TOSHIBA

TOSHIBA Original CMOS 32-Bit Microcontroller

TLCS-900/H1 Series

TMP92CM22FG

TOSHIBA CORPORATION

Semiconductor Company

Preface

CMOS 32-Bit Microcontrollers TMP92CM22FG

Outline and Device Characteristics

TMP92CM22 is high-speed advanced 32-bit microcontroller developed for controlling equipment, which processes mass data.

TMP92CM22FG is a microcontroller, which has a high-performance CPU (900/H1 CPU) and various built-in I/Os. TMP92CM22F is housed in a 100-pin flat package.

Device characteristics are as follows:

- (1) CPU: 32-bit CPU (900/H1 CPU)
 - Compatible with TLCS-900, 900/L, 900/L1, 900/H, and 900/H2's instruction code
 - 16 Mbytes of linear address space
 - General-purpose register and register banks
 - Micro DMA: 8 channels (250 ns/4 bytes at fsys = 20 MHz, best case)
- (2) Minimum instruction execution time: 50 ns (at fsys = 20 MHz)
- (3) Internal memory
 - Internal RAM: 32 Kbytes (32-bit 1-clock access, programmable)
 - Internal ROM: None

RESTRICTIONS ON PRODUCT USE

070208EBP

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
 - set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
 use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties. 021023_C
- The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S

- (4) External memory expansion
 - Expandable up to 16 Mbytes (Shared program/data area)
 - Can simultaneously support 8-/16-bit width external data bus ...Dynamic data bus sizing
 - Separate bus system
- (5) Memory controller
 - Chip select output: 4 channels
- (6) 8-bit timers: 4 channels
- (7) 16-bit timers: 2 channels
- (8) General-purpose serial interface: 2 channels
 - UART/synchronous mode
 - IrDA
- (9) Serial bus interface: 1 channel
 - I²C bus mode
 - Clock synchronous mode
- (10) 10-bit AD converter: 8 channels
- (11) Watchdog timer
- (12) Interrupts: 41 interrupts
 - 9 CPU interrupts: Software interrupt instruction and illegal instruction
 - 25 internal interrupts: Seven selectable priority levels
 - 7 external interrupts: Seven selectable priority levels (INT0 to INT5 and $\overline{\text{NMI}}$) (INT0 to INT3 selectable edge or level interrupt)
- (13) Input/output ports: 50 pins (exclude Data bus 8-bit, Address bus 24-bit and RD pin)
- (14) Standby function
 - Three HALT modes: IDLE2 (Programmable), IDLE1, STOP
- (15) Dual-clock controller
 - PLL: $fc = fOSCH \times 4$ (fc = 40 MHz at fOSCH = 10 MHz)
 - Clock gear function: Select a high-frequency clock fc to fc/16
- (16) Operating voltage
 - DVCC = 3.0 V to 3.6 V (fc max = 40 MHz)
- (17) Package
 - 100-pin QFP: P-LQFP100-1414-0.50F

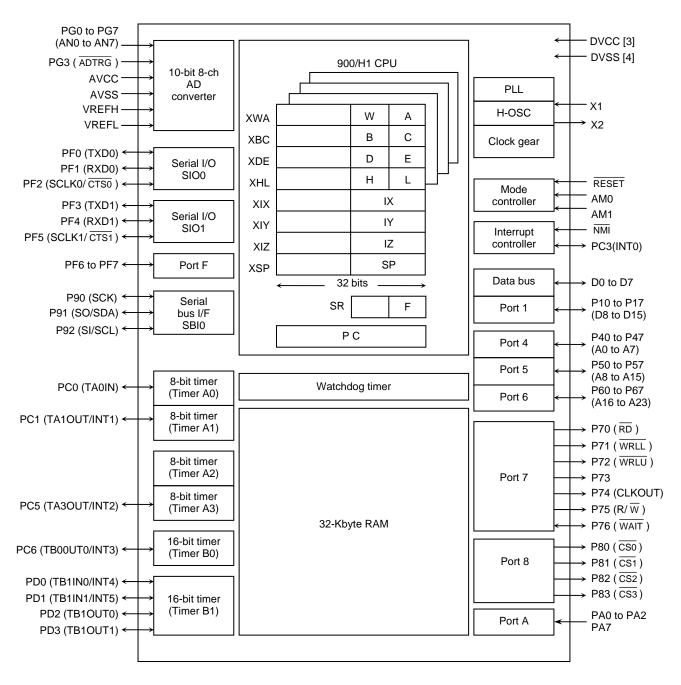


Figure 1.1 TMP92CM22 Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for the TMP92CM22FG, their names and functions are as follows.

2.1 Pin Assignment

Figure 2.1.1 shows the pin assignment of the TMP92CM22FG.

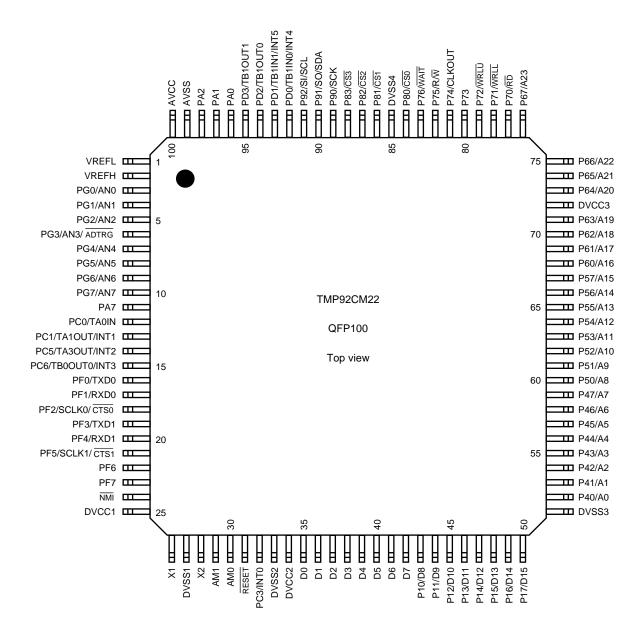


Figure 2.1.1 Pin Assignment Diagram (100-Pin QFP)

2.2 Pin Names and Functions

The following tables show the names and functions of the input/output pins.

Table 2.2.1 Pin Names and Functions (1/2)

Pin Names	Number of Pins	I/O	Functions
D0 to D7	8	I/O	Data (Lower): Data bus D0 to D7.
P10 to P17		I/O	Port 1: I/O port that allows I/O to be selected at the bit level.
	8		(when used to the external 8-bit bus.)
D8 to D15		I/O	Data: Data bus D8 to D15.
P40 to P47	8	I/O	Port 4: I/O port.
A0 to A7	0	Output	Address: Address bus A0 to A7.
P50 to P57	8	I/O	Port 5: I/O port.
A8 to A15	O .	Output	Address: Address bus A8 to A15.
P60 to P67	8	I/O	Port 6: I/O port.
A16 to A23	O .	Output	Address: Address bus A16 to A23.
P70	1	Output	Port 70: Output port.
RD	•	Output	Read: Strobe signal for reading external memory.
P71	1	Output	Port 71: Output port.
WRLL	•	Output	Write: Strobe signal for writing data to pins D0 to D7.
P72	1	Output	Port 72: Output port.
WRLU		Output	Write: Strobe signal for writing data to pins D8 to D15.
P73	1	Output	Port 73: Output port.
P74	1	Output	Port 74: Output port.
CLKOUT		Output	Clock: Output system clock.
P75	1	Output	Port 75: Output port.
R/\overline{W}		Output	Read/write: This port is 1 when read and dummy cycle. This port is 0 when write cycle.
P76	1	I/O	Port 76: I/O port.
WAIT		Input	Wait: Pin used to request bus wait to CPU.
P80	1	Output	Port 80: Output port.
CS0		Output	Chip select 0: Outputs 0 when address is within specified address area.
P81	1	Output	Port 81: Output port.
CS1		Output	Chip select 1: Outputs 0 when address is within specified address area.
P82	1	Output	Port 82: Output port.
CS2		Output	Chip select 2: Outputs 0 when address is within specified address area.
P83	1	Output	Port 83: Output port.
CS3		Output	Chip select 3: Outputs 0 when address is within specified address area.
P90	1	I/O	Port 90: I/O port.
SCK		I/O	Serial bus interface clock I/O data at SIO mode.
P91		I/O	Port 91: I/O port.
SO	1	Output	Serial bus interface send data at SIO mode.
SDA	•	I/O	Serial bus interface send/receive data at I ² C mode.
			(Open-drain output mode by programmable.)
P92		I/O	Port 92: I/O port.
SI	1	Input	Serial bus interface receive data at SIO mode.
SCL		I/O	Serial bus interface clock I/O data at I ² C mode.
			(Open-drain output mode by programmable.)
PA0 to PA2,	4	Input	Port A0 to A2, A7: Input port (with pull-up resistor).
PA7	·		· · · · · · · · · · · · · · · · · · ·

Table 2.2.2 Pin Names and Functions (2/2)

Pin Names	Number of Pins	I/O	Functions
PC0	1	I/O	Port C0: I/O port.
TA0IN	'	Input	Timer input: 8-bit timer A0 input.
PC1		I/O	Port C1: I/O port.
INT1	1	Input	Interrupt request pin 1: Interrupt request pin with programmable level/rising edge/falling edge.
TA1OUT		Output	Timer output: 8-bit timer A0 or timer A1 output.
PC3	1	I/O	Port C3: I/O port.
INT0	'	Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising edge/falling edge.
PC5		I/O	Port C5: I/O port.
INT2	1	Input	Interrupt request pin 2: Interrupt request pin with programmable level/rising edge/falling edge.
TA3OUT		Output	Timer output: 8-bit timer A2 or timer A3 output.
PC6		I/O	Port C6: I/O port.
INT3	1	Input	Interrupt request pin 3: Interrupt request pin with programmable level/rising edge/falling edge.
TB0OUT0		Output	Timer output: 16-bit timer B0 output.
PD0		I/O	Port D0: I/O port.
INT4	1	Input	Interrupt request pin 4: Interrupt request pin with programmable rising edge/falling edge.
TB1IN0		Input	Timer input: 16-bit timer B1 input 0.
PD1		I/O	Port D1: I/O port.
INT5	1	Input	Interrupt request pin 5: Interrupt request pin with programmable rising edge/falling edge.
TB1IN1		Input	Timer input: 16-bit timer B1 input 1.
PD2		I/O	Port D2: I/O port.
TB1OUT0	1	Output	Timer output: 16-bit timer B1 output 0.
PD3		I/O	Port D3: I/O port.
TB1OUT1	1	Output	Timer output: 16-bit timer B1 output 1.
PF0		1/0	Port F0: I/O port.
TXD0	1	Output	Serial send data 0: (Open-drain output mode by programmable.)
PF1		I/O	Port F1: I/O port.
RXD0	1	Input	Serial receive data 0.
PF2		I/O	Port F2: I/O port.
SCLK0	1	I/O	Serial 0 clock I/O.
CTS0		Input	Serial data send enable 0 (Clear to send).
PF3		I/O	Port F3: I/O port.
TXD1	1	Output	Serial send data 1: (Open-drain output mode by programmable.)
PF4		I/O	Port F4: I/O port.
RXD1	1	Input	Serial receive data 1.
PF5		I/O	Port F5: I/O port.
SCLK1	1	1/0	Serial 1 clock I/O.
CTS1		Input	Serial data send enable 1 (Clear to send).
PF6 to PF7	2	I/O	Port F6 to F7: I/O port.
PG0 to PG7	2	Input	Port G0 to G7: Input port.
AN0 to AN7	8	Input	Analog input 0 to 7: Pin used to input to AD converter.
ADTRG	0	Input	AD trigger: Pin used to request AD converter start (Share with PG3).
NMI	1	Input	Non-Maskable interrupt request pin.
INIVII	ı ı	Input	
AM0, AM1	2	Input	Operation mode:
AIVIO, AIVI I	2	Input	Fixed to AM1 = "0", AM0 = "1": External 16-bit bus start, 8-/16-bit dynamic sizing.
V1/V2	2	1/0	Fixed to AM1 = "1", AM0 = "0": External 8-bit bus start, 8-/16-bit dynamic sizing.
X1/X2	2	I/O	High-frequency oscillator connection pin.
RESET	1	Input	Reset: Initialize TMP92CM22 (Schmitt input, with pull-up resistor).
VREFH	1	Input	Pin for reference voltage input to AD converter (H).
VREFL	1	Input	Pin for reference voltage input to AD converter (L).
AVCC	1		Power supply pin for AD converter.
AVSS	1		GND pin for AD converter (0 V).
DVCC	3		Power supply pins (All Vcc pins should be connected with the power supply pin).
DVSS	4		GND pins (0 V) (All DVSS pins should be connected with GND (0 V)).

3. Operation

This section describes the basic components, functions and operation of the TMP92CM22.

3.1 CPU

The TMP92CM22 incorporates a high-performance 32-bit CPU (The TLCS-900/H1 CPU). For a description of this CPU's operation, please refer to the section of this data book which describes the TLCS-900/H1 CPU.

The following sub-sections describe functions peculiar to the CPU used in the TMP92CM22; these functions are not covered in the section devoted to the TLCS-900/H1 CPU.

3.1.1 Outline

"TLCS-900/H1 CPU" is high-speed and high-performance CPU based on "TLCS-900/L1 CPU". "TLCS-900/H1 CPU" has expanded 32-bit internal and external data bus to process instructions more quickly.

Outline of "TLCS-900/H1" CPU are as follows:

Table 3.1.1 Outline of CPU

Width of CPU address bus	24 bits				
Width of CPU data bus	32 bits				
Internal operating frequency	20 MHz				
Minimum bus cycle	1-clock access				
	(50 ns at 20 MHz)				
Function of data bus sizing	8 bits				
Internal RAM	32 bits				
	1-clock access				
Internal I/O	8-/16-bit 2-clock access 900/H1 I/O				
	8-/16-bit 5-to 6-clock access 900/H1 I/O				
External device	8 bits				
	2-clock access (can insert some waits)				
Minimum instruction execution cycle	1 clock (50 ns at 20 MHz)				
Conditional jump	2 clocks (100 ns at 20 MHz)				
Instruction queue buffer	12 bytes				
Instruction set	Compatible with TLCS-900, 900/L, 900/H, 900/L1, and 900/H2 instruction codes (However, NORMAL, MAX, MIN, and LDX instructions is deleted)				
CPU mode	Only maximum mode				
Micro DMA	8 channels				

3.1.2 Reset Operation

When resetting the TMP92CM22 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the RESET input to low for at least 20 system clocks (16 μ s at fc = 40 MHz).

When the reset has been accepted, the CPU performs the following:

 Sets the program counter (PC) as follows in accordance with the reset vector stored at address FFFF00H to FFFF02H:

```
PC<7:0> ← Data in location FFFF00H
PC<15:8> ← Data in location FFFF01H
PC<23:16> ← Data in location FFFF02H
```

- Sets the stack pointer (XSP) to 00000000H.
- Sets bits <IFF0:2> of the status register (SR) to 111 (Thereby setting the interrupt level mask register to level 7).
- Clears bits <RFP0:1> of the status register to 00 (Thereby selecting register bank 0).

When the reset is released, the CPU starts executing instructions according to the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

- Initializes the internal I/O registers as "Table of Special Function Registers (SFRs)" in Section 5.
- Sets the input or output port to general-purpose input port.

Internal reset is released as soon as external reset is released and RESET input pin is set to "H".

The operation of memory controller cannot be insured until power supply becomes stable after power-on reset. The external RAM data provided before turning on the TMP92CM22 may be spoiled because the control signals are unstable until power supply becomes stable after power on reset.

Figure 3.1.1 shows the timing of a reset for the TMP92CM22.

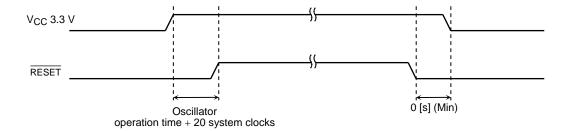


Figure 3.1.1 Reset Timing Example

3.1.3 Outline of Operation Mode

Set AM1 and AM0 pins to "10" to use 8-bit external bus, or set it to "01" to use 16-bit external bus.

Table 3.1.2 Operation Mode Setup Table

Operation	Mode Setting Input Pin				
Operation	RESET	AM1	AM0		
16-bit external bus start		0	1		
8-/16-bit dynamic bus sizing	1	U			
8-bit external bus start] _/	1	0		
8-/16-bit dynamic bus sizing		I	U		

3.2 Memory Map

Figure 3.2.1 shows memory map of TMP92CM22.

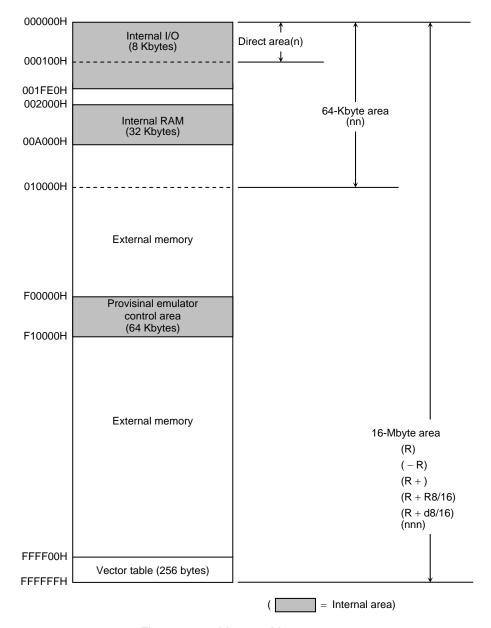


Figure 3.2.1 Memory Map

- Note 1: When use emulator, optional 64 Kbytes of 16-Mbyte area are used to control emulator. Therefore, don't use this area.
- Note 2: Don't use the last 16-byte area (FFFFF0H to FFFFFFH). This area is reserved.
- Note 3: On emulator WRLL signal, WRLU signal and RD signal are asserted, when provisional emulator control area is accessed.

Be careful to use extend memory.

3.3 Clock Function and Standby Function

TMP92CM22 contains (1) Clock gear, (2) Standby controller and (3) Noise-reducing circuit. It is used for low-power, low-noise systems.

This chapter is organized as follows:

- 3.3.1 Block Diagram of System Clock
- 3.3.2 SFRs
- 3.3.3 System Clock Controller
- 3.3.4 Clock Doubler (PLL)
- 3.3.5 Noise Reduction Circuits
- 3.3.6 Standby Controller

The clock operating modes are as follows: (a) Single clock mode (X1 and X2 pins only), (b) Dual clock mode (X1, X2 pins and PLL).

Figure 3.3.1 shows a transition figure.

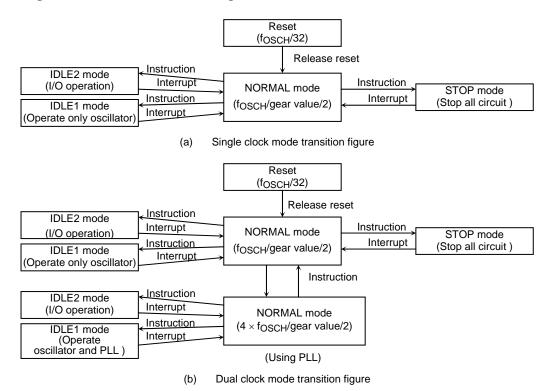
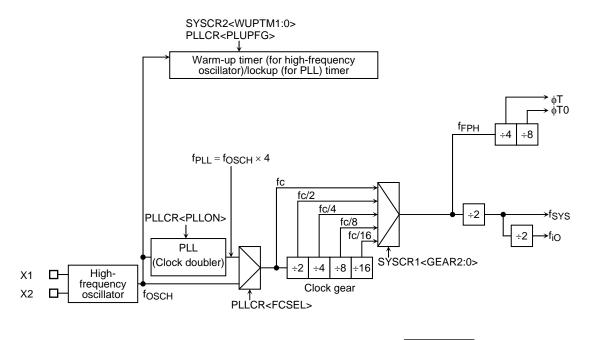



Figure 3.3.1 System Clock Block Diagram

The clock frequency input from the X1 and X2 pins is called f_{OSCH} and the clock frequency selected by SYSCR1<GEAR2:0> is called the clock f_{FPH} . The system clock f_{SYS} is defined as the divided 2 clocks of f_{FPH} , and one cycle of f_{SYS} is defined to as one state.

3.3.1 Block Diagram of System Clock

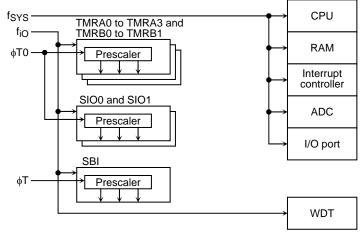


Figure 3.3.2 Block Diagram of Dual Clock and System Clock

3.3.2 SFRs

		7	6	5	4	3	2	1	0
SYSCR0	Bit symbol	-					_		
(10E0H)	Read/Write	R/W					R/W		
	After reset	1					0		
	Function	Always write "1".					Always write "0".		
SYSCR1	Bit symbol					=	GEAR2	GEAR1	GEAR0
(10E1H)	Read/Write						R/	W	
	After reset					0	1	0	0
	Function					Always write "0".		r value of hig oscillator	h-
SYSCR2 (10E2H)	Bit symbol Read/Write	– R/W		WUPTM1	WUPTM0	HALTM1	frequency oscillator 000: High-frequency oscillator 001: High-frequency oscillator/2 010: High-frequency oscillator/4 011: High-frequency oscillator/8 100: High-frequency oscillator/16 101: 110: 110: 111: HALTMO SELDRV DRVE		cillator/2 cillator/4 cillator/8 cillator/16
	After reset	0		1	0	1	1	0	0
	Function	Always write "0".		Select WUP time for oscillator 00: Reserved 01: 2 ⁸ /Input frequency 10: 2 ¹⁴ /Input frequency 11: 2 ¹⁶ /Input frequency		Select HALT mode 00: Reserved 01: STOP mode 10: IDLE1 mode 11: IDLE2 mode		<drve> Select using mode 0: STOP 1: IDLE1</drve>	1: Pin state control in STOP/ IDLE1 mode

Note: The unassigned register, SYSCR0<bit6:3>, SYSCR0<bit1:0>, SYSCR1<bit7:4>, and SYSCR2<bit6> are RD as undefined value.

Figure 3.3.3 SFR for System Clock

		7	6	E	4	2	2	4	0
		1	6	5	4	3	2	l	0
PLLCR	Bit symbol	PLLON	FCSEL	LWUPFG					
10E8H)	Read/Write	R	W	R					
	After reset	0	0	0					
	Function	0: PLL stop 1: PLL run	0: fc = OSCH 1: fc = PLL (x 4)	PLL warm-up flag 0: Don't end up or stop 1: End up					

Note: Logic of PLLCR<LWUPFG> is different DFM of 900/L1.

