00 011101 00 011011 : 29 & 27 : $D2001D1B
% 11 01010 0 00000000 00 100000 00 011110 : 32 & 30 : $D400201E
% 11 01011 0 00000000 00 100010 00 100001 : 34 & 33 : $D6002221
% 11 01100 0 00000000 00 100101 00 100100 : 37 & 36 : $D8002524
% 11 01101 0 00000000 00 100111 00 100110 : 39 & 38 : $DA002726
% 11 01110 0 00000000 00 101010 00 101001 : 42 & 41 : $DC002A29
% 11 01111 0 00000000 00 101100 00 101011 : 44 & 43 : $DE002C2B

% 11 10000 0 00000000 00 101110 00 101101 : 46 & 45 : $E0002E2D
% 11 10001 0 00000000 00 110000 00 101111 : 48 & 47 : $E200302F
% 11 10010 0 00000000 00 110010 00 110001 : 50 & 49 : $E4003231
% 11 10011 0 00000000 00 110100 00 110011 : 52 & 51 : $E6003433
% 11 10100 0 00000000 00 110110 00 110101 : 54 & 53 : $E8003635
% 11 10101 0 00000000 00 111000 00 110111 : 56 & 55 : $EA003837
% 11 10110 0 00000000 00 111001 00 111000 : 57 & 56 : $EC003938
% 11 10111 0 00000000 00 111011 00 111010 : 59 & 58 : $EE003B3A

% 11 11000 0 00000000 00 111100 00 111011 : 60 & 59 : $F0003C3B
% 11 11001 0 00000000 00 111101 00 111100 : 61 & 60 : $F2003D3C
% 11 11010 0 00000000 00 111110 00 111101 : 62 & 61 : $F4003E3D
% 11 11011 0 00000000 00 111110 00 111110 : 62 & 62 : $F6003E3E
% 11 11100 0 00000000 00 111111 00 111111 : 63 & 63 : $F8003F3F
% 11 11101 0 00000000 00 111111 00 111111 : 63 & 63 : $FA003F3F
% 11 11110 0 00000000 00 111111 00 111111 : 63 & 63 : $FC003F3F
% 11 11111 0 00000000 00 111111 00 111111 : 63 & 63 : $FE003F3F

Table 12-2 - Datagrams for initialization of a quarter sine wave period microstep look-up-table

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 41

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

These 32 datagrams (Table 12-2) are sufficient for all programmable micro step resolutions. If micro
stepping is used for at least one stepper motor, these 32 datagrams have to be sent once to the
TMC428 for initialization of the micro step table after power-on reset. The initialization of the micro step
look-up-table is not necessary, if full stepping is used for all stepper motors. The on-chip RAM is not
initialized during power-on reset. So, the full initialization of the whole micro step look-up-table is
recommended to avoid trouble caused by missing look-up table entries. Additionally, a fully initialized
micro step look-up-table allows the selection of individual micro step resolutions for different steppes.

12.1 Stepping through the Wave Look-Up-Table

The 64 values of the wave look-up table (LUT) hold a quarter period of a sine wave, indexed from 0 to
63. This quarter sine wave is expanded to full sine wave and full cosine wave by indexing the 64 values
of the LUT. The LUT index is mapped from a wave index of a full period from 0 to 255. The stepping
through the LUT is done with fixed increment width. The increment width is a power of two and it
depends on the micro step resolution selection usrs. The Table 12-4 gives the indices for the LUT for
the different micro step resolutions. For motion in positive direction, the full period index is incremented
from micro step to micro step. For motion into negative direction, the full period index is decremented
from micro step to micro step.

The sine is associated to phase A (PH_A) and the cosine is associated to phase B (PH_B). The phase
bits represent the sign of the sine resp. cosine function. The polarity of the phase bit (PH_A, PH_B)
and the polarity of the fast decay control bits (FD_A, FD_B) can be changed by the polarity bits within
the global stepper motor parameter register (see section 9.7, page 29).

MSBs of full
wave index (range) Quadrant PH_A (sin) PH_B (cos) FD_A (sin) FD_B (cos)

%00 (0...63) 1st 1 1 0 1
%01 (64...127) 2nd 1 0 1 0
%10 (128...191) 3rd 0 0 0 1
%11 (192...255) 4th 0 1 1 0

Table 12-3: Phase Bits and Fast Decay Control Bits

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 42

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Hints: One should always initialize the whole LUT to be sure to read valid wave values, even if one
changes the micro step resolution after some micro steps have been done on higher resolution. Even if
one uses e.g. 16 times microstepping, one gets a smoother move for the stepper motor if one
initializes the full sine wave LUT according to Table 12-2 - Datagrams for initialization of a quarter sine
wave period microstep look-up-table on page 40 and using the MSB DAC bits (DAC_A_5, DAC_A_4,
DAC_A_3, DAC_A_2 and DAC_B_5, DAC_B_4, DAC_B_3, DAC_B_2). So, one should always
completely initialize the quarter sine wave LUT, no matter what micro step resolution is used. The
addressing starts at 0 after power-on reset only. Changing the micro step resolution after some micro
steps have been made causes an offset for the addressing that has to be taken into account for
positioning a stepper motor.