Figure 3.3.4 SFR for PLL

		7	6	5	4	3	2	1	0	
EMCCR0	Bit symbol	PROTECT					EXTIN	DRVOSCH	-	
(10E3H)	Read/Write	R	/		/			R/W		
	After reset	0	/				0	1	1	
	Function	Protect					1: fc	fc oscillator	Always	
		0: OFF					external	driver ability	write "1".	
		1: ON					clock	1: Normal		
								0: Weak		
EMCCR1	Bit symbol									
(10E4H)	Read/Write									
	After reset		Switching	the protect (ON/OFF by w	rite to follow	ing 1st-KEY,	2nd-KEY		
	Function		1st-KE	Y: EMCCR1	= 5AH, EMC	CR2 = A5H i	n successior	write		
EMCCR2	Bit symbol		2nd-KEY: EMCCR1 = A5H, EMCCR2 = 5AH in succession write							
(10E5H)	Read/Write									
	After reset									
	Function									

Note: In case restarting the oscillator in the stop oscillation state (e.g. Restart the oscillator in STOP mode), set EMCCR0<DRVOSCH>, <DRVOSCL>= "1".

Figure 3.3.5 SFR for Noise

2007-02-16

3.3.3 System Clock Controller

The system clock controller generates the system clock signal (fSYS) for the CPU core and internal I/O. It is used as input that fc outputted from high-frequency oscillation circuit and PLL (Clock doubler) SYSCR1<GEAR2:0>, SYSCR1<GEAR2:0> sets the high-frequency clock gear to either 1, 2, 4, 8, or 16 (fc, fc/2, fc/4, fc/8, or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

Single clock mode is set by resetting, initialized to $\langle GEAR2:0 \rangle = "100"$. This setting will cause the system clock (fSYS) to be set to fc/32 (fc/16×1/2).

For example, f_{SYS} is set to 1.25 MHz when the 40MHz oscillator is connected to the X1 and X2 pins.

(1) Clock gear controller

fFPH is set according to the contents of the clock gear select register SYSCR1<GEAR2:0> to either fc, fc/2, fc/4, fc/8, or fc/16. Using the clock gear to select a lower value of fFPH reduces power consumption.

```
Example:

Changing to a high-frequency gear

SYSCR1 EQU 10E1H

LD (SYSCR1), XXXX0100B ; Changes system clock f<sub>SYS</sub> to fc/32.

X: Don't care
```

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary the warm-up time until changing after writing the register value.

There is the possibility that the instruction next to the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction next to the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (Instruction to execute the write cycle).

```
Example:

SYSCR1 EQU 10E1H

LD (SYSCR1), XXXXX0001B ; Changes f<sub>SYS</sub> to fc/4.

LD (DUMMY), 00H ; Dummy instruction.

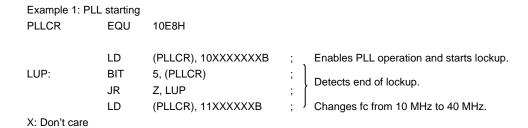
Instruction to be executed after clock gear has changed.
```

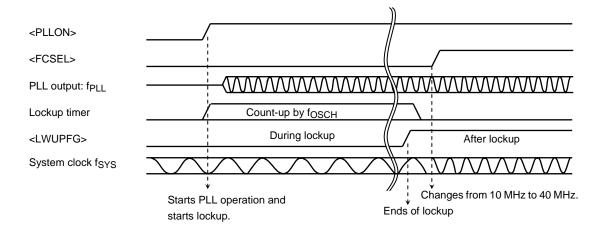
3.3.4 Clock Doubler (PLL)

PLL outputs the fPLL clock signal, which is four times as fast as fOSCH. A reset initializes PLL to stop status, setting to PLLCR register is needed before use.

Like an oscillator, this circuit requires time to stabilize. This is called the lockup time.

Note 1: Input frequency limitation for PLL


The limitation of input frequency (High-frequency oscillation) for PLL is the following. $f_{OSCH} = 4$ to 10 MHz (Vcc = 3.0 V to 3.6 V)

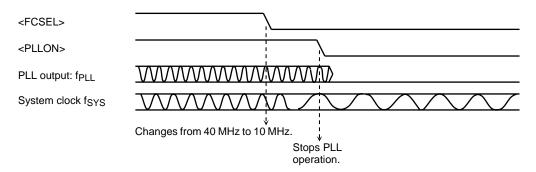

Note 2: PLLCR<LWUPFG>

The logic of PLLCR<LUPFG> is different from 900/L1's DFM.

Be careful to judge an end of lockup time.

The following is a setting example for PLL starting and PLL stopping.

Example 2: PLL stopping


PLLCR EQU 10E8H

LD

LD (PLLCR), 10XXXXXXB ; Changes fc from 40 MHz to 10 MHz.

(PLLCR), 00XXXXXXB ; Stop PLL.

X: Don't care

Limitation point on the use of PLL

1. When PLL is started, don't set fc from fosch to fpll at same time.

Don't setting:

LD (PLLCR), 00H

LD (PLLCR), C0H

2. When PLL is started, don't set fc from fosch to fpll at same time.

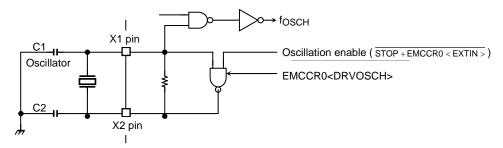
Don't setting:

LD (PLLCR), C0H

LD (PLLCR), 00H

3.3.5 Noise Reduction Circuits

Noise reduction circuits are built in for reduction EMI (Unnecessary radius noise) and reinforcement EMS (Measure of endure noise), allowing implementation of the following features.


- (1) Reduced drivability for high-frequency oscillator
- (2) Single drive for high-frequency oscillator
- (3) SFR protection of register contents

 These functions need setting by EMCCR0 to EMCCR2.
- (1) Reduced drivability for high-frequency oscillator

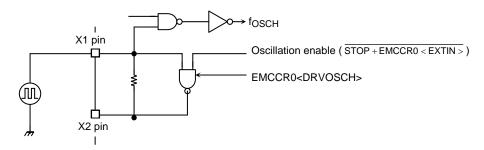
(Purpose)

Reduces noise and power for oscillator when connect oscillator to outside.

(Block diagram)

(Setting method)

The drivability of the oscillator is reduced by writing "0" to EMCCR0<DRVOSCH> register. By reset, <DRVOSCH> is initialized to "1" and the oscillator starts oscillation by normal drivability when the power supply is on.


Note: When use drivability reduction function of oscillator, please use in case of $f_{OSCH} = 4$ MHz to 10 MHz condition.

(2) Single drive for high-frequency oscillator

(Purpose)

Not need twin-drive and protect mistake operation by inputted noise to X2 pin when the external oscillator is used.

(Block diagram)

(Setting method)

The oscillator is disabled and starts operation as buffer by writing "1" to EMCCR0<EXTIN> register. X2 pin is always outputted "1".

By reset, <EXTIN> is initialized to "0".

(3) Runaway provision with SFR protection register

(Purpose)

Provision in runaway of program by noise mixing.

Write operation to specified SFR is prohibited so that provision program in runaway prevents that is in the state which is fetch impossibility by stopping of clock, memory control register (Memory controller) is changed.

And error handling in runaway becomes easy by INTPO interruption.

Specified SFR list

- Memory controller B0CSL/H, B1CSL/H, B2CSL/H, B3CSL/H, BEXCSL/H, MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, MAMR3, and PMEMCR
- 2. Clock gear (EMCCR1, EMCCR2 write enable) SYSCR0, SYSCR1, SYSCR2, and EMCCR0

(Operation explanation)

Execute and release of protection (write operation to specified SFR) becomes possible by setting up a double key to EMCCR1 and EMCCR2 registers.

(Double key)

1st-KEY: Succession writes in 5AH at EMCCR1 and A5H at EMCCR2. 2nd-KEY: Succession writes in A5H at EMCCR1 and 5AH at EMCCR2.

A state of protection can be confirmed by reading EMCCR0<PROTECT>.

By reset, protection becomes OFF.

And INTPO interruption occurs when write operation to specified SFR was executed with protection on state.

3.3.6 Standby Controller

(1) HALT modes

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1, or STOP mode, depending on the contents of the SYSCR2<HALTM1:0> register.

The subsequent actions performed in each mode are as follows:

a. IDLE2: Only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode by setting the following register.

Table 3.3.1 shows the registers of setting operation during IDLE2 mode.

Table 5.5.1 St N Setting Operation during IDEL2 IVI					
Internal I/O	SFR				
TMRA01	TA01RUN <i2ta01></i2ta01>				
TMRA23	TA23RUN <i2ta23></i2ta23>				
TMRB0	TB0RUN <i2tb0></i2tb0>				
TMRB1	TB1RUN <i2tb1></i2tb1>				
SIO0	SC0MOD1 <i2s0></i2s0>				
SIO1	SC1MOD1 <i2s1></i2s1>				
AD converter	ADMOD1 <i2ad></i2ad>				
WDT	WDMOD <i2wdt></i2wdt>				
SBI	SBI0BR0 <i2sbi0></i2sbi0>				

Table 3.3.1 SFR Seting Operation during IDLE2 Mode

- b. IDLE1:Only internal oscillator operates.
- c. STOP: All internal circuit stop.

The operation of each of the different HALT modes is described in Table 3.3.2.

4					
	HALT Mode	IDLE2	IDLE1	STOP	
	SYSCR2 <haltm1:0></haltm1:0>	SCR2 <haltm1:0> 11</haltm1:0>		01	
	CPU		Stop		
block	I/O port	Keep the state when the HALT instruction is executed.	Refer Table 3.3.5, Table 3.3.6		
tion	TMRA, TMRB				
Operation	SIO, *SBI	* Selection enable operation	C+	Cton	
ဝိ	AD converter	block to programmable	Stop		
	WDT				

Table 3.3.2 Each Block Operation in HALT Mode

^{*:} Except clocked-synchronous 8-bit SIO mode for SBI.

(2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination between the states of interrupt mask register <IFF2:0> and the HALT modes. The details for release the halt status are shown in Table 3.3.3.

• Released by requesting an interrupt

The operating released from the HALT mode depends on the interrupt enabled status. When the interrupt request level set before executing the HALT instruction exceeds the value of interrupt mask register, the interrupt due to the source is processed after release the HALT mode, and CPU status executing an instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, release the HALT mode is not executed. (In non-maskable interrupts, interrupt processing is processed after release the HALT mode regardless of the value of the mask register.) However only for INT0 to INT3 interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, release the HALT mode is executed. In this case, interrupt processing, and CPU starts executing the instruction next to the HALT instruction, but the interrupt request flag is held at "1".

Release by resetting

Release all halt status is executed by resetting.

When the STOP mode is released by RESET, it is necessary enough resetting time (Refer Table 3.3.4) to set the operation of the oscillator to be stable.

When release the HALT mode by resetting, the internal RAM data keeps the state before the "HALT" instruction is executed. However the other settings contents are initialized. (Release due to interrupts keeps the state before the "HALT" instruction is executed.)

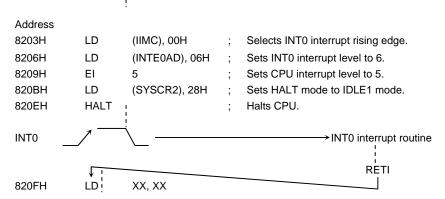

Interrupt Enable Interrupt Disable Status of Received Interrupt (Interrupt level) ≥ (Interrupt mask) (Interrupt level) < (Interrupt mask) IDLE1 **HALT Mode** STOP IDLE1 **STOP** Programmable IDLE2 Programmable IDLE2 NMI **INTWDT** Source of HALT state release × INT0 to 3 (Note1) 0 0 ♦ * 1 0*1 INT4 to 5 Interrupt INTTA0 to 3, INTTB00, 01, 10, 11, O0, O1 INTRX0 to 1, TX0 to 1 **INTAD** × X X INTSBE0 Reset Initialize LSI

Table 3.3.3 Source of Halt State Release and Halt Release Operation

- ♦: After release the HALT mode, CPU starts interrupt processing.
- o: After release the HALT mode, CPU resumes executing starting from instruction following the HALT instruction. (Interrupt don't process.)
- x: It can not be used to release the HALT mode.
- -: The priority level (Interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. There is not this combination type.
- *1: Release the HALT mode is executed after passing the warm-up time.
- Note 1: When the HALT mode is released by INT0 to INT3 interrupts of the level mode in the interrupt enabled status, hold this level until starting interrupt processing. Changing level before holding level, interrupt processing is correctly started.
- Note 2: When use external interrupt INT4 to INT5 are used during IDLE2 mode, set 16-bit timer RUN register TB1RUN<I2TB1> to "1".

(Example release HALT mode)

An INTO interrupt release the halt state when the device is in IDLE1 mode.

(3) Operation

a. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.3.6 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.

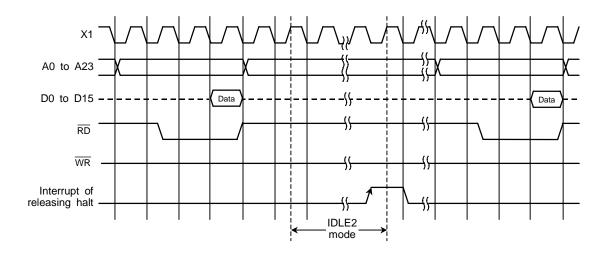


Figure 3.3.6 Timing Chart for IDLE2 Mode Halt State Released by Interrupt

b. IDLE1 mode

In IDLE1 mode, only the internal oscillator operates. The system clock stops.

And, pin state in IDLE1 mode depend on setting SYSCR2<SELDRV, DRVE> register. Table 3.3.5, Table 3.3.6 shows pin state in IDLE1 mode.

In the halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the halt state (e.g., restart of operation) is synchronous with it.

Figure 3.3.7 shows the timing for release of the IDLE1 mode halt state by an interrupt.

Figure 3.3.7 Timing Chart for IDLE1 Mode Halt State Released by Interrupt

c. STOP mode

When STOP mode is selected, all internal circuits stop, including the internal oscillator pin status in STOP mode depends on the settings in the SYSCR2<SELDRV, DRVE> register. Table 3.3.5, Table 3.3.6 shows the state of these pins in STOP mode.

After STOP mode has been released system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize. Warm-up time set by SYSCR2<WUPTM1:0> register. See the sample warm-up times in Table 3.3.4.

Figure 3.3.8 illustrates the timing for release of the STOP mode halt state by an interrupt.

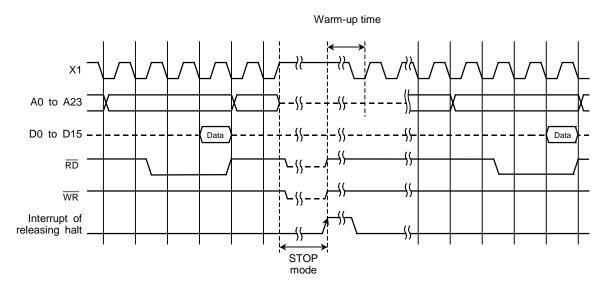


Figure 3.3.8 Timing Chart for STOP Mode Halt State Released by Interrupt

Table 3.3.4 Sample Warm-up Times after Rrelease of STOP Mode at f_{OSCH} = 10 MHz

		000.1				
SYSCR2 <wuptm1:0></wuptm1:0>						
01 (2 ⁸)	10 (2 ¹⁴)	11 (2 ¹⁶)				
25.6 μs	1.638 ms	6.554 ms				

Table 3.3.5 Input Buffer State Table

					In	put Buffer S	tate			
				" 0: :				HALT mode	(IDLE1/ST	OP)
Port Input			Input Buffer State		Input Bu	Input Buffer State		Condition A (Note) Condition B (No		
Name	Function Name	During Reset	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port
D0-D7	D0-D7		ON	_		_		=		-
P10-P17	D8-D15	OFF	upon external read		OFF		OFF		OFF	
P40-P47	=									
P50-P57	=		-		_		_		_	
P60-P67	-					OFF		OFF		OFF
P76	WAIT				OFF					
P90	SCK									
P91	SDA		ON		ON		OFF		OFF	
P92	SI SCL				014					
PA0-PA7(*1)	_		_		_	ON	_	ON	_	ON
PC0	TA0IN					OFF	OFF	OFF	OFF	OFF
PC1	INT1					0		0		
PC3	INT0					ON	ON	ON	ON	ON
PC5	INT2								OIT	
PC6	INT3		ON	ON	ON					
PD0	INT4, TB1IN0						OFF		OFF	
PD1	INT5, TB1IN1	ON				OFF	OIT		011	
PD2	1									
PD3	1		-		-		_		-	
PF0	=									
PF1	RXD0									
PF2	SCLK0, CTS0		ON		ON	ON	OFF	OFF	OFF	OFF
PF3			-			OFF	-		-	
PF4	RXD1									
PF5	SCLK1, CTS1		ON		ON	ON	OFF		OFF	
PF6										
PF7	_		_		_		_		_	
PG0-2,			_	ON	_		_		- <u>-</u>	
PG4-7(*2)	=	OFF		upon		OFF				
PG3(*2)	ADTRG			port read						
NMI	=		ON		ON		ON		ON	
RESET(*1)	=	ON	ON	-	ON	-	ON	_	ON	_
AM0,1	-									
X1	l. The huffer	r io obvova	turned on	A		Tort hoving	مرا البيم			

ON: The buffer is always turned on. A current flows the input buffer if the input pin is not driven.

*1: Port having a pull-up/pull-down resistor.

OFF: The buffer is always turned off.

 $\ensuremath{^{\star}2}\xspace$: AIN input does not cause a current to flow through the buffer.

-: No applicable

Note: Condition A/B are as follows.

SYSCR2 re	egister setting	HALT mode			
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP		
0	0	Condition B	Condition A		
0	1	Condition A	Condition A		
1	0	Condition B	Condition B		
1	1	Condition B	Condition B		

Table 3.3.6 Output Buffer State Table

		Output Buffer State								
Port Name	Output Function Name	When the CPU is			In HALT		In HALT mode (IDLE1/STOP)			
		During Reset	Operating		mode(IDLE2)		Condition A (Note)		Condition B (Note)	
			When Used as Function Pin	When Used as Output Port						
D0-D7	D0-D7	OFF	ON upon	ON		ON	OFF	-	OFF	-
P10-P17	D8-D15		external read		OFF			ON	OFF	
P40-P47	A0-A7		ON		ON			OFF	ON	
P50-P57	A8-A15									
P60-P67	A16-A23									
P70	RD									
P71	WRLL	ON								
P72	WRLU									
P73	WRUL									
P74	WRUU									
P75	R/W									
P76	_	OFF	_		_		-		_	
P80	CS0	ON			ON		OFF		ON	
P81	CS1		ON							
P82	CS2									
P83	CS3									
P90	SCK									
P91	SO									
P92	SCL									ON
PC0	-		=		=		=		=	
PC1	TA1OUT		ON		ON		OFF		ON	
PC3	=		=		=		=		=	
PC5	TA3OUT		ONON		ON		OFF		ON	
PC6	TB0OUT				-				- ON	
PD0	_	OFF					- OFF			
PD1	-									
PD2	TB1OUT0									
PD3	TB1OUT1		_	ON	ON					
PF0	TXD0		ON							
PF1	-		-		-		=		-	
PF2	SCLK0		ON		ON		OFF		ON	
PF3	TXD1									
PF4	-				-		-		-	
PF5	SCLK1		ON		ON		OFF		ON	
PF6	=		_		-		_		-	
PF7	_				0		=			
X2	ON: The bu			- \^// +/ /-	ON	=	IDLE ²	1: ON, STOP:	High level o	utput

ON: The buffer is always turned on. When the bus is released, however ,output buffers for some pins are turned off.

OFF: The buffer is always turned off.

-: No applicable

Note: Condition A/B are as follows.

SYSCR2 re	egister setting	HALT mode		
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP	
0	0	Condition B	Condition A	
0	1	Condition A		
1	0	Condition B	Condition B	
1	1	Condition B		

3.4 Interrupt

Interrupts of TLCS-900/H1 are controlled by the CPU interrupt mask flip-flop (IFF2:0) and by the built-in interrupt controller.

The TMP92CM22 has a total of 41 interrupts divided into the following types:

Interrupts generated by CPU: 9 sources

(Software interrupts: 8 sources, illegal instruction interrupt: 1 source)

External interrupts (NMI and INT0 to INT5): 7 sources

Internal I/O interrupts: 17 sources High-speed DMA interrupts: 8 sources

A individual interrupt vector number (Fixed) is assigned to each interrupt.

One of six priority level (Variable) can be assigned to each maskable interrupt.

The priority level of non-maskable interrupts are fixed at 7 as the highest level.

When an interrupt is generated, the interrupt controller sends the priority of that interrupt to the CPU. If multiple interrupts is generated simultaneously, the interrupt controller sends the interrupt with the highest priority to the CPU. (The highest priority is level 7 using for non-maskable interrupts.)

The CPU compares the priority level of the interrupt with the value of the CPU interrupts mask register <IFF2:0>. If the priority level of the interrupt is higher than the value of the interrupt mask register, the CPU accepts the interrupt.

The interrupt mask register <IFF2:0> value can be updated using the value of the EI instruction (EI num sets <IFF2:0> data to num).

For example, specifying "EI3" enables the maskable interrupts which priority level set in the interrupt controller is 3 or higher, and also non-maskable interrupts.

Operationally, the DI instruction (<IFF2:0> = 7) is identical to the EI7 instruction. DI instruction is used to disable maskable interrupts because of the priority level of maskable interrupts is 1 to 6. The EI instruction is valid immediately after execution.

In addition to the above general-purpose interrupt processing mode, TLCS-900/H1 has a micro DMA interrupt processing mode as well. The CPU can transfer the data (1/2/4 bytes) automatically in micro DMA mode, therefore this mode is used for speed-up interrupt processing, such as transferring data to the internal or external peripheral I/O. Moreover, TMP92CM22 has software start function for micro DMA processing request by the software not by the hardware interrupt.

Figure 3.4.1 shows the overall interrupt processing flow.

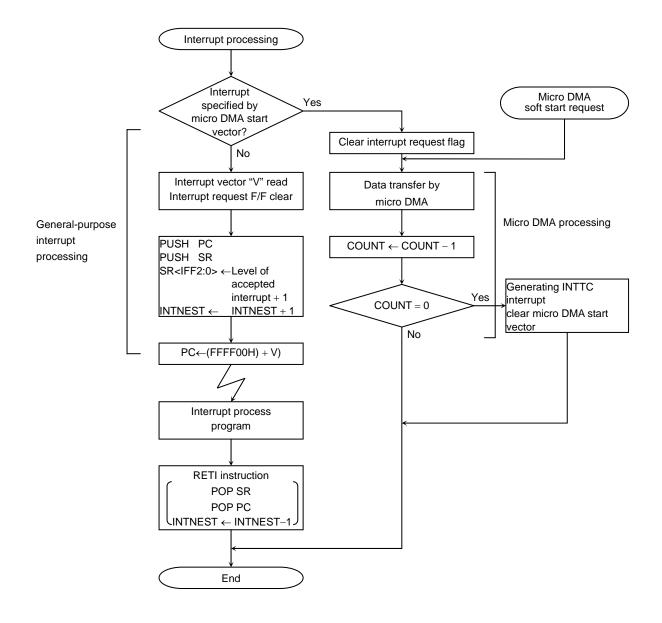


Figure 3.4.1 Interrupt and Micro DMA Processing Sequence

3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. That is also the same as TLCS-900/L, TLCS-900/H, and TLCS-900/L1.

- (1) The CPU reads the interrupt vector from the interrupt controller.
 - If the same level interrupts occur simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt request.
 - (The default priority is already fixed for each interrupt: The smaller vector value has the higher priority level.)
- (2) The CPU pushes the value of program counter (PC) and status register (SR) onto the stack area (indicated by XSP).
- (3) The CPU sets the value which is the priority level of the accepted interrupt plus 1 (+1) to the interrupt mask register <IFF2:0>. However, if the priority level of the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increases the interrupt nesting counter INTNEST by 1 (+1).
- (5) The CPU jumps to the address indicated by the data at address "FFFF00H + Interrupt vector" and starts the interrupt processing routine.

When the CPU completed the interrupt processing, use the RETI instruction to return to the main routine. RETI restores the contents of program counter (PC) and status register (SR) from the stack and decreases the interrupt nesting counter INTNEST by 1(-1).

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. (A priority level setting of 0 or 7 will disable an interrupt request.)

If an interrupt request which has a priority level equal to or greater than the value of the CPU interrupt mask register <IFF2:0> comes out, the CPU accepts its interrupt. Then, the CPU interrupt mask register <IFF2:0> is set to the value of the priority level for the accepted interrupt plus 1(+1).

Therefore, if an interrupt is generated with a higher level than the current interrupt during it's processing, the CPU accepts the later interrupt and goes to the nesting status of interrupt processing.

Moreover, if the CPU receives another interrupt request while performing the said (1) to (5) processing steps of the current interrupt, the latest interrupt request is sampled immediately after execution of the first instruction of the current interrupt processing routine. Specifying DI as the start instruction disables maskable interrupt nesting.

A reset initializes the interrupt mask register <IFF2:0> to "7", disabling all maskable interrupts.

Table 3.4.1 shows the TMP92CM22 interrupt vectors and micro DMA start vectors. The address FFFF00H to FFFFFFH (256 bytes) is assigned for the interrupt vector area.

Table 3.4.1 TMP92CM22 Interrupt Vectors and Micro DMA Start Vectors

Default Priority		Interrupt Source	Vector Value	Address Refer to	Micro DMA Start Vector
			value	Vector	July Vector
1		Reset or "SWI0" instruction	0000H	FFFF00H	
2		"SWI1" instruction	0004H	FFFF04H	
3		"Illegal instruction" or "SWI2" instruction	H8000	FFFF08H	
4		"SWI3" instruction	000CH	FFFF0CH	
5	Non-	"SWI4" instruction	0010H	FFFF10H	
6	maskable	"SWI5" instruction	0014H	FFFF14H	
7		"SWI6" instruction	0018H	FFFF18H	
8		"SWI7" instruction	001CH	FFFF1CH	
9		NMI: External interrupt input pin	0020H	FFFF20H	
10		INTWD: Watchdog Timer	0024H	FFFF24H	
-	Maskable	Micro DMA (Note 2)	_	-	-
11		INT0: External interrupt input pin	0028H	FFFF28H	0AH (Note 1)
12		INT1: External interrupt input pin	002CH	FFFF2CH	0BH (Note 1)
13		INT2: External interrupt input pin	0030H	FFFF30H	0CH (Note 1)
14		INT3: External interrupt input pin	0034H	FFFF34H	0DH (Note 1)
15		(Reserved)	0038H	FFFF38H	0EH
16		(Reserved)	003CH	FFFF3CH	0FH
17		(Reserved)	0040H	FFFF40H	10H
18		(Reserved)	0044H	FFFF44H	11H
19		(Reserved)	0048H	FFFF48H	12H
20		(Reserved)	004CH	FFFF4CH	13H
21		INTP0: Protect 0 (WR to SFR)	0050H	FFFF50H	14H
22		(Reserved)	0054H	FFFF54H	15H
23		INTTA0: 8-bit timer 0	0058H	FFFF58H	16H
24		INTTA1: 8-bit timer 1	005CH	FFFF5CH	17H
25		INTTA2: 8-bit timer 2	0060H	FFFF60H	18H
26		INTTA3: 8-bit timer 3	0064H	FFFF64H	19H
27		INTTB00: 16-bit timer 0	0068H	FFFF68H	1AH
28		INTTB01: 16-bit timer 0	006CH	FFFF6CH	1BH
29		(Reserved)	0070H	FFFF70H	1CH
30		(Reserved)	0074H	FFFF74H	1DH
31		INTTBO0: 16-bit timer 0 (Overflow)	0078H	FFFF78H	1EH
32		(Reserved)	007CH	FFFF7CH	1FH
33		INTRX0: Serial 0 (SIO0) receive	H0800	FFFF80H	20H (Note 1)
34		INTTX0: Serial 0 (SIO0) transmission	0084H	FFFF84H	21H
35		INTRX1: Serial 1 (SIO1) receive	0088H	FFFF88H	22H (Note 1)
36		INTTX1: Serial 1 (SIO1) transmission	008CH	FFFF8CH	23H
37		(Reserved)	0090H	FFFF90H	24H
38		(Reserved)	0094H	FFFF94H	25H
39		(Reserved)	0098H	FFFF98H	26H
40		(Reserved)	009CH	FFFF9CH	27H
41		(Reserved)	00A0H	FFFFA0H	28H
42		INT4: External interrupt input pin	00A4H	FFFFA4H	29H
43		INT5: External interrupt input pin	H8A00	FFFFA8H	2AH
44		INTTB10: 16-bit timer 1	00ACH	FFFFACH	2BH
45		INTTB11: 16-bit timer 1	00B0H	FFFFB0H	2CH
46		INTTBO1: 16-bit timer 1 (Overflow)	00B4H	FFFFB4H	2DH
47		(Reserved)	00B8H	FFFFB8H	2EH
48		INTSBE0: SBI I ² C bus transfer end (Channel 0)	00BCH	FFFFBCH	2FH
49		(Reserved)	00C0H	FFFFC0H	30H
50		(Reserved)	00C4H	FFFFC4H	31H
51		(Reserved)	00C8H	FFFFC8H	32H

Default Priority	Type	Interrupt Source	Vector Value	Address Refer to Vector	Micro DMA Start Vector
52		INTAD: AD conversion end	00CCH	FFFFCCH	33H
53	Maskable	INTTC0: Micro DMA end (Channel 0)	00D0H	FFFFD0H	34H
54		INTTC1: Micro DMA end (Channel 1)	00D4H	FFFFD4H	35H
55		INTTC2: Micro DMA end (Channel 2)	00D8H	FFFFD8H	36H
56		INTTC3: Micro DMA end (Channel 3)	00DCH	FFFFDCH	37H
57		INTTC4: Micro DMA end (Channel 4)	00E0H	FFFFE0H	38H
58		INTTC5: Micro DMA end (Channel 5)	00E4H	FFFFE4H	39H
59		INTTC6: Micro DMA end (Channel 6)	00E8H	FFFFE8H	ЗАН
60		INTTC7: Micro DMA end (Channel 7)	00ECH	FFFFECH	3BH
		(Reserved)	00F0H :	FFFFF0H :	_
			00FCH	FFFFFCH	

Note 1: When initiating initiating micro DMA, set at edge detect mode.

Note 2: Micro DMA default priority.

Micro DMA initiation takes priority over other maskable interrupts

3.4.2 Micro DMA

In addition to general-purpose interrupt processing, the TMP92CM22 also includes a micro DMA function. Micro DMA processing for interrupt requests set by micro DMA is performed at the highest priority level for maskable interrupts (Level 6), regardless of the priority level of the interrupt source.

Because the micro DMA function is implemented through the CPU, when the CPU is placed in a stand-by state by a Halt instruction, the requirements of the micro DMA will be ignored (pending).

Micro DMA is supports 8 channels and can be transferred continuously by specifying the micro DMA burst function as below.

(1) Micro DMA operation

When an interrupt request is generated by an interrupt source specified by the micro DMA start vector register, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request. The eight micro DMA channels allow micro DMA processing to be set for up to eight types of interrupt at once.

When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared. Data in one-byte, two-byte or four-byte blocks, is automatically transferred at once from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented by 1. If the value of the counter after it has been decremented is not 0, DMA processing ends with no change in the value of the micro DMA start vector register. If the value of the decremented counter is 0, a micro DMA transfer end interrupt (INTTC0 to INTTC7) is sent from the CPU to the interrupt controller. In addition, the micro DMA start vector register is cleared to 0, the next micro DMA operation is disabled and micro DMA processing terminates.

If micro DMA requests are set simultaneously for more than one channel, priority is not based on the interrupt priority level but on the channel number: the lower the channel number, the higher the priority (channel 0 thus has the highest priority and channel 7 the lowest).

If an interrupt request is triggered for the interrupt source in use during the interval between the time at which the micro DMA start vector is cleared and the next setting, general purpose interrupt processing is performed at the interrupt level set. Therefore, if the interrupt is only being used to initiate micro DMA (and not as a general-purpose interrupt), the interrupt level should first be set to 0 (i.e., interrupt requests should be disabled).

If micro DMA and general purpose interrupts are being used together as described above, the level of the interrupt which is being used to initiate micro DMA processing should first be set to a lower value than all the other interrupt levels. (Note) In this case, edge triggered interrupts are the only kinds of general interrupts which can be accepted.

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows. In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.4.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished. And INTyyy is generated regardless of transfer counter of micro DMA.

INTxxx: level 1 without micro DMA INTyyy: level 6 with micro DMA

Although the control registers used for setting the transfer source and transfer destination addresses are 32 bits wide, this type of register can only output 24-bit addresses. Accordingly, micro DMA can only access 16 Mbytes (the upper eight bits of a 32-bit address are not valid).

Three micro DMA transfer modes are supported: one-byte transfers, two-byte (one-word) transfer and four-byte transfer. After a transfer in any mode, the transfer source and transfer destination addresses will either be incremented or decremented, or will remain unchanged. This simplifies the transfer of data from memory to memory, from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the various transfer modes, see section 3.4.2 (1), detailed description of the transfer mode register.

Since a transfer counter is a 16-bit counter, up to 65536 micro DMA processing operations can be performed per interrupt source (provided that the transfer counter for the source is initially set to 0000H).

Micro DMA processing can be initiated by any one of 34 different interrupts – the 33 interrupts shown in the micro DMA start vectors in Table 3.4.1 and a micro DMA soft start.

Figure 3.4.2 shows a 2-byte transfer carried out using a micro DMA cycle in transfer destination address INC mode (micro DMA transfers are the same in every mode except counter mode). (The conditions for this cycle are as follows: Both source and destination memory are internal RAM and multiples by 4 numbered source and destination addresses.)

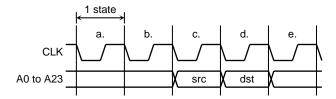


Figure 3.4.2 Timing for Micro DMA Cycle

States 1 to 2: Instruction fetches cycle (Gets next address code).

If the instruction queue buffer is FULL, this cycle becomes a dummy

cycle.

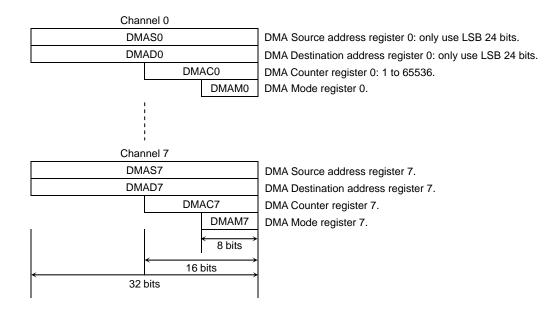
State 3: Micro DMA read cycle.
State 4: Micro DMA writes cycle.
State 5: (The same as in state 1, 2.)

(2) Soft start function

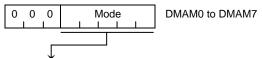
In addition to starting the micro DMA function by interrupts, TMP92CM22 includes a micro DMA software start function that starts micro DMA on the generation of the write cycle to the DMAR register.

Writing "1" to each bit of DMAR register causes micro DMA once (If write "0" to each bit, micro DMA doesn't operate). At the end of transfer, the corresponding bit of the DMAR register is automatically cleared to "0".

Only one channel can be set for DMA request at once. (Do not write 1 to more than one bit.)


When writing again 1 to the DMAR register, check whether the bit is 0 before writing 1. If read "1", micro DMA transfer isn't started yet.

When a burst is specified by DMAB register, data is continuously transferred until the value in the micro DMA transfer counter is "0" after start up of the micro DMA. If execatee soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read-modify-write instruction to avoid writign to other bits by mistake.


Symbol	Name	Address	7	6	5	4	3	2	1	0							
DMAR	DMA request	109H (Prohibit RMW)	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0							
			R/W														
			0	0	0	0	0	0	0	0							
					1	: DMA reque	st in softwar	e	1: DMA request in software								

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. Data setting for these registers is done by an "LDC cr, r" instruction.

(4) Detailed description of the transfer mode register

DMAM [4:0]	Operation	Execution Time
000 zz	Destination address INC mode (DMADn +) ← (DMASn) DMACn ← DMACn − 1 If DMACn = 0 then INTTC	5 states
001 zz	Source address DEC mode (DMADn −) ← (DMASn) DMACn ← DMACn − 1 If DMACn = 0 then INTTC	5 states
010 zz	Source address INC mode (DMADn) ← (DMASn +) DMACn ← DMACn − 1 If DMACn = 0 then INTTC	5 states
011 zz	Source address DEC mode (DMADn) ← (DMASn -) DMACn ← DMACn - 1 If DMACn = 0 then INTTC	5 states
100 zz	Source address INC mode (DMADn +) ← (DMASn +) DMACn ← DMACn − 1 If DMACn = 0 then INTTC	6 states
101 zz	Source address DEC mode (DMADn -) ← (DMASn -) DMACn ← DMACn - 1 If DMACn = 0 then INTTC	6 states
110 zz	Destination address fixed mode (DMADn) ← (DMASn) DMACn ← DMACn − 1 If DMACn = 0 then INTTC	5 states
111 00	Counter mode DMASn ← DMASn + 1 DMACn ← DMACn − 1 If DMACn = 0 then INTTC	5 states

2Z : 00 = 1-byte transfer
 : 01 = 2-byte transfer
 : 10 = 4-byte transfer
 : 11 = (Reserved)

Note 1: The execution state number shows number of best case (1-state memory access). 1 state = 50 ns (at internal 20 MHz)

Note 2: "n" shows micro DMA channel number (0 to 7).

3.4.3 Interrupt Controller Operation

The block diagram in Figure 3.4.3 shows the interrupt circuits. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 33 interrupts channels there is an interrupt request flag (Consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register. The interrupt request flag latches interrupt requests from the peripherals.

The flag is cleared to 0 in the following cases:

When reset occurs

When the CPU reads the channel vector after accepted its interrupt

When executing an instruction that clears the interrupt (Write DMA start vector to INTCLR register)

When the CPU receives a micro DMA request

When the micro DMA burst transfer is terminated

An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTE0AD or INTE12). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. If interrupt request with the same level are generated at the same time, the default priority (The interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bits of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF2:0> in the status register by the interrupt request signal with the priority value set; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 (+1) in the CPU SR<IFF2:0>. Interrupt request where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine.

When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR<IFF2:0>.

The interrupt controller also has registers (8 channels) used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (See Table 3.4.1), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter register (e.g., DMAS and DMAD) prior to the micro DMA processing.

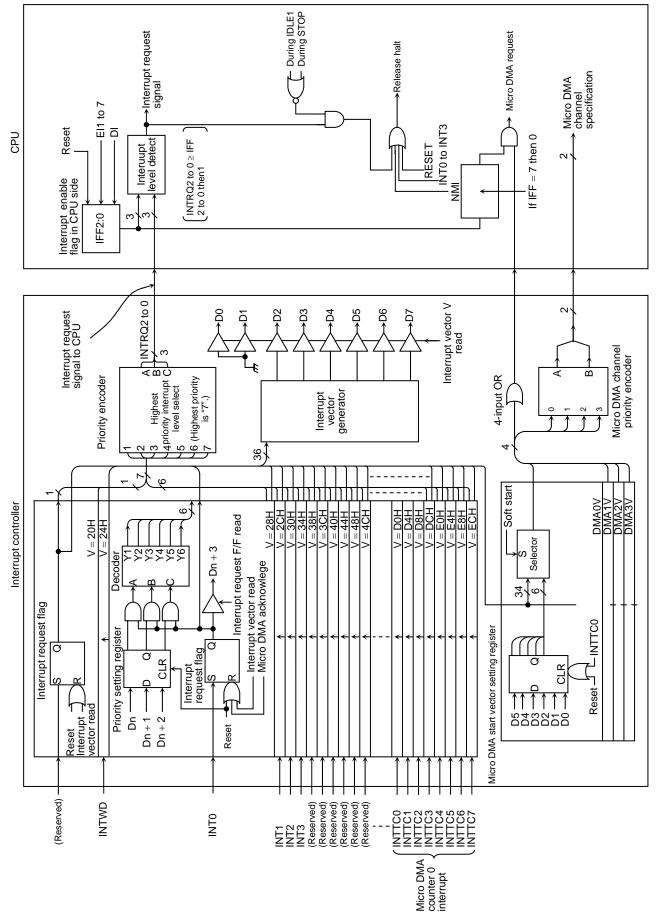
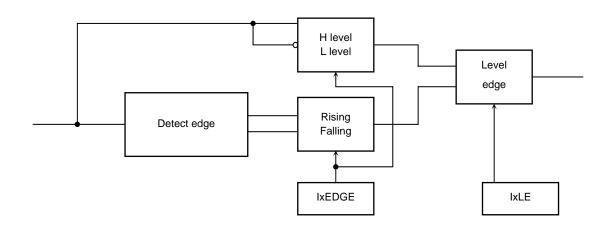


Figure 3.4.3 Block Diagram of Interrupt Controller

(1) Interrupt priority setting registers

Symbol	Name	Address	7	6	5	4	3	2	1	0
				IN	T2			IN	T1	
INTE12	INT1&INT2	D0H	I2C	I2M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0
INTEIZ	enable	DOLL	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				=	=			IN	T3	
INITEO	INT3	Dall	=	-	=	=	I3C	I3M2	I3M1	13M0
INTE3	enable	D1H	=		=	•	R		R/W	•
			Note: Always write "0".				0	0	0	0
				INTTA1	(TMRA1)			INTTA0	(TMRA0)	
INITETAGA	INTTA0&	DALL	ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
INTETA01	INTTA1 enable	D4H	R		R/W		R		R/W	
	Gridoro		0	0	0	0	0	0	0	0
				INTAT3	(TMRA3)	•		INTAT2	(TMRA2)	•
INITET 4 00	INTTA2	Dell	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETA23	INTTA3	D5H	R		R/W	l	R		R/W	ı
	enable		0	0	0	0	0	0	0	0
				INTTB01	(TMRB0)			INTTB00		
I	INTTB00&		ITB01C	ITB01M2	ITB01M1	ITB01M0	ITB00C	ITB00M2	ITB00M1	ITB00M0
INTETB0	INTTB01 enable	D8H	R		R/W		R		R/W	,
	enable		0	0	0	0	0	0	0	0
			-		_	_	-	INTTBO0		
	INTTBO0		_	_	_	_	ITBO0C	ITBO0M2	ITBO0M1	ITBO0M0
INTETBO0	(Overflow) enable	DAH	R		R/W	1	R		R/W	
	enable			Note: Alwa	ys write "0".		0	0	0	0
					TX0		-		RX0	_
	INTRX0&		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	INTTX0	DBH	R		R/W	117100	R		R/W	
	enable		0	0	0	0	0	0	0	0
				INT	TX1	_	_	INT	_	_
	INTRX1&					ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	INTTX1 enable	DCH	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
				IN	T5	l		IN	T4	1
	INT4&		I5C	15M2	I5M1	I5M0	I4C	I4M2	I4M1	I4M0
INTE45	INT5	E0H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			-	L	(TMRB1)			INTTB10		
	INTTB10&		ITB11C	ITB11M2	ITB11M1	ITB11M0	ITB10C	ITB10M2	ITB10M1	ITB10M0
INTETB1	INTTB11 enable	E1H	R		R/W	1	R	-	R/W	1
	enable		0	0	0	0	0	0	0	0
		Ì			_	1		INTTBO1		•
	INTTBO1		-	_	_	_	ITBO1C	ITBO1M2	ITBO1M1	ITBO1M0
INTETBO1	(Overflow) enable	E2H	_		_	1	R		R/W	
	enable			Note: Alwa	ys write "0".		0	0	0	0
					_		-		SBE0	
	INTSBE0		_	_	_	_	ISBE0C	ISBE0M2	ISBE0M1	ISBE0M0
INTESB0	enable	E3H	_		_	1	R		R/W	
				Note: Alwa	ys write "0".		0	0	0	0
					_		INTP0			
	INTP0		_	_	_	_	IP0C	IP0M2	IP0M1	IP0M0
INTEP0	enable	EEH	_		_	1	R	II JIVIZ	R/W	51410
				Note: Alwa	ys write "0".		0	0	0	0
				i toto. Aiwa	yo wille U.		J	J	J	J


Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	AD			IN	T0	
INTE0AD	INT0&INTAD	F0H	IADC	IADM2	IADM1	IADM0	IOC	I0M2	IOM1	IOMO
INTEGAD	enable	гон	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				INTTC1	(DMA1)			INTTC0	(DMA0)	
INTETC01	INTTC0& ITETC01 INTTC1	F1H	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETCOT	enable	"	R		R/W		R		R/W	
		0	0	0	0	0	0	0	0	
				INTTC3	(DMA3)			INTTC2	(DMA2)	
INITETC23	INTTC2& INTTC3 enable	F2H	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
INTLICZS			R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
	INTTC4& INTTC5 enable	F3H	INTTC5 (DMA5)					INTTC4	(DMA4)	
INTETC45			ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTLIC43			R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				INTTC7	(DMA7)		INTTC6 (DMA6)			
INTETC67	INTTC6& INTTC7	F4H	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTLICO	enable	1 411	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				-	=			INT	WD	
INTWDT	INTWD	F7H	-	=	-	=	ITCWD	=	-	-
ושואוטו	enable	F/H	-		=		R		=	
				Note: Alway	ys write "0".		0	=	-	

Interrupt request flag

lxxM2	IxxM1	IxxM0	Function (Write)				
0	0	0	Disables interrupt request.				
0	0	1	Sets interrupt priority level to 1.				
0	1	0	Sets interrupt priority level to 2.				
0	1	1	Sets interrupt priority level to 3.				
1	0	0	Sets interrupt priority level to 4.				
1	0	1	Sets interrupt priority level to 5.				
1	1	0	Sets interrupt priority level to 6.				
1	1	1	Disables interrupt request.				