usrs increment
width 1st quadrant 2nd quadrant 3rd quadrant 4th quadrant

sin 0,1,2, 3, ..., 61, 62,63, 63, 63, 62, 61,..., 3, 2,1, 0,1,2, 3, ..., 61, 62,63, 63, 63,62,61,..., 3, 2,1 %110 1
cos 63, 63, 62, 61,...,2,1, 0,1,2, 3, ..., 61, 62,63, 63, 63,62,61,...,3, 2,1, 0,1,2, 3, ..., 61, 62,63
sin 0,2, 4, 6, ..., 58, 60,62, 63, 60, 58, 56,..., 4, 2, 0,2, 4, 6, ..., 58, 60,62, 63, 60, 58, 56,..., 4, 2 %101 2
cos 63, 60, 58, 56,..., 4, 2, 0,2, 4, 6, ..., 58, 60,62, 63, 60, 58, 56,..., 4, 2, 0,2, 4, 6, ..., 58, 60,62
sin 0, 4, 8, 12, ..., 56, 60, 63, 60, 56, ..., 12, 8, 4, 0, 4, 8, 12, ..., 56, 60, 63, 60, 56, ..., 12, 8, 4 %100 4
cos 63, 60, 56, ..., 12, 8, 4, 0, 4, 8, 12, ..., 56, 60, 63, 60, 56, ..., 12, 8, 4, 0, 4, 8, 12, ..., 56, 60
sin 0, 8, 16, 24, ... , 48, 56 63, 56, 48, 40,...,16, 8, 0, 8, 16, 24, ... , 48, 56 63, 56, 48, 40,...,16, 8 %011 8
cos 63, 56, 48, 40,...,16, 8, 0, 8, 16, 24, ... , 48, 56 63, 56, 48, 40,...,16, 8, 0, 8, 16, 24, ... , 48, 56
sin 0, 16, 32, 48, 63, 48, 32, 16, 0, 16, 32, 48, 63, 48, 32, 16 %010 16
cos 63, 48, 32, 16, 0, 16, 32, 48, 63, 48, 32, 16, 0, 16, 32, 48
sin 0, 32, 63, 32, 0, 32, 63, 32 %001

(HS) 32
cos 63, 32, 0, 32, 63, 32 0, 32
sin 0, 63, 0, 63 %000

(FS) 64
cos 63, 0, 63 0

Table 12-4: Wave look-up table (LUT) indices for different microstep resolutions

12.2 Partial look-up table initialization option

A partially initialized micro step table may be sufficient, if all stepper motors– except those driven in full
step mode –are programmed to use the same micro step resolution constantly before a single micro
step is processed. But with a partial initialized micro step look-up table, the micro step resolution must
not be changed after any step is made after power-on reset. So, a partially initialized look-up table
should be taken into account only, if it is a must because of too small memory of the host
microcontroller. Instead of partial initialization of the look-up table of the TMC428, initialization with a
triangular function frhomb(ϕ) would be a better choice.

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 43

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

12.3 Micro Step Enhancement

Even for stepper motors optimized for sine-cosine control, it is possible to improve micro step behavior
by adapting the micro step look-up table (LUT). For different types of stepper motors, a periodic
trapezoidal or triangular function similar to a sine function or a superposition of these function as a
replacement of the pure sine wave function (Figure 12-1) might be a better choice. Taking the physics
of stepper motors into account, the choice of the function for microstepping can be determined by a
single shape parameter σ as explained below. The programmability of the micro step look-up table
provides a simple and effective facility to enhance microstepping for a given type of two-phase stepper
motor. Enhanced microstepping requires accurate current control. So, stepper motor driver chips with
enabled and well tuned fast decay (resp. mixed decay) operational mode are need to be used, e.g.
TRINAMICs smart power TMC236 / TMC239 / TMC246 / TMC249 drivers.

Non-linearity resulting from magnetic field configuration determined by shapes of pole shoes,
ferromagnetic characteristics, and other stepper motor characteristics effect non-linearity in micro step
behavior of real stepper motors. The non-linearity of microstepping causes micro step positioning
displacements, vibrations and noise, which can be reduced dramatically with an adapted micro step
table. The best fitting micro step table can be determined by measuring the micro step motor behavior,
e.g. using a laser pointer based on the sine-cosine microstepping table.

Nevertheless sine-cosine microstepping is a good first order approach for microstepping. The micro
step enhancement possible with the TMC428 is based on replacement of the look-up table initialization
function sin(ϕ) used for sine-cosine microstepping by a function with the shape parameter σ. A quarter
sine wave period is the basic approach for initialization of the micro step look-up-table . A quarter of a
trapezoidal function or a quarter of a triangular function is chosen depending on the shape parameter σ
for a given stepper motor type.

.
2

00.10.1

0)(

0)(

0)(

)(

hom_

_ πϕσ
σϕ
σϕ

σϕ

ϕ
σ

<≤+≤≤−










<

=

>

= andwith

for

for

for

f
f

f
f

brcircle

circle

circlebox

The look-up table (f(ϕ)) of the TMC428 enfolds a quarter period (0 ≤ ϕ < π /2) only. This quarter period
is expanded to a full period (0 ≤ ϕ < 2π) and the phase shifted companion function value (f(ϕ - π /2)) is
added automatically by the TMC428 during operation. So, to reach function value (f(ϕ)), one
automatically gets a pair of function values {f(ϕ); f(ϕ - π /2)} respectively {sin(ϕ); cos(ϕ)}. This
automatic expansion of the TMC428– primary provided for sine cosine microstepping (f(ϕ) = sin(ϕ)) –
also works fine with other micro step wave forms f σ.

x0

4
π

2
π0 π

π2

4
3π

)(ϕf

ϕ

box

rho
mb

circle

1

1

2
π

y

up to 64 micro steps

1 full step

up to 64 micro steps within a quadrant

1 full step

2
1

Figure 12-1: Microstep enhancemant by introduction of a shape function fσ(ϕϕϕϕ)

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 44

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

The shape parameter σ selects one of three functions fbox(φ), fcircle(φ), frhomb(φ), respectively a
superposition of two of them. The shape parameter σ = 0 selects the function fcircle(φ) which is the sine
function sin(ϕ) as used for sine cosine microstepping. With this, one gets the unit circle (r=1.0) by
transformation to Cartesian coordinates {y = sin(ϕ); x = cos(ϕ)} as outlined in Figure 12-1, a shape
parameter σ = +1.0 results in a box, and a shape parameter σ = -1.0 results in a rhomb. Other values
except those, result in something between box and circle respectively something between circle an
rhomb.