(2) External interrupt control

Symbol	Name	Address	7	6	5	4	3	2	1	0
					13EDGE	12EDGE	I1EDGE	10EDGE	IOLE	NMIREE
						V	V		R	/W
IIMC					0	0	0	0	0	0
	Interrupt input mode control	00F6H (Prohibit RMW)			INT3EDGE 0: Rising/ high 1: Falling/ low	INT2EDGE 0: Rising/ high 1: Falling/ low	INT1EDGE 0: Rising/ high 1: Falling/ low	INTOEDGE 0: Rising/ high 1: Falling/ low	INTO 0: Edge 1: Level	NMI 0: Falling edge 1: Falling and rising edges
							I3LE	I2LE	I1LE	
	Interrupt	00FAH						W		
IIMC2	input	(Prohibit					0	0	0	
52	mode control2	RMW)					INT3 0: Edge 1: Level	INT2 0: Edge 1: Level	INT1 0: Edge 1: Level	

Note 1: Disable INT0 to INT3 before changing INT0 to 3 pins mode from "level" to "edge".

Setting example for case of INT0:

DI

LD (IIMC) ,XXXXXX0-B ; Change from "level" to "edge".

LD (INTCLR),0AH ; Clear interrupt request flag.

NOP ; Wait EI execution.

NOP NOP EI

X: Don't care, -: No change

Note 2: See electrical characteristics in section 4 for external interrupt input pulse width.

Note 3: When release halt by INT0 to INT3 interrupt of level-mode in interrupt request enable, keep setting level by <lxEDGE> until be started interrupt process. If changed "level" before interrupt process starting, interrupt isn't processed correctly.

Example: Case of set "H" level interrupt (<lxLE> = 1, <lxEDGE> = 0).

Keep "H" level until be started interrupt process. If changed to "L" level before interrupt process starting, interrupt isp't processed correctly.

interrupt isn't processed correctly.

Table 3.4.2 Function Setting of External Interrupt Pin

Interrupt Pin	Shared Pin	Mode	Setting Method
		Rising edge	IIMC <i0le> = 0, INT0EDGE = 0</i0le>
INT0	PC3	Falling edge	IIMC <i0le> = 0, INT0EDGE = 1</i0le>
11410	1 03	High level	IIMC <i0le> = 1, INT0EDGE = 0</i0le>
		Low level	IIMC <i0le> = 1, INT0EDGE = 1</i0le>
		Rising edge	IIMC2 <i1le> = 0, INT1EDGE = 0</i1le>
INT1	PC1	Falling edge	IIMC2 <i1le> = 0, INT1EDGE = 1</i1le>
IIVIII	101	High level	IIMC2 <i1le> = 1, INT1EDGE = 0</i1le>
		Low level	IIMC2 <i1le> = 1, INT1EDGE = 1</i1le>
		Rising edge	IIMC2 <i2le> = 0, INT2EDGE = 0</i2le>
INT2	PC5	Falling edge	IIMC2 <i2le> = 0, INT2EDGE = 1</i2le>
INTZ	1 03	High level	IIMC2 <i2le> = 1, INT2EDGE = 0</i2le>
		Low level	IIMC2 <i2le> = 1, INT2EDGE = 1</i2le>
		Rising edge	IIMC2 <i3le> = 0, INT3EDGE = 0</i3le>
INT3	PC6	Falling edge	IIMC2 <i3le> = 0, INT3EDGE = 1</i3le>
11113	1 00	High level	IIMC2 <i3le> = 1, INT3EDGE = 0</i3le>
		Low level	IIMC2 <i3le> = 1, INT3EDGE = 1</i3le>
INT4	PD0	Rising edge	TB1MOD <tb1cpm1:0> = 0, 0 or 0,1 or 1, 0</tb1cpm1:0>
11414	1 00	Falling edge	TB1MOD <tb1cpm1:0> = 1, 0</tb1cpm1:0>
INT5	PD1	Rising edge	_

(3) SIO receive interrupt control

Symbol	Name	Address	7	6	5	4	3	2	1	0
	SIO								IR1LE	IR0LE
									V	V
	Interrupt	F5H							1	1
SIMC	mode	(Prohibit							0: INTRX1	0: INTRX0
	control	RMW)							edge mode	edge mode
	CONTROL								1: INTRX1	1: INTRX0
									level mode	level mode

*INTRX1 level enables

0	Detect edge INTRX1
1	"H" level INTRX1

*INTRX0 rising edge enable

0	Detect edge INTRX0
1	"H" Level INTRX0

(4) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.4.1, to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

INTCLR ← 0AH Clears interrupt request flag INT0

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Interrupt clear control	- 0.11			CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR		F8H (Prohibit RMW)			W					
INTOLK					0	0	0	0	0	0
					Interrupt clear					

(5) Micro DMA start vector registers

This register assigns micro DMA processing to which interrupt source. The interrupt source with a micro DMA start vector that matches the vector set in this register is assigned as the micro DMA start source.

When the micro DMA transfer counter value reaches "0", the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, to continue micro DMA processing, set the micro DMA start vector register again during the processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the channel with the lowest number has a higher priority. Accordingly, if the same vector is set in the micro DMA start vector registers of two channels, the interrupt generated in the channel with the lower number is executed until micro DMA transfer is completed. If the micro DMA start vector for this channel is not set again, the next micro DMA is started for the channel with the higher number (Micro DMA chaining).

	Name	Address	7	6	5	4	3	2	1	0	
	DMA0				DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0	
DMA0V	start	100H					R/	W			
DIVII (O V	vector	10011			0	0	0	0	0	0	
							DMA0 sta	art vector			
	DMA1				DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0	
DMA1V	start	101H					R/	W	•	.	
	vector				0	0	0	0	0	0	
						1	DMA1 start vector				
	DMA2				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0	
DMA2V	start	102H						W	1	1	
	vector				0	0	0	0	0	0	
							DMA2 sta		1		
DMA3				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0		
DMA3V	start	103H			_			W I -	-		
	vector				0	0	0	0	0	0	
					5144 () (5	5144 077	DMA3 sta		5144 074	5	
	DMA4	104H		/	DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0	
DMA4V	start						 	W L			
	vector		//	//	0	0	0	0	0	0	
						I 	1	art vector			
	DMA5				DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0	
DMA5V	start	105H				i	 	W I	1	1	
	vector				0	0	0	0	0	0	
							DMA5 sta	art vector			
	DMA6				DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0	
DMA6V	start	106H				1	R/	W		1	
DIVIAOV	vector	10011			0	0	0	0	0	0	
							DMA6 sta	art vector			
	51117				DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0	
DMA 717	DMA7	40711					R/	W			
DMA7V	start vector	107H			0	0	0	0	0	0	
	VECIUI						DMA7 sta	art vector			

(6) Specification of a micro DMA burst

Specifying the micro DMA burst function causes micro DMA transfer, once started, to continue until the value in the transfer counter register reaches 0. Setting any of the bits in the register DMAB which correspond to a micro DMA channel (as shown below) to 1 specifies that any micro DMA transfer on that channel will be a burst transfer.

Symbol	Name	Address	7	6	5	4	3	2	1	0
DMAB			DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
	DMA burst	108H	R/W							
	DIVIA DUISI	10011	0	0	0	0	0	0	0	0
				1: DMA request on burst mode						

(7) Notes

The instruction execution unit and the bus interface unit in this CPU operate independently. Therefore if, immediately before an interrupt is generated, the CPU fetches an <u>instruction which clears the corresponding interrupt request flag (Note)</u>, the CPU may execute this instruction in between accepting the interrupt and reading the interrupt vector. In this case, the CPU will read the default vector 0004H and jump to interrupt vector address FFFF04H.

To avoid this, an instruction which clears an interrupt request flag should always be placed after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 3-instructions (e.g., "NOP"× 3 times).

If placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enable before request flag is cleared. Thus, when be changed interrupt request level to "0", change it after cleared corresponding interrupt request by INTCLR instruction.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution, disable an interrupt by DI instruction before execution of POPSR instruction.

In addition, please note that the following two circuits are exceptional and demand special attention.

	In level mode INT0 to INT3 are not an edge-triggered interrupt. Hence, in level mode the interrupt request flip-flop for INT0 to INT3 does not function. The peripheral interrupt request passes through the S input of the flip-flop and becomes the Q output. If the interrupt input mode is changed from edge mode to level mode, the interrupt request flag is cleared automatically.					
	If the CPU enters the interrupt response sequence as a result of INT x ($x = 0, 1, 2,$					
	or 3) going from 0 to 1, INTx must then be held at 1 until the interrupt response					
	sequence has been completed. If INTx is set to Level mode so as to release a					
	Halt state, INTx must be held at 1 from the time INTx changes from 0 to 1 until the					
	Halt state is released. (Hence, it is necessary to ensure that input noise is not					
	interpreted as a 0, causing INTx to revert to 0 before the Halt state has been					
INT0 to INT3 level mode	released.)					
	When the mode changes from level mode to edge mode, interrupt request flags					
	which were set in level mode will not be cleared. Interrupt request flags must be					
	cleared using the following sequence.					
	DI					
	LD (IIMC), 00H ; Changes from level to edge.					
	LD (INTCLR), 0AH; Clears interrupt request flag.					
	NOP ; Wait EI execution.					
	NOP					
	NOP					
	El					
INTRX	The interrupt request flip-flop can only be cleared by a reset or by reading the serial channel receive buffer. It cannot be cleared by writing INTCLR register.					

Note: The following instructions or pin input state changes are equivalent to instructions that clear the interrupt request flag.

INT0 to INT 3: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input change from high to low after interrupt request has been generated in level mode. ("H" \rightarrow "L", "L" \rightarrow "H")

INTRX: Instruction which read the receive buffer.

92CM22-48 2007-02-16

3.5 Port Function

The TMP92CM22 features 50-bit settings which relate to the various I/O ports.

As well as general-purpose I/O port functionality, the port pins also have I/O functions which relate to the built-in CPU and internal I/Os. Table 3.5.1 lists the functions of each port pin.

Table 3.5.2 and Table 3.5.3 lists I/O registers and their specifications.

Table 3.5.1 Port Function (R: U = with pull-up resistor)

Port Names	Pin Names	Number of Pins	Direction	R	Direction Setting Unit	Pin Names for Built-In Function
Port 1	P10 to P17	8	I/O	-	Bit	D8 to D15
Port 4	P40 to P47	8	I/O*	-	Bit*	A0 to A7
Port 5	P50 to P57	8	I/O*	_	Bit*	A8 to A15
Port 6	P60 to P67	8	I/O*	_	Bit*	A16 to A23
Port 7	P70	1	Output	-	(Fixed)	RD
	P71	1	Output	-	(Fixed)	WRLL
	P72	1	Output	-	(Fixed)	WRLU
	P73	1	Output	_	(Fixed)	
	P74	1	Output	_	(Fixed)	CLKOUT
	P75	1	Output	_	(Fixed)	R/\overline{W}
	P76	1	I/O	_	Bit	WAIT
Port 8	P80	1	Output	_	(Fixed)	CS0
	P81	1	Output	_	(Fixed)	CS1
	P82	1	Output	_	(Fixed)	CS2
	P83	1	Output	_	(Fixed)	CS3
Port 9	P90	1	I/O	-	Bit	SCK
	P91	1	I/O	_	Bit	SO, SDA
	P92	1	I/O	_	Bit	SI, SCL
Port A	PA0	1	Input	U	(Fixed)	
	PA1	1	Input	U	(Fixed)	
	PA2	1	Input	U	(Fixed)	
	PA7	1	Input	U	(Fixed)	
Port C	PC0	1	I/O	_	Bit	TAOIN
	PC1	1	I/O	_	Bit	INT1, TA1OUT
	PC3	1	I/O	_	Bit	INT0
	PC5	1	I/O	-	Bit	INT2, TA3OUT
	PC6	1	I/O	-	Bit	INT3, TB0OUT0
Port D	PD0	1	I/O	-	Bit	INT4, TB1IN0
	PD1	1	I/O	-	Bit	INT5, TB1IN1
	PD2	1	I/O	-	Bit	TB1OUT0
	PD3	1	I/O	-	Bit	TB1OUT1
Port F	PF0	1	I/O	=	Bit	TXD0
	PF1	1	I/O	-	Bit	RXD0
	PF2	1	I/O	-	Bit	SCLK0, CTS0
	PF3	1	I/O	-	Bit	TXD1
	PF4	1	I/O		Bit	RXD1
	PF5	1	I/O		Bit	SCLK1, CTS1
	PF6	1	I/O		Bit	
	PF7	1	I/O		Bit	
Port G	PG0	1	Input	_	(Fixed)	AN0
	PG1	1	Input		(Fixed)	AN1
	PG2	1	Input	_	(Fixed)	AN2
	PG3	1	Input		(Fixed)	AN3, ADTRG
	PG4	1	Input	_	(Fixed)	AN4
	PG5	1	Input	_	(Fixed)	AN5
	PG6	1	Input	_	(Fixed)	AN6
	PG7	1	Input		(Fixed)	AN7

^{*:} When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

Please be careful when using this setting.

All of general-purpose I/O ports except for port that used as address bus are operated as output port.

Table 3.5.2 I/O Port Setting List (1/2)

Ports	Input Pins	Specification	I/O	Register	Setting	Value
FUILS	IIIput Filis	Specification	Pn	PnCR	PnFC	PnODE
Port 1	P10 to P17	Input port	×	0	0	
		Output port	×	1	0	None
		D8 to D15 bus	×	×	1	
Port 4	P40 to P47	Input port*	×	0*		
		Output port*	×	1*	0	None
		A0 to A7 output	×	×	1	
Port 5	P50 to P57	Input port*	×	0*		
		Output port*	×	1*	0	None
		A8 to A15 output	×			
Port 6	P60 to P67	Input port*	×	0*	_	
		Output port*	×	1*	0	None
		A16 to A23 output	×	×	1	
Port 7	P70 to P75	Output port	×			
	P70	RD output				
	P71	WRLL output				
	P72	WRLU output		None	1	
	P74	CLKOUT output				None
	P75	R/W output				
	P76	Input port	×	0	0	
		Output port	×	1 0		
		WAIT Input	×	0	1	
Port 8	P80 to P83	Output port	×		0	
	P80	CS0 output	×		1	
	P81	CS1 output	×	None	1	None
	P82	CS2 output	×		1	
	P83	CS3 output	×		1	
Port 9	P90 to P92	Input port	×	0	0	0
		Output port	×	1	0	0
	P90	SCK input	×	0	0	0
	D0.4	SCK output	×	×	1	0/1
	P91	SO output	×	1	1	0/1
	DOS	SDA	×	×	1	1
	P92	SI input	×	0	0	0
V. Danit a		SCL (Open drain)	×	×	I	ı

X: Don't care

All of general-purpose I/O ports except for port that used as address bus are operated as output port.

Please be careful when using this setting.

^{*:} When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

Table 3.5.3 I/O Port Setting List (2/2)

Ports	Input Pins	Specification	I/O	Register	Setting V	alue
FUITS	input Fins	Specification	Pn	PnCR	PnFC	PnODE
Port A	PA0, PA1, PA2, PA7	Input port	×	None	None	None
Port C	PC0, PC1,	Input port	×	0	0	
	PC3, PC5, PC6	Output port	×	1	0	
	PC0	TA0IN input	×	×	1	
	PC1	TA1OUT output	×	1	1	
		INT1 input	×	0	1	None
	PC3	INT0 input	×	×	1	
	PC5	INT2 input	×	0	1	
		TA3OUT	×	1	1	
	PC6	INT3 input	×	0	1	
		TB0OUT0	×	1	1	
Port D	PD0 to PD3	Input port	×	0	0	
		Output port	×	1	0	
	PD0	TB1IN0, INT4 input	×	0	1	Na.
	PD1	TB1IN1, INT5 input	×	0	1	None
	PD2	TB0OUT0 output	×	1	1	
	PD3	TB0OUT1 output	×	1	1	
Port F	PF0 to PF7	Input port	×	0	0	
		Output port	×	1	0	
	PF0	TXD0 (Open drain)	×	0	1	
		TXD0	×	1	1	1
	PF1	RXD0 input	×	0	None	1
	PF2	SCLK0 input/output	×	0/1	1	Na.
		CTS0 input	×	0	1	None
	PF3	TXD1 (Open drain)	×	0	1	1
		TXD1	×	1	1	1
	PF4	RXD1 input	×	0	None	1
	PF5	SCLK1 input/output	×	0/1	1	1
		CTS1 input	×	0	1	1
Port G	PG0 to PG7	Input port	×			
		AN0 to AN7 input	×	None	None	None
	PG3	ADTRG input	×	1		

X: Don't care

By resetting, these port pins become general-purpose input port.

I/O pin is reset to input pin. When use built-in function, process all function by software.

3.5.1 Port 1 (P10 to P17)

Port1 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P1CR and function register P1FC.

In addition to functioning as a general-purpose I/O port, port1 can also function as a data bus (D8 to D15).

After released reset, device set port1 to pins of follow function by combination of AM1 and AM0 pins.

AM1	AM0	Function Setting after Reset
0	0	Don't use this setting
0	1	Data bus (D8 to D15)
1	0	Input port (P10 to P17)
1	1	Don't use this setting

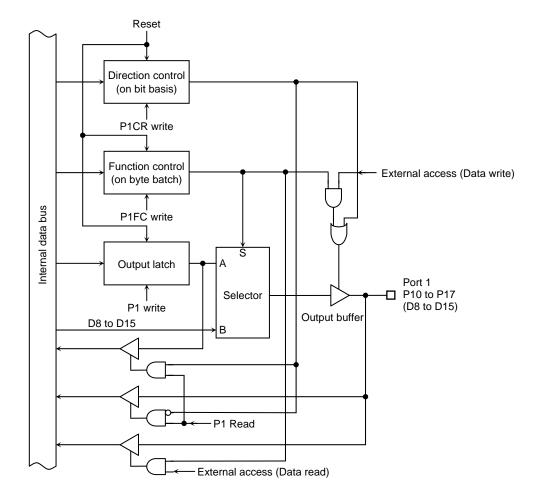


Figure 3.5.1 Port 1

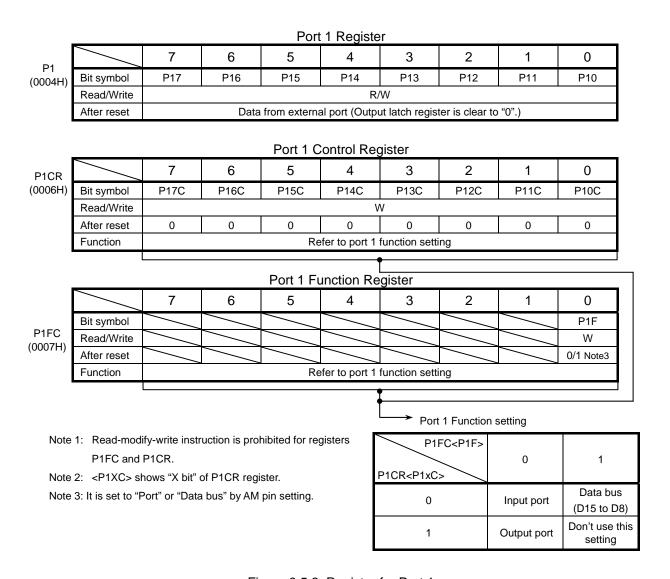
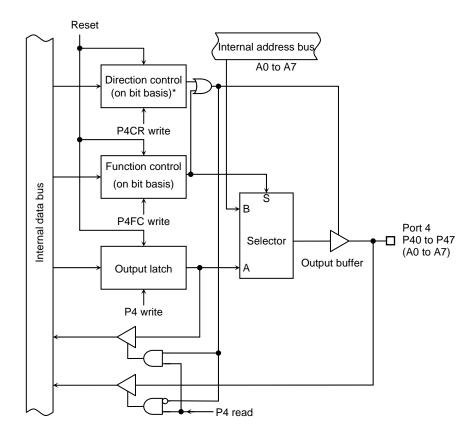


Figure 3.5.2 Register for Port 1


3.5.2 Port 4 (P40 to P47)

Port 4 is an 8-bit general-purpose I/O port*. Bits can be individually set as either inputs or outputs by control register P4CR and function register P4FC*.

In addition to functioning as a general-purpose I/O port, port 4 can also function as a address bus (A0 to A7).

After released reset, device set Port 4 to pins of follow function by combination of AM1 and AM0 pins.

AM1	AM0	Function Setting after Reset
0	0	Don't use this setting
0	1	Address bus (A0 to A7)
1	0	Address bus (A0 to A7)
1	1	Don't use this setting

^{*:} When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port.

Please be careful when using this setting.

Figure 3.5.3 Port 4

Port 4 Register

P4 (0010H)

	7	6	5	4	3	2	1	0			
Bit symbol	P47	P46	P45	P44	P43	P42	P41	P40			
Read/Write		R/W									
After reset		Data from external port (Output latch register is cleared to "0".)									

Port 4 Control Register

P4CR (0012H)

	7	6	5	4	3	2	1	0		
Bit symbol	P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C		
Read/Write		W								
After reset	0	0 0 0 0 0 0 0								
Function		0: Input 1: Output (Note2)								

Port 4 Function Register

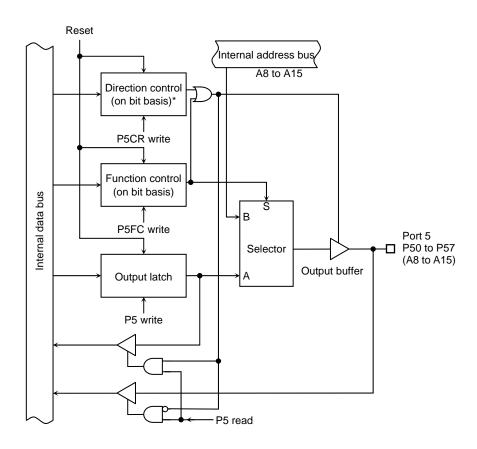
P4FC (0013H)

	7	6	5	4	3	2	1	0		
Bit symbol	P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F		
Read/Write		W								
After reset	1	1 1 1 1 1 1 1								
Function	0: Port 1: Address bus (A0 to A7)									

Note1: Read-modify-write instruction is prohibited for registers P4CR and P4FC.

Note2: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port. All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

Figure 3.5.4 Register for Port 4


3.5.3 Port 5 (P50 to P57)

Port 5 is an 8-bit general-purpose I/O port*. Bits can be individually set as either inputs or outputs by control register P5CR and function register P5FC*.

In addition to functioning as a general-purpose I/O port, port 5 can also function as an address bus (A8 to A15).

After released reset, device set port 5 to pins of follow function by combination of AM1 and AM0 pins.

AM1	AM0	Function Setting after Reset			
0	0	Don't use this setting			
0	1	Address bus (A8 to A15)			
1	0	Address bus (A8 to A15)			
1	1	Don't use this setting			

^{*:} When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port.

Please be careful when using this setting.

Figure 3.5.5 Port 5

Port 5 Register

P5 (0014H)

	7	6	5	4	3	2	1	0	
Bit symbol	P57	P56	P55	P54	P53	P52	P51	P50	
Read/Write	R/W								
After reset	Data from external port (Output latch register is cleared to "0".)								

Port 5 Control Register

P5CR (0016H)

			Ü									
		7	6	5	4	3	2	1	0			
	Bit symbol	P57C	P56C	P55C	P54C	P53C	P52C	P51C	P50C			
)	Read/Write	W										
	After reset	0	0	0	0	0	0	0	0			
	Function		0: Input 1: Output (Note2)									

Port 5 Function Register

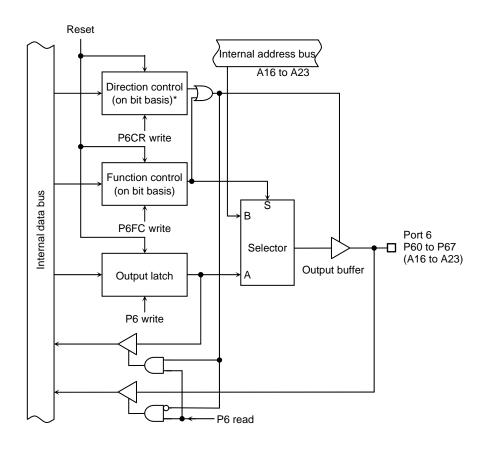
P5FC (0017H)

	7	6	5	4	3	2	1	0			
Bit symbol	P57F	P56F	P55F	P54F	P53F	P52F	P51F	P50F			
Read/Write		W									
After reset	1 1 1 1 1 1 1 1										
Function	0: Port 1: Address bus (A8 to A15)										

Note1: Read-modify-write instruction is prohibited for registers P5CR and P5FC.

Note2: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port. All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

Figure 3.5.6 Register for Port 5


3.5.4 Port 6 (P60 to P67)

Port 6 is an 8-bit general-purpose I/O port*. Bits can be individually set as either inputs or outputs by control register P6CR and function register P6FC*.

In addition to functioning as a general-purpose I/O port, port 6 can also function as an address bus (A16 to A23).

After released reset, device set port 6 to pins of follow function by combination of AM1 and AM0 pins.

AM1	AM0	Function Setting after Reset		
0 0 Don't use this setting				
0 1		Address bus (A16 to A23)		
1	0	Address bus (A16 to A23)		
1 1 Don't use this setting				

^{*:} When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port.

Please be careful when using this setting.

Figure 3.5.7 Port 6

Port 6 Register

P6 (0018H)

	7	6	5	4	3	2	1	0			
Bit symbol	P67	P66	P65	P64	P63	P62	P61	P60			
Read/Write	R/W										
After reset		Data from external port (Output latch register is cleared to "0".)									

Port 6 Control Register

P6CR (001AH)

	7	6	5	4	3	2	1	0			
Bit symbol	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C			
Read/Write		W									
After reset	0	0	0	0	0	0	0	0			
Function	0: Input 1: Output (Note2)										

Port 6 Function Register

P6FC (001BH)

$\bigg/\bigg($	7	6	5	4	3	2	1	0		
Bit symbol	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F		
Read/Write		W								
After reset	1	1	1	1	1	1	1	1		
Function	0: Port 1: Address bus (A16 to A23)									

Note1:Read-modify-write instruction is prohibited for registers P6CR and P6FC.

Note2: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port. All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

Figure 3.5.8 Register for Port 6

3.5.5 Port 7 (P70 to P76)

Port 7 is a 7-bit general-purpose I/O port (P70 to P75 are used for output only).

Bits can be individually set as either inputs or outputs by control register P7CR and function register P7FC.

In addition to functioning as a general-purpose I/O port, P70 to P73 pins can also function as output pin of read/write strobe signals to connect with an external memory. P74 pin can also function as CLKOUT output pin when outputted internal clock. P76 pin can also function as wait input.

After reset, P71 to P75 pins are set to output port mode, and P76 pin is set to input port mode.

P70 pin set port 1 to pins of follow function by combination of AM1 and AM0 pins.

AM1	AM0	Function Setting after Reset			
0	0	Don't use this setting			
0	1	CPU control pin (RD)			
1	0	CPU control pin (RD)			
1	1 1 Don't use this setting				

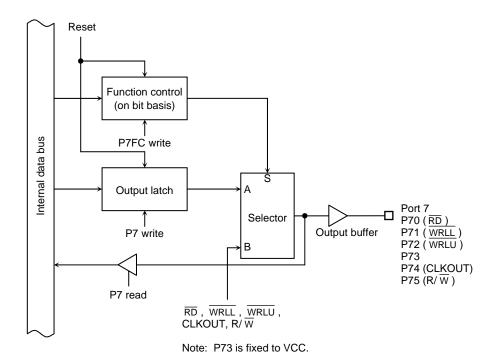


Figure 3.5.9 Port 7 (P70 to P75)

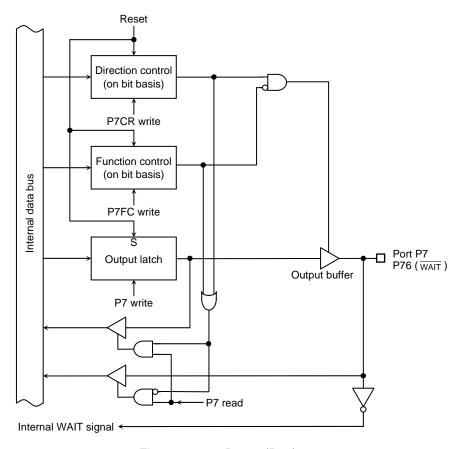


Figure 3.5.10 Port 7 (P76)

Port 7 Register

		7	6	5	4	3	2	1	0	
P7	Bit symbol		P76	P75	P74	P73	P72	P71	P70	
(001CH)	Read/Write					R/W	N			
	After reset		Data from external port (Note)	1	1	1	1	1	1	

Note: Output latch register is cleared to 0.

P7CR (001EH)

		7	6	5	4	3	2	1	0
₹	Bit symbol		P76C						
- 1)	Read/Write		W						
	After reset		0						
	Function		0: Input 1: Output						

Port 7 Function Register

P7FC (001FH)

		7	6	5	4	3	2	1	0	
; 1)	Bit symbol		P76F	P75F	P74F	P73F	P72F	P71F	P70F	
1)	Read/Write		W							
	After reset		0	0	0	0	0	0	1	
	Function		0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	
			1: WAIT	1: R/ W	1: CLKOUT	1: Don't set	1: WRLU	1: WRLL	1: RD	

Note: Read-modify-write instruction is prohibited for registers P7CR and P7FC.

Figure 3.5.11 Register for Port 7

3.5.6 Port 8 (P80 to P83)

Port 8 is 4-bit output port. Resetting sets output latch of P82 to "0" and set output latches of P80, P81, and P83 to "1".

In addition to functioning as a output port, port 8 can also function as a output chip select signal ($\overline{\text{CS0}}$ to $\overline{\text{CS3}}$).

These settings operate by programming "1" to the corresponding bit of P8FC.

Resetting set all bits of P8FC to "0", these pits set output mode.

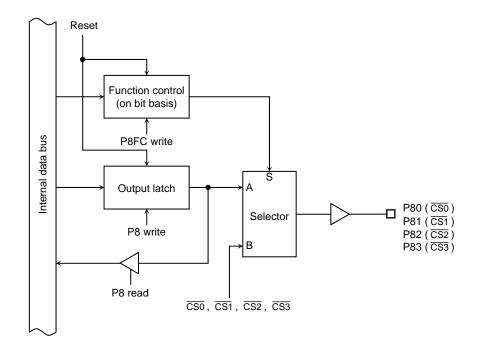


Figure 3.5.12 Port 8

				Por	t 8 Registe	r			
Do		7	6	5	4	3	2	1	0
P8 (0020H)	Bit symbol					P83	P82	P81	P80
(,	Read/Write			/		R/W			
	After reset					1	0	1	1
	After reset					1	0	1	1

,	Port 8 Function Register									
P8FC (0023H)		7	6	5	4	3	2	1	0	
	Bit symbol					P83F	P82F	P81F	P80F	
	Read/Write					W				
	After reset					0	0	0	0	
	Function					0: Port	0: Port	0: Port	0: Port	
						1: CS3	1: CS2	1: CS1	1: CS0	

Note 1: Read-modify-write instruction is prohibited for the registers P8FC.

Note 2: When set P82 pin as $\overline{\texttt{CS2}}$ after release reset, set function register (P8FC<P82F> = 1) in keep output latch of P82 to "0" (P8<P82> = 0).

If set function register (P8FC<P82F> = 1) after set output latch to "1" (P8<P82> = 1), maybe operation become to error because $\overline{\text{CS2}}$ output don't output correctly.

Figure 3.5.13 Register for Port 8

3.5.7 Port 9 (P90 to P92)

Port 9 is 3-bit general-purpose I/O port. Each bit can be set individually for input or output.

In addition to functioning as a general-purpose I/O port, port 9 can also function as a serial bus interface input (SCK (Clock signal in SIO mode), SO (Data output signal in SIO mode), SDA (Data signal in I²C bus mode), SI (Data input signal in SIO mode) and SCL (Clock signal in I²C bus mode)).

These settings operate by programming to the corresponding bit of P9FC.

Resetting set value of P9CR and P9FC to "0", all bits are set to input port. And all bits of output latch are set to "1".

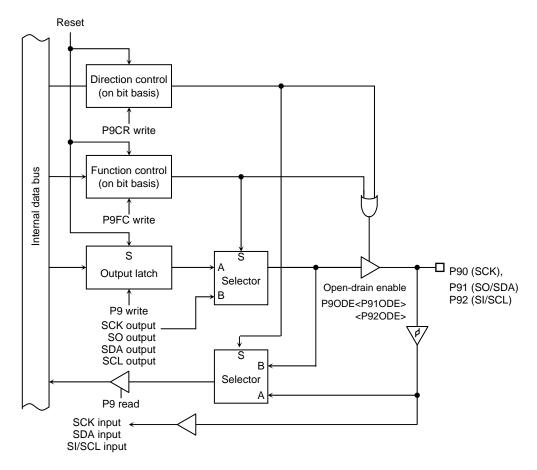


Figure 3.5.14 Port 9 (P90 to P92)

Port 9 Register										
		7	6	5	4	3	2	1	0	
P9 (0024H)	Bit symbol						P92	P91	P90	
	Read/Write						R/W			
	After reset						Data from external port (Output latch register is set to 1)			
Port 9 Control Register										
		7	6	5	4	3	2	1	0	
P9CR	Bit symbol						P92C	P91C	P90C	
(0026H)	Read/Write						W			
	After reset						0	0	0	
	Function						0: Input 1: Output			
Port 9 Function Register										
I							1			
		7	6	5	4	gister 3	2	1	0	
P9FC	Bit symbol	7	6				2 P92F	1 P91F	0 P90F	
P9FC (0027H)	Bit symbol Read/Write	7	6				P92F	-		
	Read/Write After reset	7	6				P92F 0	P91F W 0		
	Read/Write	7	6				P92F 0 0: Port, SI	P91F W 0	P90F 0 0: Port,	
	Read/Write After reset	7	6				0 0: Port, SI 1: SCL	P91F W 0 0: Port 1: SO,	P90F 0 0: Port, SCK input	
	Read/Write After reset	7	6				P92F 0 0: Port, SI	P91F W 0	0 0: Port, SCK input 1:SCK output	
	Read/Write After reset	7	6				0 0: Port, SI 1: SCL	P91F W 0 0: Port 1: SO,	P90F 0 0: Port, SCK input	
	Read/Write After reset	7	6	5		3	0 0: Port, SI 1: SCL	P91F W 0 0: Port 1: SO,	0 0: Port, SCK input 1:SCK output	
	Read/Write After reset	7	6	5	4	3	0 0: Port, SI 1: SCL	P91F W 0 0: Port 1: SO,	0 0: Port, SCK input 1:SCK output	
	Read/Write After reset			5 Port 9	4 ODE Regi	3 ster	0 0: Port, SI 1: SCL Note	P91F W 0 0: Port 1: SO, SDA	0 0: Port, SCK input 1:SCK output Note	
(0027H)	Read/Write After reset Function			5 Port 9	4 ODE Regi	3 ster	P92F 0 0: Port, SI 1: SCL Note	P91F W 0 0: Port 1: SO, SDA	0 0: Port, SCK input 1:SCK output Note	
(0027H)	Read/Write After reset Function Bit symbol			5 Port 9	4 ODE Regi	3 ster	P92F 0 0: Port, SI 1: SCL Note	P91F W 0 0: Port 1: SO, SDA	0 0: Port, SCK input 1:SCK output Note	

Note1: Read-modify-write instruction is prohibited for the registers P9CR, P9FC, and P9ODE.

Note2: When using SI and SCK input function, set P9FC<P92F,P90F> to "0" (Function setting).

Figure 3.5.15 Register for Port 9

3.5.8 Port A (PA0 to PA2, PA7)

Port A is 4-bit general-purpose input port with pull-up resistor.

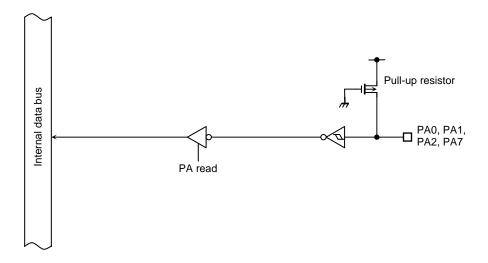
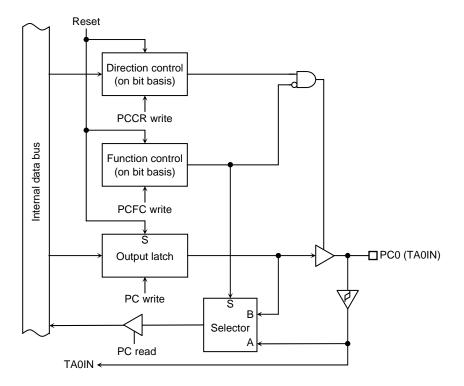


Figure 3.5.16 Port A

ı	Port A Register									
PA (0028H)		7	6	5	4	3	2	1	0	
	Bit symbol	PA7					PA2	PA1	PA0	
	Read/Write	R					R			
	After reset	Data from external port					Data from external port			

Figure 3.5.17 Register for Port A

3.5.9 Port C (PC0, PC1, PC3, PC5, and PC6)

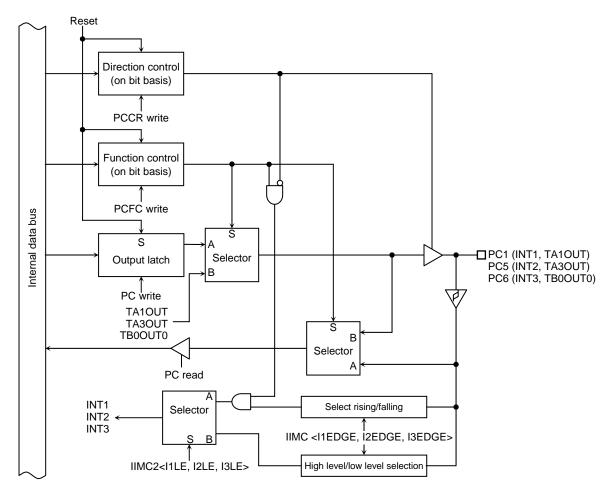

Port C is 5-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets port C to input port.

In addition to functioning as a general-purpose I/O port, port C can also function as a input/output pin (TA0IN, TA1OUT, TA3OUT, and TB0OUT0) and external interrupt pin (INT0 to INT3).

These settings operate by programming "1" to the corresponding bit of PCCR and PCFC. Resetting resets the PCCR and PCFC to "0", and sets all bits to input port.

(1) PC0 (TA0IN)

In addition to function as I/O port, port PC0 can also function as input pin TA0IN of timer channel 0.



Note: Can not read the output latch data when output mode.

Figure 3.5.18 Port C (PC0)

(2) PC1 (INT1, TA1OUT), PC5 (INT2, TA3OUT), PC6 (INT3, TB0OUT0)

In addition to function as I/O port, port PC1, PC5, and PC6 can also function as external interrupt input pin INT1 to INT3 and output pin of timer channel TA1OUT, TA3OUT, and TB0OUT0.

Note: Can not read the output latch data when output mode.

Figure 3.5.19 Port C (PC1, PC5, and PC6)

(3) PC3 (INT0)

In addition to function as I/O port, port PC3 can also function as external interrupt pin INT0.

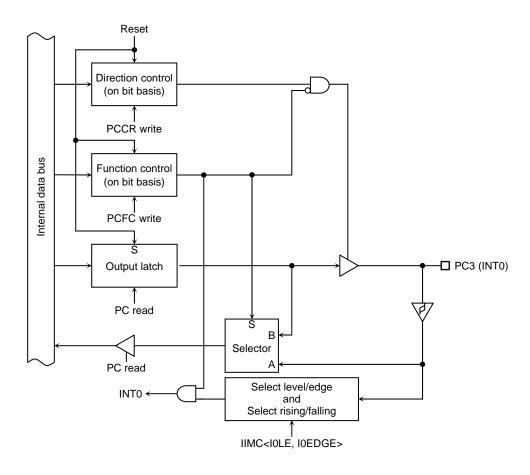
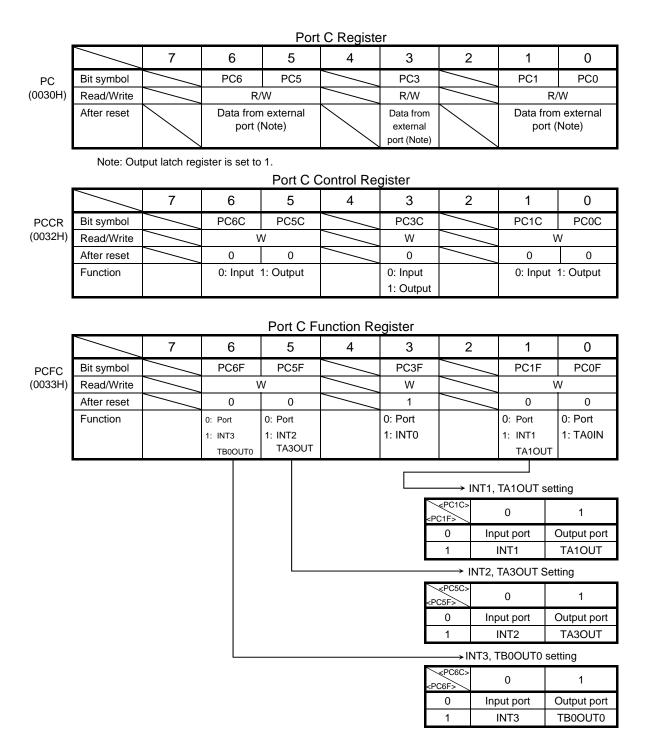



Figure 3.5.20 Port C (PC3)

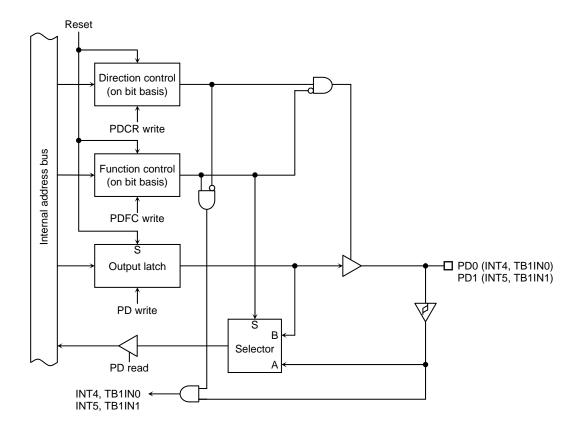
Note 1: Read-modify-write instruction is prohibited for the registers PCCR and PCFC.

Note 2: PC0/TA0IN pins do not have a register changing PORT/FUNCTION. For example, when it is used as an input port, the input signal is inputted to 8-bit timer as the input 0.

Note 3: Can not read the output latch data when PC0, PC1, PC5, and PC6 are output mode.

Figure 3.5.21 Register for Port C

3.5.10 Port D (PD0 to PD3)


Port D is 4-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets port D to input port.

In addition to functioning as a general-purpose I/O port, port D can also function as an input pin (INT4 and INT5)/output pin (TB0IN, TB1OUT, TB3OUT, and TB1OUT1).

These settings operate by programming "1" to the corresponding bit of PDCR and PDFC. Resetting resets the PDCR and PDFC to "0", and sets all bits to input port.

(1) PD0 (INT4, TB1IN0), PD1 (INT5, TB1IN1)

In addition to function as I/O port, port PD0 and PD1 can also function as external interrupt input pins INT4, INT5, timer channel input pins TB1IN0 and TB1IN1.

Note: Can not read the output latch data when output mode.