The data values y(i) of the look-up table range from 0 to 63 and the argument i ranges also from 0 to
63. In the following, natural angles (radians) ranging from (0 ≤ ϕ < 2π) are used for the description.
The three functions for superposition controlled by the shape parameter σ are

ϕ
π

ϕ

ϕϕ

πϕ

πϕϕ
πϕ

⋅=

=









≥

<≤⋅
⋅=

2)(

)sin()(
42

1
4

0
2

4

)(

hom br

circle

box

f

f

if

if
f

All together, these three functions are combined to form the function

0
0
0

)]()([)(

)(

)]()([)(

)(

hom
<
=
>










−⋅+

−⋅+

=
σ
σ
σ

ϕϕσϕ
ϕ

ϕϕσϕ
ϕ

σ
for
for
for

fff
f

fff
f

brcirclecircle

circle

circleboxcircle

So, the shape parameter σ selects the type of function and it also provides a continuous transition
between circle and box respectively circle and rhomb. To estimate, what function would be best for a
given type of stepper motor, one can try microstepping based on different shape parameters σ by
downloading different micro step tables on-the-fly into the TMC428 during motion of a stepper motor.
For calculation of data for the micro step look-up table of the TMC428, one has to replace ϕ→ϕi
ranging from 0 to π /2 for the quarter period by

}63,...,3,2,1,0{
642

=⋅= iwithi
i

πϕ .

The amplitude of the shape function fσ (φi) has to be limited to the range of 0.0 to 1.0 respectively to the
range of 0 to 63 for the on-chip RAM as described in the beginning of the microstepping section.

13 How to get Started in Running a Motor
First of all, the Stepper Motor Driver Datagram Configuration has to be written into its RAM area.
Additionally, the Microstep Look-Up-Table has to be initialized when using microstepping. The
parameter LSMD, that is part of the global parameter register, has to be initialized. After that, the
parameters v_min, v_max, and the clock pre-dividers pulse_div and ramp_div and the micro step
resolution usrs has to be set. Then, a_max together with a valid pair of pmul and pdiv has to be set.
The switch configuration ref_conf together with the ramp mode rm has to be chosen. The reference
switch inputs REF1, REF2, REF3 should be pulled down to ground or disabled by setting ref_conf.
With those settings, the TMC428 runs a motor if one writes either x_target or v_target, depending on
the choice of the ramp mode rm. An application note named "TMC428 – Getting Started" together with
C source code examples are available on www.trinamic.com

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 45

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

14 Package Outlines and Dimensions

14.1 Shrink Small Outline Package with 16 Pins (SSOP16, 150 MIL) of TMC428-

I and TMC428-A

HE

h x 45° 123

16

8

9

e

D

A

A1

h x 45°

α

A2

L

WITH PLATING

b1

c1 c

b

BASE METAL

TOP VIEW

SIDE VIEW

C

B

4567

151413121110

END VIEW

LEAD (SIDE VIEW)

N=16

S

Figure 14-1: Package Outline Drawing SSOP16, 150 MILS

Dimensions in MILLIMETERS Dimensions in INCHES Symbol
Min Typ Max Min Typ Max

A 1.55 1.63 1.73 0.061 0.064 0.068
A1 0.10 0.15 0.25 0.004 0.006 0.0098
A2 1.40 1.47 1.55 0.055 0.058 0.061
b 0.20 0.30 0.008 0.012
b1111 0.20 0.25 0.28 0.008 0.010 0.011
c 0.18 0.25 0.007 0.010
c1111 0.18 0.20 0.23 0.007 0.008 0.009
B 0.20 0.25 0.31 0.008 0.010 0.012
C 0.19 0.20 0.25 0.0075 0.008 0.0098
D 4.80 4.93 4.98 0.189 0.194 0.196
E 3.91 BSC 0.154 BSC
e 0.635 BSC 0.025 BSC
H 6.02 BSC 0.237 BSC
h 0.25 0.33 0.41 0.010 0.013 0.016
L 0.41 0.635 0.89 0.016 0.025 0.035
N 16 16
S 0.051 0.114 0.178 0.0020 0.0045 0.0070
αααα 0° 5° 8° 0° 5° 8°

Table 14-1: Dimensions of Package SSOP16, 150 MILS (Note: BSC ≈≈≈≈ Best Case)

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 46

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

14.2 Small Outline Package with 24 Pins (SOP24) of TMC428-PI24

123

H

e

E

D

A

A1

h x 45°

B h x 45°

A2
C

L

α

TOP VIEW

SIDE VIEW

456789101112

13 14 15 16 17 18 19 20 21 22 23

N = 24

24

END VIEW

Figure 14-2: Package Outline Drawing SOP24, 300 MILS

Dimensions in MILLIMETERS Dimensions in INCHES Symbo
l Min Typ Max Min Typ Max

A 2.35 2.65 0.0926 0.1043
A1 0.1 0.3 0.004 0.0118
A2
B 0.33 0.51 0.013 0.02
C 0.23 0.32 0.0091 0.0125
D 15.2 15.6 0.5985 0.6141
E 7.4 7.6 0.2914 0.2992
e 1.27 BSC 0.05 BSC
H 10 10.65 0.394 0.419
h 0.25 0.75 0.01 0.029
L 0.4 1.27 0.016 0.05
N 24 24
αααα 0° 8° 0° 8°

Table 14-2: Dimensions of Package SOP24, 300 MILS (Note: BSC ≈≈≈≈ Best Case)

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 47

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

14.3 Dual-In-Line Package with 20 Pins (DIL20) of TMC428-DI20

D

S BB1

E

E1

eA

SIDE VIEW END VIEW

1

N = 24

EE1

TOP VIEW

2345678910

11 12 13 14 15 2017 18 1916

AA2A1

eB

C

L

e

Figure 14-3: Package Outline Drawing DIL20, 300 MILS (not recommended for new designs)

Dimensions in MILLIMETERS Dimensions in INCHES Symbo
l Min Typ Max Min Typ Max

A 4.57 0.180
A1 0.38 0.015
A2 3.05 3.43 3.81 0.120 0.135 0.150
B 0.36 0.46 0.56 0.014 0.018 0.022
B1 1.14 1.27 1.52 0.045 0.050 0.060
C 0.20 0.25 0.38 0.008 0.010 0.015
D 24.0 24.51 25.02 0.945 0.965 0.985
D1 22.86 BSC 0.900 BCS
E 7.62 7.87 8.26 0.300 0.310 0.325
E1 6.99 7.24 7.49 0.275 0.285 0.295
e 2.54 BSC 0.100 BSC
eA 7.62 BSC 0.300 BSC
eB 10.92 0.430
L 2.79 3.30 3.81 0.110 0.130 0.150
S 0.13 0.005
N 20 20

Table 14-3: Dimensions of Package DIL20, 300 MILS (Note: BSC ≈≈≈≈ Best Case)

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 48

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

15 Marking

Product Name TMC428-I
Product ID at top 56563A
Package SSOP16 – 150 MILS
Date Code (at bottom only) YYWW (year YY and week WW)
Lot Number (at bottom only) XXXXXXXXX
Logo No

Real Size (see note below) TMC428-I
Trinamic
56563A

Zoomed Size

TMC428-I
Trinamic
56563A

Product Name TMC428-A
Product ID at top 56563A
Package SSOP16 – 150 MILS
Date Code (at bottom only) YYWW (year YY and week WW)
Lot Number (at bottom only) XXXXXXXXX
Logo No

Real Size (see note below) TMC428-A
Trinamic
56563A

Zoomed Size

TMC428-A
Trinamic
56563A

Product Name TMC424-PI24
Product ID 56563A
Package SOP24 – 300 MILS
Date Code YYWW (year YY and week WW)
Lot Number XXXXXXXXX
Logo Yes

Real Size (see note below)

Zoomed Size

Note: Provided to be of ‘’Real Size’’ if printed with scale of 100% on paper of DIN-A4 format – but the
printed size may differ depending on the printer.

TMC 428-PI24
Trinamic 
56563A YYWW
XXXXXXXXX

TMC 428-PI24
Trinamic 
56563A YYWW
XXXXXXXXX

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 49

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

16 On-Chip Voltage Regulator

The on-chip voltage regulator delivers a 3.3V supply for the chip core. An external 470 nF ceramic
capacitor has to be connected between the V33 pin (see Figure 16-1, page 49) and ground, with
connections as short as possible. Additionally, an external 100 nF ceramic capacitor (CBLOCK) has to
be connected between pin V5 and ground– with connections as short as possible –in 5V operational
mode. In 3.3V operational mode an external 100 nF ceramic capacitor (see Figure 16-1, page 49) is
necessary only between pin V33 and ground, with connections as short as possible.

Symbol Parameter Conditions Min Typ Max Unit
TRANGEREG Temperature range Industrial -40 85 °C
VDD5REG Supply voltage vdd5 5 V Operational Mode 4.5 5 5.5 V
CBLOCK Block capacitor 5 V Operational Mode, x7r ceramic capacitor 100 nF
VDD3REG Supply voltage vdd3 3.3 V Operational Mode 2.9 3.3 3.6 V
ICCNLREG Current consumption no load 50 100 µA
tSREG Startup time no external capacitor connected 20 µs
tSREGC Startup time C_load = 470 nF 150 µs
TDRFT Temperature drift 300 ppm / °C
VRIPPLE Ripple on vdd3 With ripple over 50 mV the input thresholds

may differ from that specified in the data sheet
 100 mV

CREG External capacitor On V33 pin, x7r ceramic, necessary capacity
depending on ripple requirements. Using
external capacitor with capacity other than
typical, the ripple should be measured on pin
v33 to be sure that requirements are satisfied.

33 470 nF

COPT Optional capacitor Optional parallel capacitor for additional
reduction of high frequency ripple, c0g
ceramic, unnecessary in most cases

 470 pF

PSRRDC power supply ripple
rejection

DC 50 dB

Table 16-1: Characteristics of the on-chip voltage regulator

SCK_S

SDO_S

SDI_S

nSCS_S
REF2 REF3REF1

TEST GND

SDI_C

nSCS_C

SCK_C

SDO_C CLK V5V33

TMC428

470 nF *

+5 V

100 nF *

Copt

5V Operation (TTL)

Pinns named GND and TEST have to be connected
to ground as close as possible to the chip.

* Capacitors should be placed as
cloase as possible to the chip.

SCK_S

SDO_S

SDI_S

nSCS_S
REF2 REF3REF1

TEST GND

SDI_C

nSCS_C

SCK_C

SDO_C CLK V5V33

TMC428

+3.3V 100nF *

3.3V Operation (CMOS)

The optional capacitor Copt is unnecessary in most cases.

Figure 16-1: 3.3V operation (CMOS) vs. 5V operation (TTL)

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 50

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

17 Power-On-Reset

The TMC428 is equipped with a static and dynamic reset with internal hysteresis (see Figure 17-1). So,
it performs an automatic reset during power-on. If the power supply voltage goes below a threshold, an
automatic power on reset is performed also. The power on reset time tRESPOR also depends on the
power up time of the on-chip voltage regulator (see Table 16-1).