Figure 3.5.22 Port D (PD0 and PD1)

(2) PD2 (TB1OUT0) and PD3 (TB1OUT1)

In addition to function as I/O port, port PD0 and PD1 can also function as timer channel output pins TB1OUT0 and TB1OUT1.

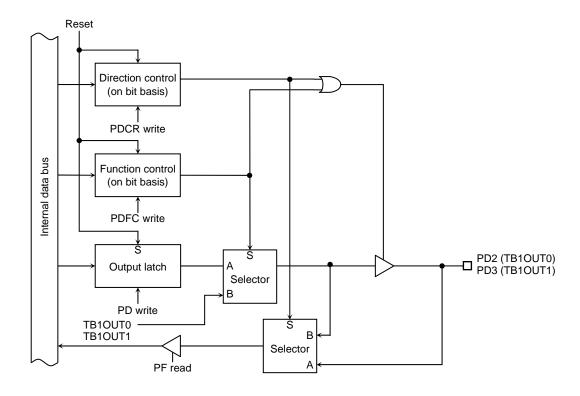
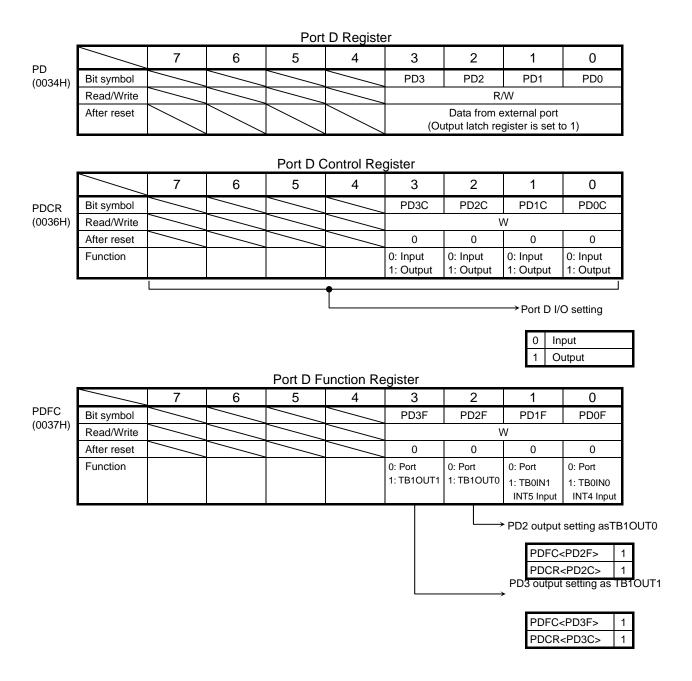



Figure 3.5.23 Port D (PD2 and PD3)

Note 1: Read-modify-write instruction is prohibited for the registers PDFC and PDCR.

Note 2: Can not read the output latch data when PD0 and PD1 are output mode.

Figure 3.5.24 Register for Port D

3.5.11 Port F (PF0 to PF7)

Port F is 8-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting resets the PFCR and PFFC to "0", and sets all bits to input port. And all bits of output latch register to "1".

In addition to functioning as a general-purpose I/O port, port F can also function as I/O function of serial channel 0 and 1.

These settings operate by writing "1" to the corresponding bit of PFFC.

Resetting resets the PDCR and PDFC to "0", and sets all bits to input port.

(1) Port PF0 and PF3 (TXD0/TXD1)

In addition to function as I/O port, port PF0 and PF3 can also function as TXD output pin of serial channel.

Thus, output buffer feature a programmable open-drain function, and setting enable by PFFC<PF0F, PF3F> and PFCR<PF0C, PF3C> register.

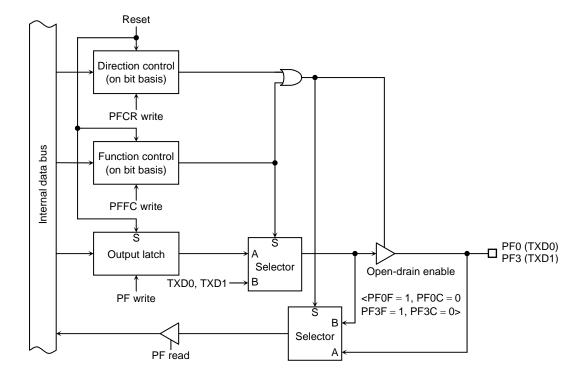


Figure 3.5.25 Port F (PF0 and PF3)

(2) Ports PF1 and PF4 (RXD0 and XD1)

In addition to function as I/O port, port PF1 and PF4 can also function as RXD input pin of serial channel.

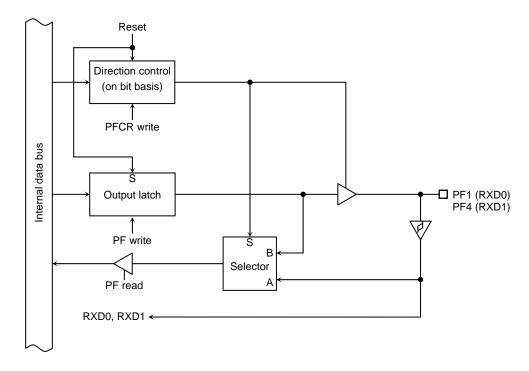


Figure 3.5.26 Port F (PF and PF4)

(3) Port PF2 (CTSO, SCLKO) and port PF5 (CTSI, SCLK1)

In addition to function as I/O port, port PF2 and PF5 can also function as $\overline{\text{CTS}}$ input pin of serial channel or SCLK I/O pin.

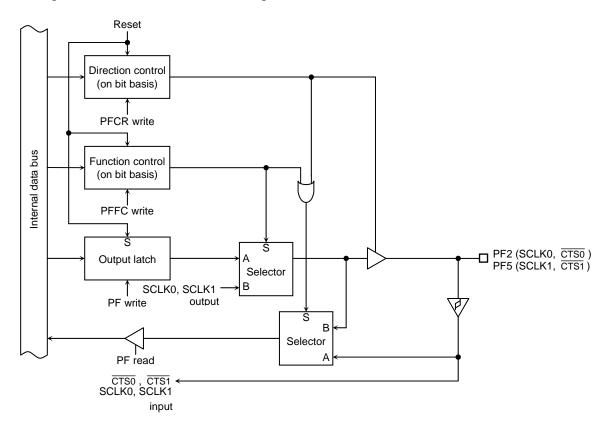


Figure 3.5.27 Port F (PF2 and PF5)

(4) Port PF6 and port PF7

These ports are general-purpose I/O port.

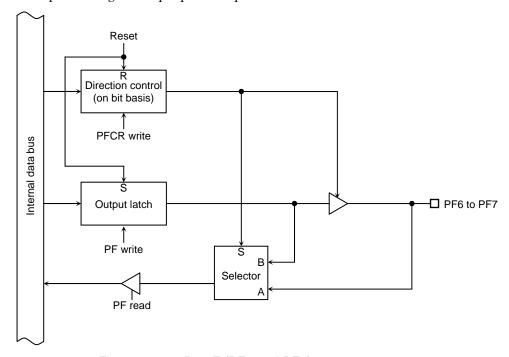


Figure 3.5.28 Port F (PF6 and PF7)

Port F Register

PF						_			
)3CH)	Bit symbol	PF7	PF6	PF5	PF4	PF	PF2	PF1	PF0
,	Read/Write				R/	W			
	After reset		Da	ıta from exter	nal port (Out	put latch reg	ister is set to	1)	
·									
				Port F C	control Rec	gister			
		7	6	5	4	3	2	1	0
PFCR	Bit symbol	PF7C	PF6C	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
03EH)	Read/Write				V	V			
	After reset	0	0	0	0	0	0	0	0
	Function				0: Input	1: Output			
				Port F Fu	unction Re	gister			
		7	6	5	4	3	2	1	0
PFFC	Bit symbol	_	-	PF5F		PF3F	PF2F		PF0F
03FH)	Read/Write		W			V	V		W
	After reset	0	0	0		0	0		0
	Function	Always	Always	0: Port		0: Port	0: Port		0: Port
	1 dilotion					4 71/04	1: SCLK0		1: TXD0
	Turiotion	write "0".	write "0".	1: SCLK1		1: TXD1			1. 1700
	T dilodon		write "0".	1: SCLK1 output		1: TXD1	output		1. TXD0
		write "0".	write "0".			1: IXD1			1. TABO
	Port function	write "0".				1: IXD1			1. 17.00
		write "0".	write "0".			1: IXD1			1. 17.00
	Port function	write "0".		output		1: IXD1			T. TXB0
	Port function <pf3c> <pf3f> 0</pf3f></pf3c>	write "0". setting O Input port TXD1	1	output		1: IXD1			T. TABO
	Port function <pf3c> <pf3f> 0</pf3f></pf3c>	write "0". setting O Input port	1 Output por	output		1: IXD1			T. TABO
	Port function PF3C> PF3F> 0 1	write "0". setting O Input port TXD1	1 Output por	output		1: IXD1			T. TABO
	Port function PF3C> PF3F> 0 1 PF0C> PF0C>	write "0". setting O Input port TXD1 (Open drain)	1 Output por TXD1	output t		1: IXD1			T. TABO
	Port function PF3C> PF3F> 0 1	write "0". setting 0 Input port TXD1 (Open drain)	1 Output por TXD1	output t		1: IXD1			

Note 1: Read-modify-write instruction is prohibited for the registers PFCR and PFFC.

Note 2: PF1/RXD0 and PF4/RXD1 pins do not have a register changing PORT/FUNCTION. For example, when it is used as an input port, the input signal is inputted to SIO as the serial receive data.

Note 3: PF0 and PF3 pins do not have a register (PFODE) for open-drain setting. Please conduct the open-drain setting according to above setting.

Figure 3.5.29 Register for Port F

3.5.12 Port G (PG0 to PG7)

Port G is 8-bit input port and can also be used as the analog input pins for the internal AD converter. PG3 can also be used as ADTRG pin for the AD converter.

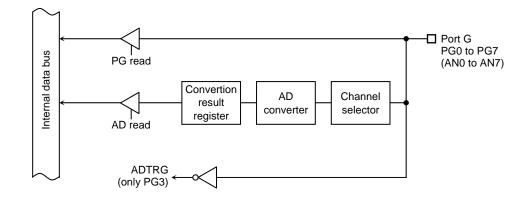


Figure 3.5.30 Port G

	Port G Register											
		7	6	5	4	3	2	1	0			
PG	Bit symbol	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0			
(0040H)	Read/Write		R									
	After reset		•	•	Data from e	xternal port		•				

Note: The input channel selection of AD converter and the permission of ADTRG input are set by AD converter mode register ADMOD1.

Figure 3.5.31 Register for Port G

3.6 Memory Controller

3.6.1 Function

TMP92CM22 has a memory controller with a variable 4-block address area that controls as follows.

(1) 4-block address area support Specifies a start address and a block size for 4-block address area.

(2) Connecting memory specifications

Specifies SRAM and ROM as memories to connect with the selected address areas.

(3) Data bus size selection

Whether 8-bit or 16-bit is selected as the data bus size of the respective block address areas.

(4) Wait control

Wait specification bit in the control register and WAIT input pin control the number of waits in the external bus cycle. Read cycle and write cycle can specify the number of waits individually.

The number of waits is controlled in 6 mode mentioned below.

0 waits, 1 wait,
2 waits, 3 waits, 4 waits
N waits (Control with WAIT pin)

3.6.2 Control Register and Operation after Reset Release

This section describes the registers to control the memory controller, the state after reset release and necessary settings.

(1) Control register

The control registers of the memory controller are as follows.

- Control register: BnCSH/BnCSL (n = 0 to 3, EX)
 Sets the basic functions of the memory controller, that is the connecting memory type, the number of waits to be read and written.
- Memory start address register: MSARn (n = 0 to 3)
 Sets a start address in the selected block address areas.
- Memory address mask register: MAMRn (n = 0 to 3)
 Sets a block size in the selected address areas.

In addition to setting of the above-mentioned registers, it is necessary to set the following registers to control ROM page mode access.

Page ROM control register: PMEMCR
 Sets to executed ROM page mode accessing.

(2) Operation after reset release

The start data bus width is determined depending on state of AM1 and AM0 pins just after reset release. Then, the external memory is accessed as follows.

AM1	AM0	Start Mode
0	0	Don't use this setting
0	1	Start with 16-bit data bus
1	0	Start with 8-bit data bus
1	1	Don't use this setting

AM1/AM0 pins are valid only just after reset release. In the other cases, the data bus width is set to the value set to BnBUS bit of the control register.

By reset, only control register (B2CSH/B2CSL) of the block address area 2 is automatically effective (B2CSH<B2E> is set to "1" by reset).

The data bus width which is specified by AM1/AM0 pin is loaded to the bit to specify the bus width of the control register in the block address area 2.

The block address area 2 is set to address 000000H to FFFFFFH by reset.

After reset release, the block address areas are specified by the memory start address register (MSAR) and the memory address mask register (MAMR). Then the control register (BnCS) is set.

Set the enable bit (BnE) of the control register to "1" to enable the setting.

3.6.3 Basic Functions and Register Setting

In this section, setting of the block address area, the connecting memory and the number of waits out of the memory controller's functions are described.

(1) Block address area specification

The block address area is specified by two registers.

The memory start address register (MSAR) sets the start address of the block address areas. The memory controller compares between the register value and the address every bus cycles. The address bit which is masked by the memory address mask register (MAMR) is not compared by the memory controller. The block address area size is determined by setting the memory address mask register. The set value in the register is compared with the block address area on the bus. If the compared result is a match, the memory controller sets the chip select signal $(\overline{\text{CS}})$ to "low".

(i) Setting memory start address register

The MS23 to MS16 bits of the memory start address register respectively correspond with addresses A23 to A16. The lower start address A15 to A0 are always set to address 0000H.

Therefore the start address of the block address area are set to addresses 000000H to FF0000H every 64 Kbytes.

(ii) Setting memory address mask registers

The memory address mask register sets whether an address bit is compared or not. Set the register to "0" to compare, or to "1" not to compare.

The address bit to be set is depended on the block address area.

Block address area 0: A20 to A8

Block address area 1: A21 to A8

Block address area 2 to 3: A22 to A15

The above-mentioned bits are always compared. The block address area size is determined by the compared result.

The size to be set depending on the block address area is as follows.

Size (bytes) CS area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	0	0	0	0	0	0	0	0	0		
CS1	0	0		0	0	0	0	0	0	0	
CS2 to CS3			0	0	0	0	0	0	0	0	0

Note: After reset release, only the control register of the block address area 2 is valid. The control register of the block address area 2 has <B2M> bit. Setting <B2M> bit to "0" sets the block address area 2 to addresses 000000H to FFFFFFH. State of after reset release is set this. Setting <B2M> bit to "1" specifies the start address and the address area size as it is in the other block address area.

(iii) Example of register setting

To set the block address area 1 to 512 bytes from address 110000H, set the register as follows.

MSAR1 Register

	7	6	5	4	3	2	1	0
Bit symbol	M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
Setting value	0	0	0	1	0	0	0	1

M1S23 to M1S16 bits of the memory start address register MSAR1 correspond with address A23 to A16.

A15 to A0 are cleared to "0". Therefore setting MSAR1 to the above-mentioned value specifies the start address of the block address area to address 110000H.

The start address is set as it is in the other block address areas.

MAMR1 Register

	7	6	5	4	3	2	1	0
Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-9	M1V8
Setting value	0	0	0	0	0	0	0	1

M1V21 to M1V16 and M1V8 bits of the memory address mask register MAMR1 set whether address A21 to A16 and A8 are compared or not. Set the register to "0" to compare, or to "1" not to compare. A23 and A22 are always compared.

Setting the above-mentioned compares A23 to A9 with the values set as the start addresses. Therefore 512 bytes of addresses 110000H to 1101FFH are set as the block address area 1, and compared with the addresses on the bus. If the compared result is a match, the chip select signal $\overline{\text{CS1}}$ is set to "low".

The other block address area sizes are specified like this.

Similarly, A23 is always compared in block address areas 2 to 3. Whether A22 to A15 are compared or not is set to register.

Note: When the set block address area overlaps with the built-in memory area, or both two address areas overlap, the block address area is processed according to priority as follows.

Built-in I/O > Built-in memory > Block address area 0 >1 > 2 > 3 > CSEX

Also that any accessed areas outside the address spaces set by $\overline{\text{CSO}}$ to $\overline{\text{CS3}}$ are processed as the CSEX space. Therefore, settings of CSEX apply for the control of wait cycles, data bus width, etc.

(2) Connection memory specification

Setting the BnOM1 to BnOM0 bit of the control register (BnCSH) specifies the memory type to be connected with the block address areas. The interface signal is output according to the set memory as follows. TMP92CM22 prohibit changing default (SRAM/ROM).

BnOM1, BnOM0 Bit (BnCSH register)

BnOM1	BnOM0	Function
0	0	SRAM/ROM (Default)
0	1	(Reserved)
1	0	(Reserved)
1	1	(Reserved)

(3) Data bus width specification

The data bus width is set for every block address area. The bus size is set by the BnBUS1 and BnBUS0 bits of the control register (BnCSH) as follows.

BnBUS Bit (BnCSH register)

BnBUS1	BnBUS0	Function
0	0	8-bit bus mode (Default)
0	1	16-bit bus mode
1	0	(Reserved)
1	1	(Reserved)

This way of changing the data bus size depending on the address being accessed is called "dynamic bus sizing". The part where the data is output to is depended on the data size, the bus width and the start address.

Note: Since there is a possibility of abnormal writing/reading of the data if two memories with different bus width are put in consecutive addresses, do not execute an access to placed on both memories with one command.

Data Size	Start	Data Width in	CPU	CPU	Data
(Bit)	Address	Memory Side (Bit)	Address	D15 to D8	D7 to D0
8	4n + 0	8/16	4n + 0	XXXXX	b7 to b0
	4n + 1	8	4n + 1	xxxxx	b7 to b0
		16	4n + 1	b7 to b0	xxxxx
	4n + 2	8/16	4n + 2	xxxxx	b7 to b0
	4n + 3	8	4n + 3	xxxxx	b7 to b0
		16	4n +3	b7 to b0	xxxxx
16	4n + 0	8	(1) 4n + 0	xxxxx	b7 to b0
			(2) 4n + 1	xxxxx	b15 to b8
		16	4n + 0	b15 to b8	b7 to b0
	4n + 1	8	(1) 4n + 1	xxxxx	b7 to b0
			(2) 4n + 2	xxxxx	b15 to b8
		16	(1) 4n + 1	b7 to b0	xxxxx
			(2) 4n + 2	xxxxx	b15 to b8
	4n + 2	8	(1) 4n + 2	XXXXX	b7 to b0
			(2) 4n + 1	xxxxx	b15 to b8
		16	4n + 2	b15 to b8	b7 to b0
	4n + 3	8	(1) 4n + 3	xxxxx	b7 to b0
			(2) 4n + 4	xxxxx	b15 to b8
		16	(1) 4n + 3	b7 to b0	xxxxx
			(2) 4n + 4	xxxxx	b15 to b8
32	4n + 0	8	(1) 4n + 0	xxxxx	b7 to b0
			(2) 4n + 1	xxxxx	b15 to b8
			(3) 4n + 2	xxxxx	b23 to b16
			(4) 4n + 3	xxxxx	b31 to b24
		16	(1) 4n + 0	b15 to b8	b7 to b0
			(2) 4n + 2	b31 to b24	b23 to b16
	4n + 1	8	(1) 4n + 0	xxxxx	b7 to b0
			(2) 4n + 1	xxxxx	b15 to b8
			(3) 4n + 2	xxxxx	b23 to b16
			(4) 4n + 3	xxxxx	b31 to b24
		16	(1) 4n + 1	b7 to b0	XXXXX
			(2) 4n + 2	b23 to b16	b15 to b8
			(3) 4n + 4	XXXXX	b31 to b24
	4n + 2	8	(1) 4n + 2	XXXXX	b7 to b0
			(2) 4n + 3	XXXXX	B15 to b8
			(3) 4n + 4	XXXXX	b23 to b16
			(4) 4n + 5	XXXXX	b31 to b24
		16	(1) 4n + 2	b15 to b8	b7 to b0
			(2) 4n + 4	b31 to b24	b23 to b16
	4n + 3	8	(1) 4n + 3	XXXXX	b7 to b0
			(2) 4n + 4	XXXXX	b15 to b8
			(3) 4n + 5	XXXXX	b23 to b16
			(4) 4n + 6	XXXXX	b31 to b24
		16	(1) 4n + 3	b7 to b0	XXXXX
			(2) 4n + 4	b23 to b16	b15 to b8
			(3) 4n + 6	XXXXX	b31 to b24

xxxxx: During a read, data input to the bus ignored. At write, the bus is at high impedance and the write strobe signal remains inactive.

(4) Wait control

The external bus cycle completes a wait of two states at least (100 ns at $f_{SYS} = 20$ MHz).

Setting the <BnWW2:0> and <BnWR2:0> of BnCSL specifies the number of waits in the read cycle and the write cycle. BnWW is set with the same method as BnWR.

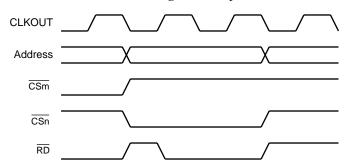
BnWW/BnWR Bit	(BnCSL Register)
---------------	------------------

		•	<u> </u>
BnWW2	BnWR1	BnWW0	Function
BnWR2	BnWW1	BnWR0	Function
0	0	1	2 states (0 waits) access fixed mode
0	1	0	3 states (1 wait) access fixed mode (Default)
1	0	1	4 states (2 waits) access fixed mode
1	1	0	5 states (3 waits) access fixed mode
1	1	1	6 states (4 waits) access fixed mode
0	1	1	WAIT pin input mode
	Others	•	(Reserved)

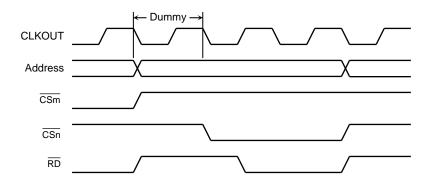
(i) Waits number fixed mode

The bus cycle is completed with the set states. The number of states is selected from 2 states (0 waits) to 6 states (4 waits).

(ii) WAIT pin input mode

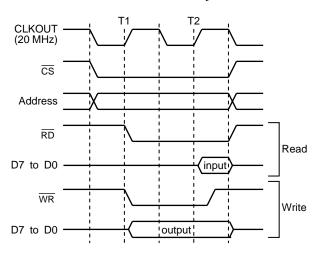

This mode samples the $\overline{\text{WAIT}}$ input pins. It continuously samples the $\overline{\text{WAIT}}$ pin state and inserts a wait if the pin is active. The bus cycle is minimum 2 states. The bus cycle is completed when the wait signal is non-active ("High" level) at 2 states. The bus cycle extends if the wait signal is active at 2 states and more.