Symbol Parameter Conditions Min Typ Max Unit
VDD Power supply range 3.0 3.3 3.6 V
Temp Temperature -55 25 125 °C
Vop Reset on/off 0.80 V
Voff Reset off 1.58 2.13 2.85 V
Von Reset on 1.49 1.98 2.70 V
tRESPOR Reset time of on-chip power-on-reset 2.14 3.31 5.52 µs

Table 17-1: Characteristics of the on-chip power-on-reset

Voff

Von

Vop

0

Voff

Von

Vop

0

static dynamic

tRESPOR
Figure 17-1: Operating principle of the power-on-reset

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 51

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

18 Characteristics

Symbol Parameter Conditions Min Max Unit
VDD3 DC Supply Voltage Voltage at Pin V33 in 3.3V mode -0.3 3.6 V
VI3 DC Input Voltage, 3.3 V I/Os -0.3 VDD3 + 0.3 V
VO3 DC Output Voltage, 3.3 V I/Os -0.3 VDD3 + 0.3 V
VDD5 DC Supply Voltage Voltage at Pin V5 -0.3 5.5 V
VI5 DC Input Voltage, 5V I/Os Continuous DC Voltage -0.3 VDD5 + 0.3, 5.5 max V
VO5 DC Output Voltage, 5V I/Os Continuous DC Voltage -0.3 VDD5 + 0.3, 5.5 max V
VESD ESD Voltage PAD cells are designed to resist ESD

voltages according to Human Body
Model according to MIL-STD-883,
with RC = 1 - 10 MΩ, RD = 1.5 KΩ,
and CS = 100 pF, but it can not be
guaranteed.

 ±2000 V

TEMP_D2 Ambient Air Temperature Range Industrial / Consumer type -40 +85 °C
TEMP_D3 Ambient Air Temperature Range Automotive type -55 +125 °C
TEMP_D4 Ambient Air Temperature Range Industrial type -40 +105 °C
TSG Storage Temperature -60 +150 °C

Table 18-1: Absolute maximum ratings

Symbol Parameter Conditions Min Typ Max Unit
ILC Input Leakage Current 1 µA
CIN Input Capacitance 7 pF

Table 18-2: DC characteristics

Symbol Parameter Conditions Min Typ Max Unit
VDD3 DC Supply Voltage 3.0 3.3 3.6 V
VI3 DC Input Voltage 0 VDD3 V
VIL3 Low Level Input Voltage Pin TEST only 0 0.3 x VDD3 V
VIH3 High Level Input Voltage Pin TEST only 0.7 x VDD3 VDD3 + 0.3 V
VLTH3 Low Level Input Voltage Threshold All Inputs except TEST 0.9 1.2 V
VHTH3 High Level Input Voltage Threshold All Inputs except TEST 1.5 1.9 V
VHYS3 Schmitt-Trigger Hysteresis 0.4 0.7 V
VOL3 Low Level Output Voltage IOL = 0.3 mA 0.1 V
VOH3 High Level Output Voltage IOH = 0.3 mA VDD3 – 0.1 V
VOL3 Low Level Output Voltage IOL = 2 mA 0.4
VOH3 High Level Output Voltage IOH = 2 mA VDD3 – 0.4 V

Table 18-3: DC characteristics – 3.3V supply mode

Note: Ripple on VDD3 has to be taken into account concerning measurement of thresholds and
hysteresis.

Symbol Parameter Conditions Min Typ Max Unit
VDD5 DC Supply Voltage 4.5 5 5.5 V
VI5 DC Input Voltage 0 VDD5 V
VIL5 Low Level Input Voltage Pin TEST only 0 0.3 x VDD5 V
VIH5 High Level Input Voltage Pin TEST only 0.7 x VDD5 VDD5 + 0.3 V
VLTH5 Low Level Input Voltage

Threshold
All Inputs except TEST,
VDD5=5V

0.9 1.2 V

VHTH5 High Level Input Voltage
Threshold

All Inputs except TEST,
VDD5=5V

1.5 1.9 V

VHYS5 Schmitt-Trigger Hysteresis 0.4 0.7 V
VOL5 Low Level Output Voltage IOL = 0.3 mA 0.1 V
VOH5 High Level Output Voltage IOH = 0.3 mA VDD5 – 0.1 V
VOL5 Low Level Output Voltage IOL = 4 mA 0.4
VOH5 High Level Output Voltage IOH = 4 mA VDD5 – 0.4 V

Table 18-4: DC characteristics – 5V supply mode

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 52

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Symbol Parameter Conditions Min Typ Max Unit
ISC16MHZ Supply Current f = 16 MHz at Tc=25°C 5 10 mA
ISC4MHZ Supply Current f = 4 MHz at Tc=25°C 1.25 2.5 mA
IPDN25C Power Down Current Power Down Mode at Tc=25°C, 5V Supply 70 150 µA

Table 18-5: Power dissipation

Symbol Parameter Conditions Min Typ Max Unit
fCLK Operation Frequency fCLK = 1 / tCLK 0 4 16 MHz
tCLK Clock Period Raising Edge to Raising Edge of CLK 62.5 ∞ ns
tCLK_L Clock Time Low 25 ∞ ns
tCLK_H Clock Time High 25 ∞ ns
tRISE_I Input Signal Rise Time 10% to 90% except TEST pin 0.5 ∞ ns
tFALL_I Input Signal Fall Time 90% to 10% except TEST pin 0.5 ∞ ns
tRISE_O Output Signal Rise

Time
10% to 90% 3 ns

tFALL_O Output Signal Fall Time 90% to 10% 3 ns
tSU Setup Time relative to falling clock edge at CLK 1 ns
tHD Hold Time relative to falling clock edge at CLK 1 ns
tPD Propagation Delay