If a lot of connected pertain ROM and etc. (Much data-output-floating-time (tDF)), each other's data-bus-output-recovery-time is trouble. However, by setting BnREC of control register (BnCSH), can to insert dummy cycle of 1-state just before first bus cycle of starting access another block address.

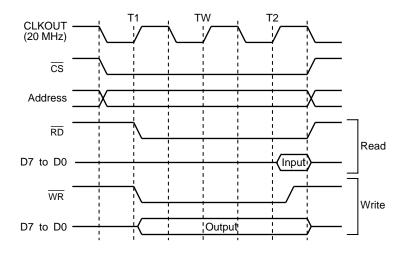

BnREC Bit (BnCSH register)

(9 ,
0	No dummy cycle is inserted (Default).
1	Dummy cycle is inserted.

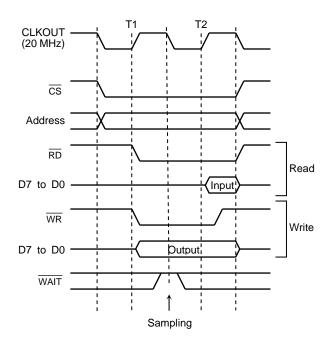
• When not inserting a dummy (0 waits)

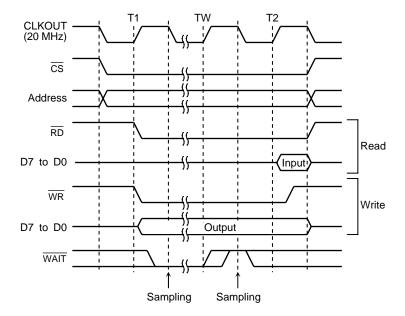


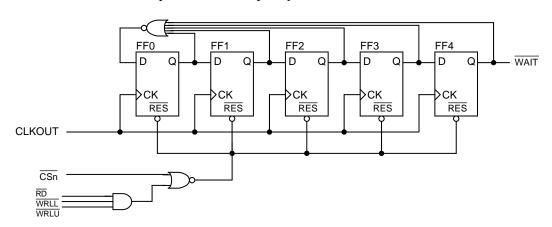
• When inserting a dummy cycle (0 waits)

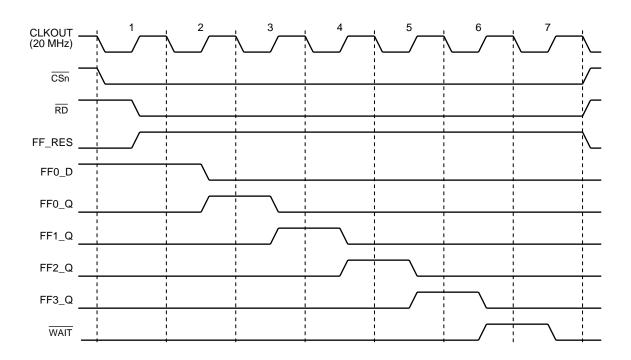


(5) Bus access timing


• External read/write bus cycle (0 waits)


• External read/write bus cycle (1 wait)


• External read/write bus cycle (0 waits at $\overline{\text{WAIT}}$ pin input mode)



• External read/write bus cycle (n waits at WAIT pin input mode)

Example of WAIT input cycle (5 waits)

(6) Connecting external memory

Figure 3.6.1 shows an example of how to connect external memory to the TMP92CM22.

This example connects ROM and SRAM in 16-bit width.

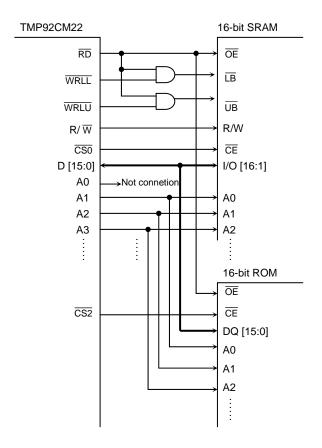


Figure 3.6.1 Example of External Memory

By resetting, TMP92CM22 function as output port. Output latch of P82 ($\overline{\text{CS2}}$) is cleared to "0", and output "L". Output latch of P80 ($\overline{\text{CS0}}$), P81 ($\overline{\text{CS1}}$) and P83 ($\overline{\text{CS3}}$) are set to "1", and output "H".

When set port 8 from port function to CS function, set need bit of P8FC register to "1".

Note: When set P82 as $\overline{CS2}$ after release reset, set function register remain output latch of P82 is "0" (P8<P82> = 0). (P8FC<P82F> = 1)

If set function register (P8FC<P82F> = 1) after set output latch of P82 to "1" (P8<P82> = 1), maybe don't read ROM data during changing from port function to $\overline{\text{CS2}}$.

3.6.4 ROM Control (Page mode)

This section describes ROM page mode accessing and how to set registers. ROM page mode is set by the page ROM control register.

(1) Operation and how to set the registers

The TMP92CM22 supports ROM access of the page mode. ROM access of the page mode is specified only in block address area 2.

ROM page mode is set by the page ROM control register (PMEMCR). Setting <OPGE> of the PMEMCR register to "1" sets the memory access of the block address area to ROM page mode access.

The number of read cycles is set by the <OPWR1:0> bit of the PMEMCR register.

	31 VVIV.17-01 V	vito bit (i iviLiviort register)
OPWR1	OPWR0	Number of Cycle in A Page
0	0	1 state (n-1-1-1 mode) (n ≥ 2)
0	1	2 states (n-2-2-2 mode) (n ≥ 3)
1	0	3states (n-3-3-3 mode) (n ≥ 4)
1	1	(Reserved)

OPWR1/OPWR0 Bit (PMEMCR register)

Note: Set the number of waits ("n") using the control register (BnCSL) in each block address

The page size (The number of bytes) of ROM in the CPU side is set by the <PR1:0> of the PMEMCR register. When data is read out up to the border of the set page, the controller completes the page reading operation. The start data of the next page is read in the normal cycle. The following data is set to page read again.

	FKI/FKU	Bit (FIVIEIVICK register)
PR1	PR0	ROM Page Size
0	0	64 bytes
0	1	32 bytes
1	0	16 bytes
1	1	8 hytes

PR1/PR0 Bit (PMEMCR register)

(2) Signal pulse



Figure 3.6.2 Page mode access Timing (8-byte example)

3.6.5 List of Registers

The memory control registers and the settings are described as follows. For the addresses of the registers, see list of special function registers in section 5.

(1) Control registers

The control register is a pair of BnCSL and BnCSH. ("n" is a number of the block address area.) BnCSL has the same configuration regardless of the block address areas. In BnCSH, only B2CSH which is corresponded to the block address area 2 has a different configuration from the others.

BnCSL

	7	6	5	4	3	2	1	0
Bit symbol		BnWW2	BnWW1	BnWW0		BnWR2	BnWR1	BnWR0
Read/Write			W	_			W	
After reset		0	1	0		0	1	0

BnWW[2:0] Specifies the number of write waits.

001 = 2 states (0 waits) access

010 = 3 states (1 wait) access

101 = 4 states (2 waits) access

110 = 5 states (3 waits) access

111 = 6 states (4 waits) access

 $011 = \overline{WAIT}$ pin input mode

Others = (Reserved)

BnWR[2:0] Specifies the number of read waits.

001 = 2 states (0 waits) access

010 = 3 states (1 wait) access

101 = 4 states (2 waits) access

110 = 5 states (3 waits) access

111 = 6 states (4 waits) access

 $011 = \overline{WAIT}$ pin input mode

Others = (Reserved)

B2CSH

	7	6	5	4	3	2	1	0
Bit symbol	B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
Read/Write	V	V				W		
After reset	1	0		0	0	0	0	0

B2E Enable bit.

0 = No chip select signal output

1 = Chip select signal output (Default)

Note: After reset release, only the enable bit B2E of B2CSH register is valid ("1").

B2M Specifies the block address area.

0 = Sets the block address area of CS2 to addresses 000000H to FFFFFH (Default)

1 = Sets the block address area of CS2 to programmable

Note: After reset release, the block address area 2 is set to addresses 000000H to FFFFFFH.

B2REC Sets the dummy cycle for data output recovery time.

0 = Not insert a dummy cycle (Default)

1 = Insert a dummy cycle

B2OM[1:0]

00 = SRAM or ROM (Default)

Others = (Reserved)

B2BUS[1:0] Sets the data bus width.

00 = 8 bits (Default)

01 = 16 bits

10 = (Reserved)

11 = (Reserved)

Note: The value of B2BUS bit is set according to the state of AM[1:0] pin after reset release.

BnCSH (n = 0, 1, 3)

	7	6	5	4	3	2	1	0
Bit symbol	BnE			BnREC	BnOM1	BnOM0	BnBUS1	BnBUS0
Read/Write	W					W		
After reset	0			0	0	0	0	0

BnE Enable bit.

0 = No chip select signal output (Default)

1 = Chip select signal output

Note: After reset release, only the enable bit B2E of B2CSH register is valid ("1").

BnREC Sets the dummy cycle for data output recovery time.

0 = Not insert a dummy cycle (Default)

1 = Insert a dummy cycle

BnOM[1:0]

00 = SRAM or ROM (Default)

01 = (Reserved)

10 = (Reserved)

11 = (Reserved)

BnBUS[1:0] Sets the data bus width.

00 = 8 bits (Default)

01 = 16 bits

10 = (Reserved)

11 = (Reserved)

BEXCSL

	7	6	5	4	3	2	1	0
Bit symbol		BEXWW2	BEXWW1	BEXWW0		BEXWR2	BEXWR1	BEXWR0
Read/Write			W				W	
After reset		0	1	0		0	1	0

BEXWW[2:0] Specifies the number of write waits.

001 = 2 states (0 waits) access 010 = 3 states (1 wait) access 101 = 4 states (2 waits) access 110 = 5 states (3 waits) access 111 = 6 states (4 waits) access $011 = \overline{WAIT}$ pin input mode

Others = (Reserved)

BEXWR[2:0] Specifies the number of read waits.

001 = 2 states (0 waits) access010 = 3 states (1 wait) access101 = 4 states (2 waits) access110 = 5 states (3 waits) access111 = 6 states (4 waits) access $011 = \overline{\text{WAIT}}$ pin input mode

Others = (Reserved)

BEXCSH

	7	6	5	4	3	2	1	0
Bit Symbol		1	1	-	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
Read/Write			W			V	V	
After reset		P	Always write 0.			0	0	0

BEXOM[1:0]

00 = SRAM or ROM (Default)

01 = (Reserved)

10 = (Reserved)

11 = (Reserved)

BEXBUS[1:0]

00 = 8 bits (Default)

01 = 16 bits

10 = (Reserved)

11 = (Reserved)

(1) Block address area specification register

A start address and range in the block address are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). The memory start address register sets all start address similarly regardless of the block address areas. The bit to be set by the memory address mask register is depended on the block address area.

MSARn (n = 0 to 3)

	7	6	5	4	3	2	1	0	
Bit symbol	MnS23	MnS22	MnS21	MnS20	MnS19	MnS18	MnS17	MnS16	
Read/Write		R/W							
After reset	1	1	1	1	1	1	1	1	

MnS<23:16>

Sets a start address.

Sets the start address of the block address areas. The bit is corresponding to the address A23 to A16.

MAMR0

	7	6	5	4	3	2	1	0	
Bit symbol	M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-9	M0V8	
Read/Write		R/W							
After reset	1	1	1	1	1	1	1	1	

M0V<20:8>

Enables or masks comparison of the addresses. M0V20 to M0V8 are corresponding to addresses A20 to A8. The bit of M0V14 to M0V9 is corresponding to address A14 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

MAMR1

	7	6	5	4	3	2	1	0		
Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-9	M1V8		
Read/Write		R/W								
After reset	1	1	1	1	1	1	1	1		

M1V<21:8>

Enables or masks comparison of the addresses. M1V21 to M1V8 are corresponding to addresses A21 to A8. The bits of M1V15 to M1V9 are corresponding to address A15 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

MAMRn (n = 2 to 3)

	7	6	5	4	3	2	1	0
Bit symbol	MnV22	MnV21	MnV20	MnV19	MnV18	MnV17	MnV16	MnV15
Read/Write		R/W						
After reset	1	1	1	1	1	1	1	1

MnV<22:15>

Enables or masks comparison of the addresses. MnV22 to MnV15 are corresponding to addresses A22 to A15. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

After a reset, MASR0 to MASR3 and MAMR0 to MAMR3 are set to "FFH". B0CSH<B0E>, B1CSH<B1E>, and B3CSH<B3E> are reset to "0". This disables the CS0, CS1, and CS3 areas. However, B2CSH<B2M> is reset to "0" and B2CSH<B2E> to "1", and CS2 is enabled 000000H to FFFFFFH. Also the bus width and the number of waits specified in BEXCSH/L are used for accessing address except the specified CS0 to CS3 area.

(2) Page ROM control register (PMEMCR)

The page ROM control register sets page ROM accessing. ROM page accessing is executed only in block address area 2.

PMEMCR

	7	6	5	4	3	2	1	0
Bit symbol				OPGE	OPWR1	OPWR0	PR1	PR0
Read/Write						R/W		
After reset				0	0	0	1	0

OPGE Enable bit.

0 = No ROM page mode accessing (Default)

1 = ROM page mode accessing

OPWR [1:0] Specifies the number of waits.

00 = 1 state (n-1-1-1 mode) (n \geq 2) (Default)

01 = 2 states (n-2-2-2 mode) (n \geq 3)

10 = 3 states (n-3-3-3 mode) (n \geq 4)

11 = (Reserved)

Note: Set the number of waits "n" to the control register (BnCSL) in each block address area.

PR [1:0] ROM page size.

00 = 64 bytes

01 = 32 bytes

10 = 16 bytes (Default)

11 = 8 bytes

Table 3.6.1 Control Register

		7	6	5	4	3	2	1	0
B0CSL	Bit symbol		B0WW2	B0WW1	B0WW0	$\overline{}$	B0WR2	B0WR1	B0WR0
(0140H)	Read/Write		B0WW2 B0WW1 B0WW0			W BOWK2 BOWK1 BOWK0		BOWNO	
(014011)	After reset		0	1	0		0	1	0
B0CSH	Bit symbol	B0E	U		B0REC	B0OM1	B0OM0	B0BUS1	B0BUS0
(0141H)	Read/Write	DOL			V		BOOMO	DODOOT	Вовосо
(014111)	After reset	0	0 (Note)	0 (Note)	0	0	0	0	0
MAMR0	Bit symbol	M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-V9	M0V8
(0142H)	Read/Write	1010 0 20	1010 V 10	1010 0 10	R/		1010 0 10	1010 14 00	1010 0
(011211)	After reset	1	1	1	1	1	1	1	1
MSAR0	Bit symbol	M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
(0143H)	Read/Write				R/				
,	After reset	1	1	1	1	1	1	1	1
B1CSL	Bit symbol		B1WW2	B1WW1	B1WW0		B1WR2	B1WR1	B1WR0
(0144H)	Read/Write			W				W	
(- /	After reset		0	1	0		0	1	0
B1CSH	Bit symbol	B1E	_	_	B1REC	B1OM1	B1OM0	B1BUS1	B1BUS0
(0145H)	Read/Write				V				
(/	After reset	0	0 (Note)	0 (Note)	0	0	0	0	0
MAMR1	Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-V9	M1V8
(0146H)	Read/Write	•			R/	W		•	
	After reset	1	1	1	1	1	1	1	1
MSAR1	Bit symbol	M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
(0147H)									
	After reset	1	1	1	1	1	1	1	1
B2CSL	Bit symbol		B2WW2	B2WW1	B2WW0		B2WR2	B2WR1	B2WR0
(0148H)	Read/Write			W				W	
	After reset		0	1	0		0	1	0
B2CSH	Bit symbol	B2E	B2M	_	B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
(0149H)	Read/Write		W						
	After reset	1	0	0 (Note)	0	0	0	0	0
MAMR2	Bit symbol	M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
(014AH)	Read/Write				R/	W			
	After reset	1	1	1	1	1	1	1	1
MSAR2	Bit symbol	M2S23	M2S22	M2S21	M2S20	M2S19	M2S18	M2S17	M2S16
(014BH)	Read/Write				R/	W			
	After reset	1	1	1	1	1	1	1	1
B3CSL	Bit symbol		B3WW2	B3WW1	B3WW0		B3WR2	B3WR1	B3WR0
(014CH)	Read/Write			W				W	
	After reset		0	1	0		0	1	0
B3CSH	Bit symbol	B3E	_	_	B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
(014DH) Read/Write W									
	After reset	0	0 (Note)	0 (Note)	0	0	0	0	0
MAMR3	Bit symbol	M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15
(014EH)	Read/Write	1			R/			1	
	After reset	1	1	1	1	1	1	1	1
MSAR3	Bit symbol	M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
(014FH)	Read/Write				R/			1	
	After reset	1	1	1	1	1	1	1	1
BEXCSH	Bit symbol					BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
(0159H)	Read/Write						-	N	_
	After reset					0	0	0	0
BEXCSL	Bit symbol		BEXWW2	BEXWW1	BEXWW0		BEXWR2	BEXWR1	BEXWR0
(0158H)	Read/Write		^	W	^		^	W	
DMEMOS	After reset		0	1	0	ODIA/D (0	1	0
PMEMCR	Bit symbol		$\overline{}$		OPGE	OPWR1	OPWR0	PR1	PR0
(0166H)	Read/Write		$\overline{}$		0	0	R/W	4	
	After reset				0	0	0	1	0

Note1: Always write "0".

Note2: Read-modify-write instruction is prohibited for BnCSL, BnCSH registers (n=0 to 3, EX).

3.6.6 Caution

If the parasitic capacitance of the read signal (Output enable signal) is greater than that of the chip select signal, it is possible that an unintended read cycle occurs due to a delay in the read signal. Such an unintended read cycle may cause a trouble as in the case of (a) in Figure 3.6.3

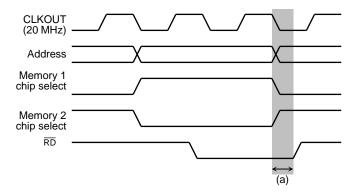


Figure 3.6.3 Read Signal Delay Read Cycle

Example: When using an externally connected flash EEPROM which users JEDEC standard commands, note that the toggle bit may not be read out correctly. If the read signal in the cycle immediately preceding the access to the flash EEPROM does not go "high" in time, as shown in Figure 3.6.4 an unintended read cycle like the one shown in (b) may occur.

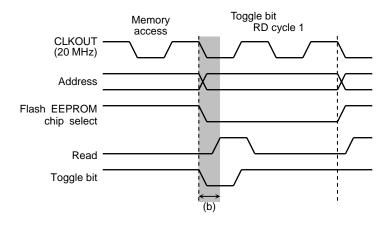
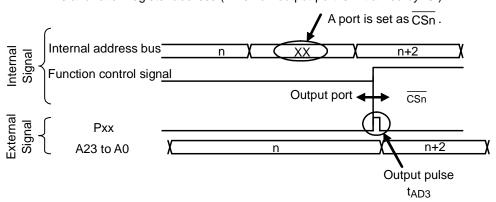


Figure 3.6.4 Flash EEPROM Toggle Bit Read Cycle

When the toggle bit reverse with this unexpected read cycle, TMP92CM22 always reads same value of the toggle bit, and cannot read the toggle bit correctly. To avoid this phenomenon, the data polling control recommended.

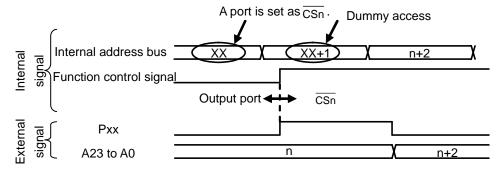

(2) The cautions at the time of the functional change of a $\overline{\mathrm{CSn}}$.

A chip select signal output has the case of a combination terminal with a general-purpose port function. In this case, an output latch register and a function control register are initialized by the reset action, and an object terminal is initialized by the port output ("1" or "0") by it.

Functional change

Although an object terminal is changed from a port to a chip select signal output by setting up a function control register (PnFC register), the short pulse for several ns may be outputted to the changing timing. Although it does not become especially a problem when using the usual memory, it may become a problem when using a special memory.

* XX is a function register address.(When an output port is initialized by "0")



The measure by software

The countermeasures in S/W for avoiding this phenomenon are explained.

Since CS signal decodes the address of the access area and is generated, an unnecessary pulse is outputted by access to the object CS area immediately after setting it as a CSn function. Then, if internal area is accessed also immediately after setting a port as CS function, an unnecessary pulse will not output.

- 1. Prohibition of use of an NMI function
- 2. The ban on interruption under functional change (DI command)
- 3. A dummy command is added in order to carry out continuous internal access.
- (Access to a functional change register is corresponded by 16-bit command.
 (LDW command))

3.7 8-Bit Timers (TMRA)

The TMP92CM22 features 4 built-in 8-bit timers.

These timers are paired into four modules: TMRA01 and TMRA23. Each module consists of two channels and can operate in any of the following four operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.7.1 and Figure 3.7.2 show block diagrams for TMRA01 and TMRA23.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by five controls SFR (Special-function registers).

Each of the two modules (TMRA01 and TMRA23) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.

The contents of this chapter are as follows.