Time
50% of rising edge of the clock CLK to the
50% of the output

1

5

 ns

Table 18-6: General timing parameters

tCLK_LtCLK_H

tCLK

tSU

tPD

90%

10%

50%

50%

tHDtFALL

tRISE

CLK

OUTPUT

Figure 18-1: General timing parameters

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 53

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

19 Example for Calculation of p_mul and p_div for the TMC428

/* PROGRAM EXAMPLE 'pmulpdiv.c' : How to Calculate p_mul & p_div for the TMC428 */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void CalcPMulPDiv(int a_max, int ramp_div, int pulse_div, float p_reduction,
 int *p_mul, int *p_div, double *PIdeal, double *PBest, double *PRedu)
{
 int pdiv, pmul, pm, pd;
 double p_ideal, p_best, p, p_reduced;

 pm=-1; pd=-1; // -1 indicates : no valid pair found
 p_ideal = a_max / (pow(2, ramp_div-pulse_div)*128.0);
 p = a_max / (128.0 * pow(2, ramp_div-pulse_div));
 p_reduced = p * (1.0 - p_reduction);

 for (pdiv=0; pdiv<=13; pdiv++)
 {
 pmul = (int)(p_reduced * 8.0 * pow(2, pdiv)) - 128;

 if ((0 <= pmul) && (pmul <= 127))
 {
 pm = pmul + 128;
 pd = pdiv;
 }
 }

 *p_mul = pm;
 *p_div = pd;

 p_best = ((double)(pm)) / ((double)pow(2,pd+3));

 *PIdeal = p_ideal;
 *PBest = p_best;
 *PRedu = p_reduced;
}

int main(int argc, char **argv)
{
 int a_max=0, ramp_div=0, pulse_div=0, p_mul, p_div,
 a_max_lower_limit=0, a_max_upper_limit=0;
 double pideal, pbest, predu;
 float p_reduction=0.0;

 char **argp;

 if (argc>1)
 {
 while (argv++, argc--)
 {
 argp = argv + 1; if (*argp==NULL) break;

 if ((!strcmp(*argv,"-a"))) sscanf(*argp,"%d",&a_max);
 else if ((!strcmp(*argv,"-r"))) sscanf(*argp,"%d",&ramp_div);
 else if ((!strcmp(*argv,"-p"))) sscanf(*argp,"%d",&pulse_div);
 else if ((!strcmp(*argv,"-pr"))) sscanf(*argp,"%f",&p_reduction);
 }
 }
 else
 {
 fprintf(stderr,"\n USAGE : pmulpdiv -a <a_max> -r <ramp_div> -p <pulse_div> -pr <0.00 .. 0.10>\n"
 " EXAMPLE : pmulpdiv -a 10 -r 3 -p 3 -pr 0.05\n");
 return 1;
 }

 printf("\n\n a_max=%d\tramp_div=%d\tpulse_div=%d\tp_reduction=%f\n\n",
 a_max, ramp_div, pulse_div, p_reduction);

 CalcPMulPDiv(a_max, ramp_div, pulse_div, p_reduction, &p_mul, &p_div, &pideal, &pbest, &predu);

 printf(" p_mul = %3.3d\n p_div = %3d\n\n p_ideal = %f\n p_best = %f\n p_redu = %f\n\n",
 p_mul, p_div, pideal, pbest, predu);

 a_max_lower_limit = (int)pow(2,(ramp_div-pulse_div-1));
 printf("\n a_max_lower_limit = %d",a_max_lower_limit);
 if (a_max < a_max_lower_limit) printf(" [WARNING: a_max < a_max_lower_limit]");
 a_max_upper_limit = ((int)pow(2,(12+(ramp_div-pulse_div)))) -1;
 printf("\n a_max_upper_limit = %d",a_max_upper_limit);
 if (a_max > a_max_upper_limit) printf(" [WARNING: a_max > a_max_upper_limit]");
 printf("\n\n");

 return 0;
}
/* -- */

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 54

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Revision History

Version Date Comment
1.00 February 23, 2001 First complete version published in printed form
1.01 March 27, 2001 Version updated based on customer feed back
1.02 November 21, 2001 Version published on www.trinamic.com and TECHlibCD
2.00 October 2, 2003 Changed to font Arial, numbering added to headings, revision history added
2.00 November 12, 2003 additional hints concerning motion parameters units and signed representation and

concerning signal polarities (see section 2.5, page 5),
hint added concerning SPI timing of µC interface section 6.2on page 8,
hint concerning power-on reset initialization values added near Table 7-2 on page 15,
LP bit position corrected @ Table 7-2 on page 15 and Table 8-5 on page 24,
limit parameter a_max_upper_limit similar to a_max_lower_limit added as new sub-
section (see page 17),
interrupt register index (hint within text, section 8.13, page 24) corrected to IDX=%1011,
additional statements concerning the functional difference of stop switch and reference
switch in context of parameter dx_ref_tolerance section 8.15 on page 27, hints
concerning MSB order concerning sending and receiving via the µC SPI interface,
hints concerning the functional difference between stop switch and reference switch,
description concerning latching the position (under control of REF_RnL bit) corrected is
section 8.16 on page 27,
function of the CDGW status bit explained in more detail concerning
datagram_high_word and datagram_low_word (section 9.1 on page 27) and
cover_datagram (section 9.3 on page 28),
correction of maximum value of clk2_div and formula to calculate the datagram
frequency f_datagram[Hz] added to section 9.7 on page 29,
numbering within table of table concerning Table 9-2: Global parameter LSMD (last
stepper motor driver) on page 30 corrected,
Figure 11-1 on page 36 added to outline the driver chain configuration principle,
imaginary example for Stepper Motor Driver Datagram Configuration (see page 38)
changed to real example for the TMC236 / TMC239 / TMC246 / TMC249 family,
section 12.1 (page 41) concerning indexing the wave LUT added,
optional capacitor Copt added to drawing Figure 16-1on page 49,
calculation of the number of steps during acceleration added to section 8.14, Table 18-1
on page 51 temperature ranges completed,
example 'pmulpdiv.c' on page 53 for calculation of p_mul & p_div replaced by a
more efficient one

2.00 October 1st, 2004 Changes concerning new company TRINAMIC Motion Control GmbH & Co. KG
2.01 October 7th, 2004 One of twice repeated phrase “A write to one of these …” removed within section 9.1 on

page 27, equation “| ramp_div and pulse_div | <= 1” corrected (and replaced by -)
section 8.7.1 on page 17, formula q = p/p' corrected to q = p'/p within section 8.11.

2.02 April 21th, 2006 Hints added (section 3, page 5, Table 3-1; section 4, page 6, Figure 4-1, page 6, Table
4-1, page 6; section 14.3, page 47, Figure 14-3) not to use the package DIL20 variant
for new designs - pls. contact our sales via info@trinamic.com for details concerning last
order etc.; specification of industrial temperature range added to section 3, page 5,
Table 3-1; hexadecimal representation in Table 12-2 on page 40
% 11 01111 0 00000000 00 101100 00 101011 : 44 & 43 : $DE001C1B
corrected to
% 11 01111 0 00000000 00 101100 00 101011 : 44 & 43 : $DE002C2B;
mnemonic for RAM data of code $04 changed from DAC_A_3 to correct DAC_A_4
(Table 11-2, page 38); formula for continuos update frequency (f_cupd_s[Hz]) corrected
(end of section 9.7); high active interrupt status bit (former named nINT) renamed to INT
to avoid confusing caused by the low active interrupt status output signal (still named
SDO_C / nINT), section 6.4, page 11, Table 6-4, page 12, section 6.5, page 13, section
8.13, page 24; hint to an application note "TMC428 – Getting Started" available on
www.trinamic.com added section 13, page 44.

2.02 April 26th, 2006 section 1, page 1 DIL20 package option removed from feature list; hint added not to use
the DIL20 package (TMC428-DI20) for new designs (Figure 2-2, page 4); hint added
how to make the SDO_C high impedance (Figure 4, page 9); this version of the data
sheet is published on www.trinamic.com and TECHlibCD

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 55

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

20 Table of Figures

Figure 2-1: TMC428 application environment with TMC428 in SSOP16 package.................................3
Figure 2-2: Usage of drivers without serial data output (SDO) with TMC428 in larger packages (*the

DI20 package variant is not recommended for new designs) ...4
Figure 4-1: TMC428 pin out (*the DIL20 package variant is not recommended for new designs)6
Figure 5-1: TMC428 functional block diagram..7
Figure 6-1: Timing diagram of the serial µC interface ..8
Figure 4 : Making the TMC428 SDO_C output high impedance with single gate 74HCT1G1259
Figure 6-3: Timing diagram of the serial stepper motor driver interface...10
Figure 8-1: Velocity ramp parameters and velocity profiles..16
Figure 8-2: Ramp generator and pulse generator ..20
Figure 8-3: Proportionality parameter p and outline of velocity profile(s) ...21
Figure 8-4: Left switch and right switch for reference search and automatic stop function..................23
Figure 9-1: Example of status bit mapping for a chain of three TMC246 or TMC249..........................27
Figure 9-2: Cover datagram example...28
Figure 9-3: Reference switch configuration ‘left-side-only’ for mot1r=0 (and refmux=0)......................32
Figure 9-4: Reference switch configuration ‘two-one-null’ for mot1r=1 (and refmux=0).......................32
Figure 9-5: Reference switch multiplexing with 74HC157 (refmux=1) ...32
Figure 9-6: Triple switch configuration 'left stop switch - reference switch - right stop switch'33
Figure 9-7: Reference search...34
Figure 9-8: Reference switch gateing for exact simultanous stepper motor start34
Figure 11-1: Serially transmitted control and status signals between TMC428 and driver chain36
Figure 12-1: Microstep enhancemant by introduction of a shape function fσ(ϕ)43
Figure 14-1: Package Outline Drawing SSOP16, 150 MILS ..45
Figure 14-2: Package Outline Drawing SOP24, 300 MILS...46
Figure 14-3: Package Outline Drawing DIL20, 300 MILS (not recommended for new designs)..........47
Figure 16-1: 3.3V operation (CMOS) vs. 5V operation (TTL)...49
Figure 17-1: Operating principle of the power-on-reset..50
Figure 18-1: General timing parameters...52

21 Table of Tables

Table 3-1: TMC428 package variants ..5
Table 4-1: TMC428 pin out (*the DIL20 package variant is not recommended for new designs)6
Table 6-1: Timing characteristics of the serial microcontroller interface ..10
Table 6-2: Timing characteristics of the serial stepper motor driver interface......................................10
Table 6-3 : 32 bit DATAGRAM structure sent from µC (MSB sent first) ..11
Table 6-4: 32 bit DATAGRAM structure received by µC (MSB received first)......................................12
Table 7-1: TMC428 address space partitions...14
Table 7-2: TMC428 register address mapping...15
Table 8-1: Coil current scale factors...18
Table 8-2: Current scale selection scheme ..19
Table 8-3 - Outline of TMC428 motion modes ...22
Table 8-4: Reference switch configuration bits (ref_conf) ..23
Table 8-5: lp & ref_conf & ramp_mode (rm) data bit positions...24
Table 8-6: interrupt bit mnemonics ...25
Table 8-7: interrupt register & interrupt mask ...25
Table 8-8: micro step resolution selection (usrs) parameter ..26
Table 9-1: Stepper motor global parameter register...30
Table 9-2: Global parameter LSMD (last stepper motor driver) ...30
Table 9-3: Association of reference inputs depending on configuration bits refmux & mot1r33
Table 10-1: Partitioning of the on-chip RAM address space ..35
Table 11-1: Primary signal codes ...37
Table 11-2: Datagram example and RAM contents for three stepper motor driver chain....................38
Table 11-3: Configuration datagram sequence for the example (with '-' (don't cares))........................39

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 56

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Table 12-1: Scheme of ¼ sine wave period with 6 bit resolution and 64 (32 x 2) values...................40
Table 12-2 - Datagrams for initialization of a quarter sine wave period microstep look-up-table.........40
Table 12-3: Phase Bits and Fast Decay Control Bits..41
Table 12-4: Wave look-up table (LUT) indices for different microstep resolutions42
Table 14-1: Dimensions of Package SSOP16, 150 MILS (Note: BSC ≈ Best Case)45
Table 14-2: Dimensions of Package SOP24, 300 MILS (Note: BSC ≈ Best Case)46
Table 14-3: Dimensions of Package DIL20, 300 MILS (Note: BSC ≈ Best Case)47
Table 16-1: Characteristics of the on-chip voltage regulator ..49
Table 17-1: Characteristics of the on-chip power-on-reset...50
Table 18-1: Absolute maximum ratings..51
Table 18-2: DC characteristics ...51
Table 18-3: DC characteristics – 3.3V supply mode ..51
Table 18-4: DC characteristics – 5V supply mode ...51
Table 18-5: Power dissipation ..52
Table 18-6: General timing parameters..52

22 Table of Contents

1 Features..1

2 General Description ..3
2.1 Step Frequencies ...4
2.2 Modes of Motion...4
2.3 Notation of Number Systems & Notation of Two to the Power of n ...5
2.4 Signal Polarities..5
2.5 Units of Motion Parameters..5
2.6 Representation of Signed Values by Two’s Complement ..5
2.7 Tables of Contents ...5

3 Package Variants...5

4 Pinning ...6

5 Functional Description and Block Diagram..7

6 Serial Peripheral Interfaces ..8
6.1 Automatic Power-On Reset..8
6.2 Serial Peripheral Interface for µC...8
6.3 Serial Peripheral Interface to Stepper Motor Driver Chain...9
6.4 Datagram Structure..11
6.5 Simple Datagram Examples ..13

7 Address Space Partitions ...14
7.1 Read and Write ..14
7.2 Register Set..14
7.3 RAM Area...14

8 Register Description ...16
8.1 x_target (IDX=%0000)..16
8.2 x_actual (IDX=%0001) ...16
8.3 v_min (IDX=%0010) ...16
8.4 v_max (IDX=%0011)..17
8.5 v_target (IDX=%0100)..17
8.6 v_actual (IDX=%0101) ...17
8.7 a_max (IDX=%0110)..17

8.7.1 a_max_lower_limit & a_max_upper_limit for ramp_div ≠ pulse_div17
8.8 a_actual (IDX=%0111) ...18

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 57

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

8.9 is_agtat & is_aleat & is_v0 & a_threshold (IDX=%1000) ...18
8.10 pmul & pdiv (IDX=%1001) ..19
8.11 Calculation of p_mul and p_div ..20

8.11.1 Optimized Calculation of p_mul and p_div..22
8.12 lp & ref_conf & ramp_mode (rm) (IDX=%1010) ...22
8.13 interrupt_mask & interrupt_flags (IDX=%1011)..24
8.14 pulse_div & ramp_div & usrs (IDX=%1100) ...26
8.15 dx_ref_tolerance (IDX=%1101) ..27
8.16 x_latched (IDX=%1110) ...27
8.17 Unused Address (IDX=%1111) ..27

9 Global Parameter Registers ...27
9.1 datagram_low_word (JDX=%0000) & datagram_high_word (JDX=%0001)27
9.2 cover_pos & cover_len (JDX=%0010) ...28
9.3 cover_datagram (JDX=%0011)..28
9.4 Unused Addresses (JDX={%0011, ..., %0111, %1001, ..., %1101})29
9.5 power_down (JDX=%1000) ...29
9.6 Reference Switches l3 & r3 & l2 & r2 & l2 & r1 (JDX=%1110)...29
9.7 Stepper Motor Global Parameter Register (JDX=%1111) ...29
9.8 Triple Switch Configuration ..33
9.9 Reference Search ..34
9.10 Simultanous Start of up to Three Stepper Motors ..34

10 RAM Address Partitioning and Data Organization ...35

11 Stepper Motor Driver Datagram Configuration...36
11.1 Initialization of on-chip-RAM by µC after power-on ..37
11.2 An Example of a Stepper Motor Driver Datagram Configuration38

12 Initialization of the Micro Step Look-Up-Table ...39
12.1 Stepping through the Wave Look-Up-Table ...41
12.2 Partial look-up table initialization option..42
12.3 Micro Step Enhancement ...43

13 How to get Started in Running a Motor...44

14 Package Outlines and Dimensions..45
14.1 Shrink Small Outline Package with 16 Pins (SSOP16, 150 MIL) of TMC428-I and TMC428-
A 45
14.2 Small Outline Package with 24 Pins (SOP24) of TMC428-PI24 ..46
14.3 Dual-In-Line Package with 20 Pins (DIL20) of TMC428-DI20..47

15 Marking ...48

16 On-Chip Voltage Regulator...49

17 Power-On-Reset...50

18 Characteristics...51

19 Example for Calculation of p_mul and p_div for the TMC428..53

20 Table of Figures ...55

21 Table of Tables...55

22 Table of Contents ..56

TMC428 DATASHEET (v. 2.02 / April 26th, 2006) 58

Copyright © 2004-2006, TRINAMIC Motion Control GmbH & Co. KG

Please refer to www.trinamic.com for updated data sheets and application notes on this
product and on other products.

The TMCtechLIB CD-ROM – including data sheets, application notes, schematics of evaluation
boards, software of evaluation boards, source code examples, parameter calculation
spreadsheets, tools, and more – is available from TRINAMIC Motion Control GmbH & Co. KG
by request to info@trinamic.com