- 3.7.1 Block diagrams
- 3.7.2 Operation of Each Circuit
- 3.7.3 SFRs
- 3.7.4 Operation in Each Mode
 - (1) 8-bit timer mode
 - (2) 16-bit timer mode
 - (3) 8-bit PPG (Programmable pulse generation) output mode
 - (4) 8-bit PWM (Pulse width modulation) output mode
 - (5) Mode settings

Table 3.7.1 Registers and Pins for Each Module

Specification	Module	Timer A01	Timer A23	
External pin	Input pin for external clock	TA0IN (Shared with PC0)	None	
External pin	Output pin for timer flip-flop	TA1OUT (Shared with PC1)	TA3OUT (Shared with PC5)	
	Timer RUN register	TA01RUN (1100H)	TA23RUN (1108H)	
SFR	Timer register	TA0REG (1102H) TA1REG (1103H)	TA2REG (110AH) TA3REG (110BH)	
(Address)	Timer mode register	TA01MOD (1104H)	TA23MOD (110CH)	
	Timer flip-flop control register	TA1FFCR (1105H)	TA3FFCR (110DH)	

3.7.1 Block Diagrams

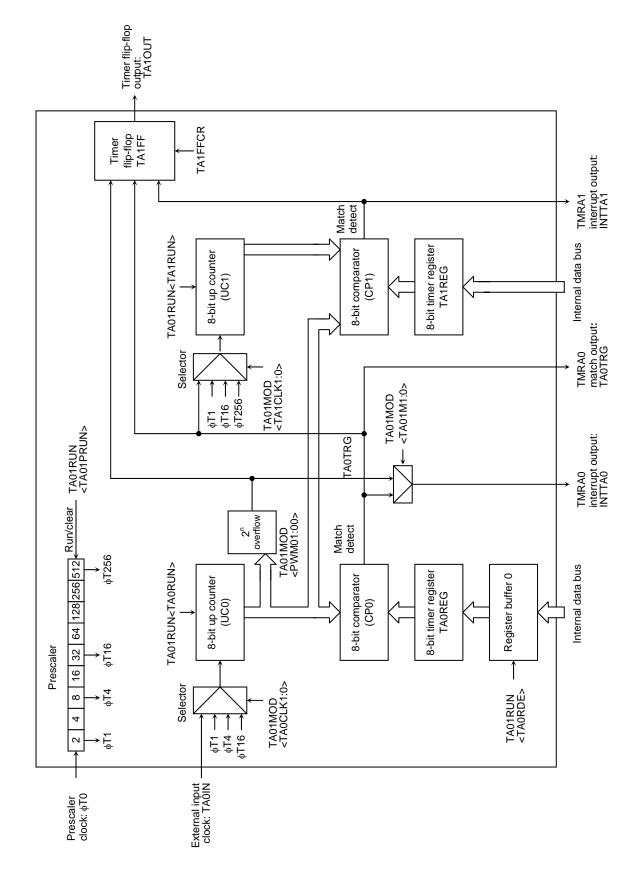


Figure 3.7.1 TMRA01 Block Diagram

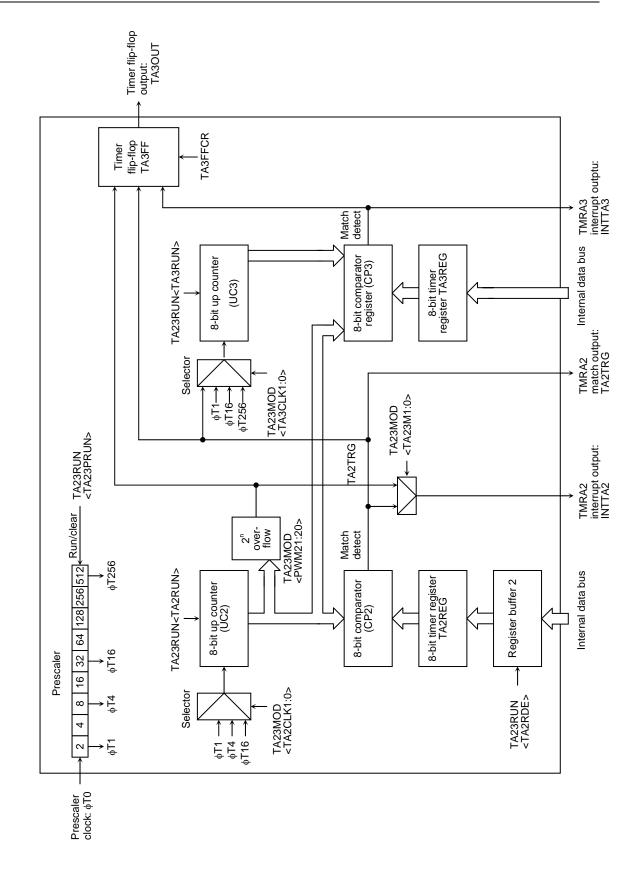


Figure 3.7.2 TMRA23 Block Diagram

3.7.2 Operation of Each Circuit

(1) Prescaler

A 9-bit prescaler generates the input clock to TMRA01.

The prescaler's operation can be controlled using TA01RUN<TA0PRUN> in the timer control register. Setting <TA0PRUN> to "1" starts the count; setting <TA0PRUN> to "0" clears the prescaler to "0" and stops operation. Table 3.7.2 shows the various prescaler output clock resolutions.

Clock gear selection SYSCR1	System clock selection SYSCR1	_	Timer counter input clock TMRA prescaler TAxMOD <taxclk1:0></taxclk1:0>					
<gear2:0></gear2:0>	<sysck></sysck>		φT1(1/2)	φT4(1/8)	φT16(1/32)	φT256(1/512)		
000 (1/1)			fc/16	fc/64	fc/256	fc/4096		
001 (1/2)			fc/32	fc/128	fc/512	fc/8192		
010 (1/4)	0 (fc)	1/8	fc/64	fc/256	fc/1024	fc/16384		
011 (1/8)			fc/128	fc/512	fc/2048	fc/32768		
100 (1/16)			fc/256	fc/1024	fc/4096	fc/65536		

Table 3.7.2 Prescaler Output Clock Resolution

(2) Up counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks ϕ T1, ϕ T4, or ϕ T16. The clock setting is specified by the value set in TA01MOD<TA01CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks ϕ T1, ϕ T16, or ϕ T256, or the comparator output (The match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset release both up counters, stopping the timers.

(3) Timer registers (TA0REG and TA1REG)

These are 8-bit registers, which can be used to set a time interval. When the value set in the timer register TA0REG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes Active. If the value set in the timer register is 00H, the signal goes active when the up counter overflows.

The TAOREG are double buffer structure, each of which makes a pair with register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = "0" and enabled if <TA0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2^n overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

A reset initializes <TA0RDE> to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TA0RDE> to "1", and write the following data to the register buffer Figure 3.7.3 show the configuration of TA0REG

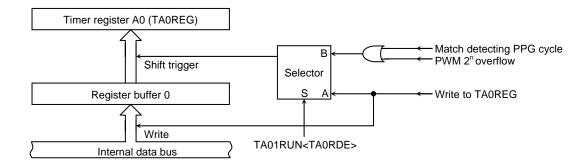


Figure 3.7.3 Timer Register A0 (TA0REG)

Note: The same memory address is allocated to the timer register and the register buffer. When <TA0RDE> = 0, the same value is written to the register buffer and the timer register; when <TA0RDE> = 1, only the register buffer is written to.

The address of each timer register is as follows.

TA0REG: 001102H TA1REG: 001103H TA2REG: 00110AH TA3REG: 00110BH

All these registers are write-only and cannot be read.

(4) Comparator (CP0)

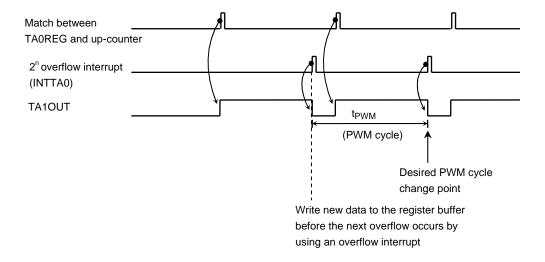
The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to 0 and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

(5) Timer flip-flop (TA1FF)

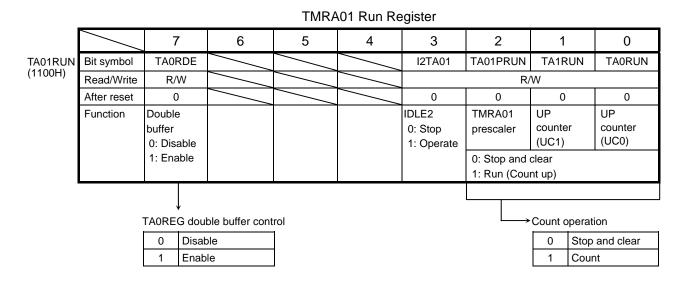
The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signal (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flops control register. A reset clears the value of TA1FF to "0". Programming "01" or "10" to TA1FFCR<TA1FFC1:0> sets TA1FF to 0 or 1. Programming "00" to these bits inverts the value of TA1FF. (This is known as software inversion.)

The TA1FF signal is output via the TA1OUT pin (which can also be used as PC1). When this pin is used as the timer output, the timer flip-flop should be set beforehand using the port C function register PCFC.


Note: When the double buffer is enabled for an 8-bit timer in PWM or PPG mode, caution is required as explained below.

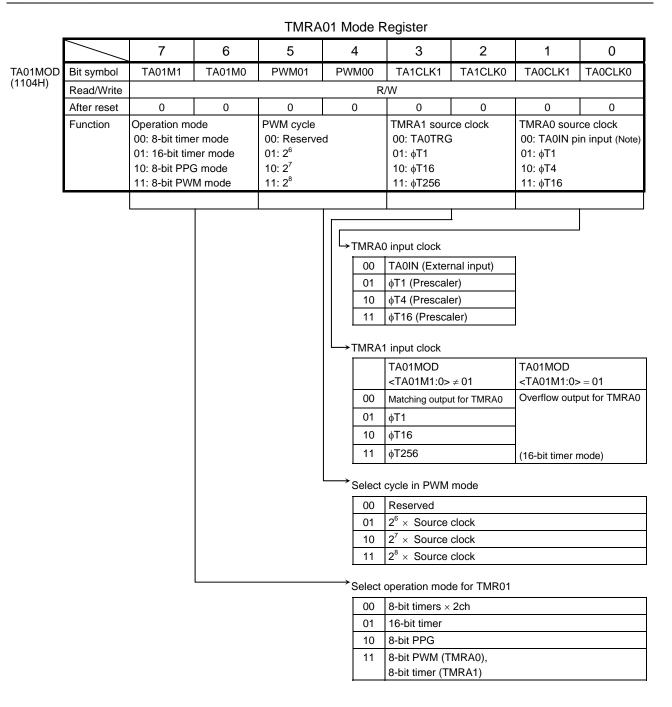
If new data is written to the register buffer immediately before an overflow occurs by a match between the timer register value and the up-counter value, the timer flip-flop may output an unexpected value.


For this reason, make sure that in PWM mode new data is written to the register buffer by six cycles ($f_{SYS} \times 6$) before the next overflow occurs by using an overflow interrupt.

When using PPG mode, make sure that new data is written to the register buffer by six cycles before the next cycle compare match occurs by using a cycle compare match interrupt.

Example when using PWM mode

3.7.3 SFRs



Note: The values of bits 4 to 6 of TA01RUN are undefined when read.

TMRA23 Run Register 7 6 5 4 0 3 2 1 TA23RUN (1108H) TA23PRUN Bit symbol TA2RDE I2TA23 TA3RUN TA2RUN Read/Write R/W R/W After reset 0 0 0 0 0 UP Function Double IDLE2 TMRA23 UP counter counter buffer 0: Stop prescaler 0: Disable (UC3) (UC2) 1: Operate 1: Enable 0: Stop and clear 1: Run (Count up) TA2REG double buffer control →Count operation Stop and clear 0 Disable Enable Count 1

Note: The values of bits 4 to 6 of TA23RUN are undefined when read.

Figure 3.7.4 Register for TMRA

Note: When set TA0IN pin, set TA01MOD after set port C.

Figure 3.7.5 Register for TMRA01

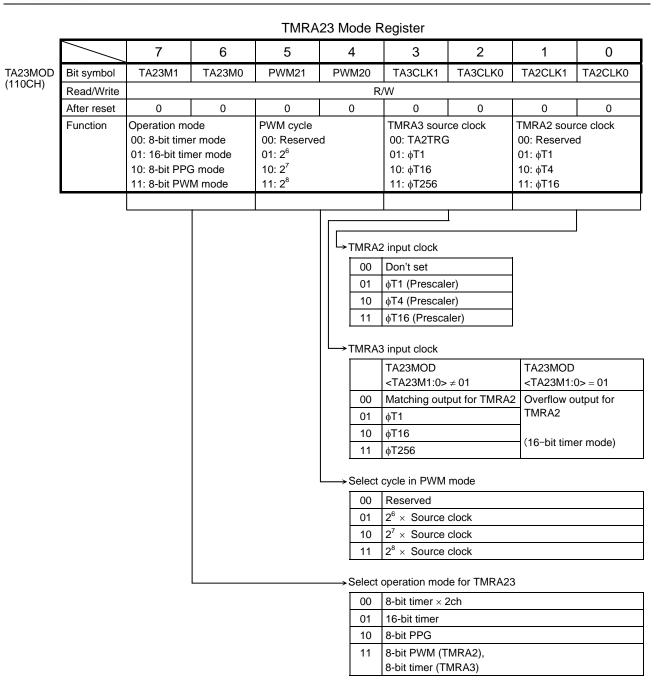


Figure 3.7.6 Register for TMRA23

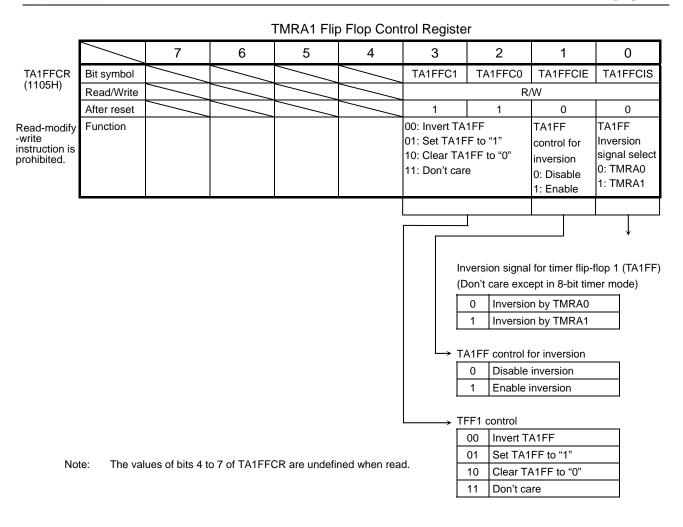


Figure 3.7.7 Register for TMRA

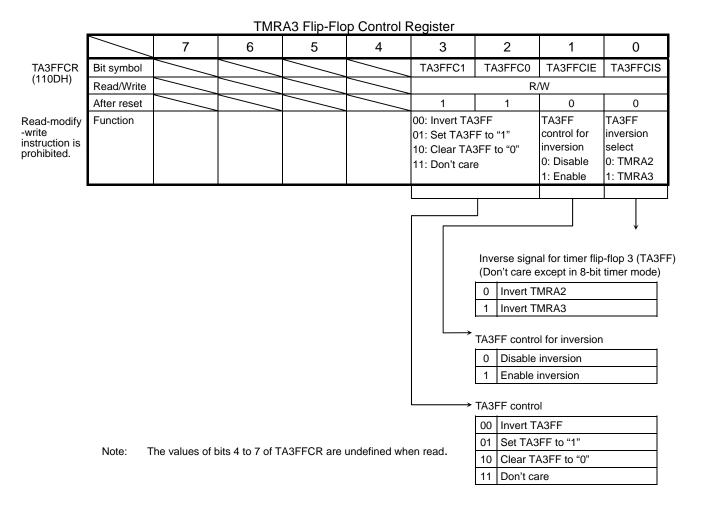


Figure 3.7.8 Register for TMRA

Timer Register (TA0REG to TA3REG)

Symbol	Address	7	6	5	4	3	2	1	0
TA0REG	1102H								
TACKEO	110211				Undef				
					_				
TA1REG	1103H				W				
					Undef	ined			
					=				
TA2REG	110AH				W				
					Undef	ined			
					-				
TA3REG	110BH				W				
					Undef	ined			

Note: Read-modify-write instruction is prohibited for above registers.

Figure 3.7.9 Register for TMRA

3.7.4 Operation in Each Mode

(1) 8-bit timer mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers.

When set function and count data, TMRA0 and TMRA1 should be stopped.

1. Generating interrupts at a fixed interval (using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every 40 μ s at f_C = 40 MHz, set each register as follows:

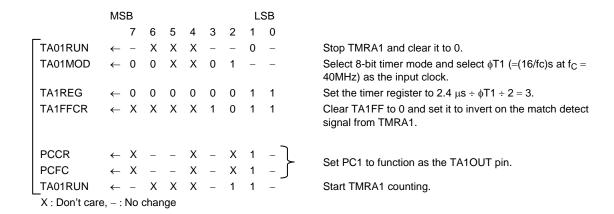
	MS	SB						L:	SB	
_		7	6	5	4	3	2	1	0	
TA01RUN	\leftarrow	_	Χ	Χ	Χ	_	_	0	_	Stop TMRA1 and clear it to 0.
TA01MOD	←	0	0	Χ	Χ	0	1	-	-	Select 8-bit timer mode and select $\phi T1$ (=(16/fc)s at $f_C=40 MHz)$ as the input clock.
TA1REG	\leftarrow	0	1	1	0	0	1	0	0	Set 40 μ s ÷ ϕ T1 = 100 = 64H to TAREG.
INTETA01	\leftarrow	Χ	1	0	1	_	_	_	_	Enable INTTA1 and set it to Level 5.
TA01RUN	\leftarrow	-	Χ	Χ	Χ	-	1	1	_	Start TMRA1 counting.
X · Don't care	٠	- : N	o ch	ange	<u>,</u>					

Select the input clock refers to Table 3.7.3.

Table 3.7.3 Selecting Interrupt Interval and the Input Clock Using 8-Bit Timer

Input clock	Interrupt Interval (at f _{SYS} = 20 MHz)	Resolution
φT1 (8/f _{SYS})	0.4 μs to 102.4 μs	0.4 μs
φT4 (32/f _{SYS})	1.6 μs to 409.6 μs	1.6 μs
φT16 (128/f _{SYS})	6.4 μs to 1.638 ms	6.4 μs
φT256 (2048/f _{SYS})	102.4 μs to 26.21 ms	102.4 μs

Note: The input clocks for TMRA0 and TMRA1 differ as follows:


TMRA0: Uses TMRA0 input (TA0IN) and can be selected from φT1, φT4, or φT16.

TMRA1: Matches output of TMRA0 (TA0TRG) and can be selected from ϕ T1, ϕ T16, ϕ T256.

2. Generating a 50% duty ratio square wave pulse

The state of the timer flip-flop (TA1FF1) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 2.4 μ s square wave pulse from the TA1OUT pin at f_C = 40 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.

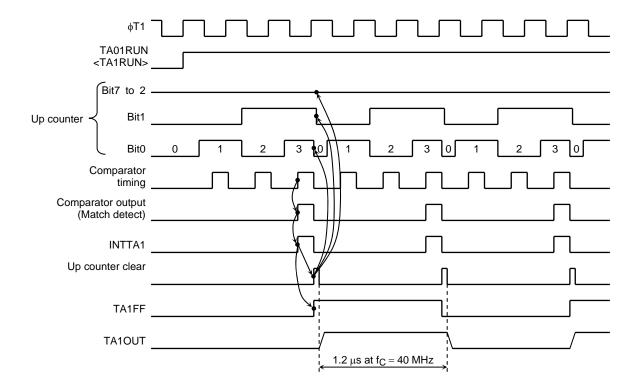


Figure 3.7.10 Square Wave Output Timing Chart (50% duty)

3. Making TMRA1 count up on the match signal from the TMRA0 comparator

Select 8-bit timer mode and set the comparator output from TMRA0 to be the input clock to TMRA1.

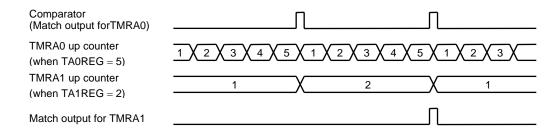


Figure 3.7.11 TMRA1 Count up on Signal from TMRA0

(2) 16-bit timer mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer, in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to 01.

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1:0>. Table 3.7.3 shows the relationship between the timer (Interrupt) cycle and the input clock selection.

To set the timer interrupt interval, set the lower eight bits in timer register TAOREG and the upper eight bits in TA1REG. Be sure to set TA0REG first (As entering data in TA0REG temporarily disables the compare, while entering data in TA1REG starts the compare).

Example: To generate an INTTA1 interrupt every 0.4 s at $f_C = 40$ MHz, set the timer registers TA0REG and TA1REG as follows:

If ϕ T16 (= (256/fc)s at f_C = 40MHz) is used as the input clock for counting, set the following value in the registers:

 $0.4 s \div (256/fc)s = 62500 = F424H;$

e.g., set TA1REG to F4H and TA0REG to 24H.

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up-counter UC0 is not cleared.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparator TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to 0 and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

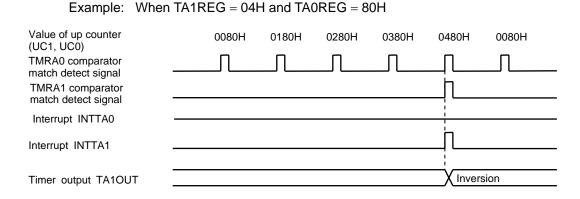


Figure 3.7.12 Timer Output by 16-Bit Timer Mode

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active-low or active-high. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin (Shared with PC1).

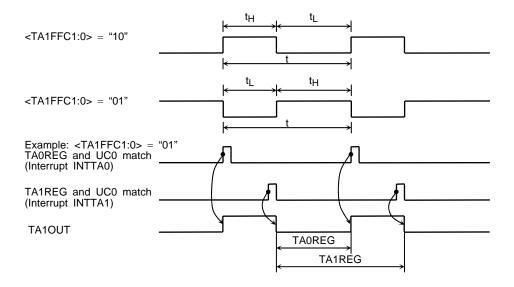


Figure 3.7.13 8-Bit PPG Output Waveforms

In this mode, a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TA0REG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode, TA01RUN<TA1RUN> should be set to "1", so that UC1 is set for counting.

Figure 3.7.14 shows a block diagram representing this mode.

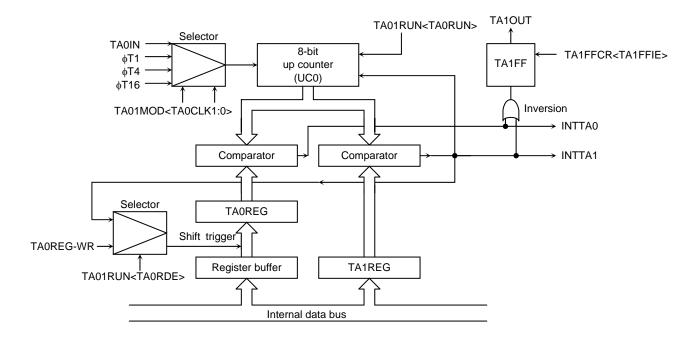


Figure 3.7.14 Block Diagram of 8-Bit PPG Output Mode

If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TA1REG matches UCO.

Use of the double buffer facilitates the handling of low-duty waves (when duty is varied).

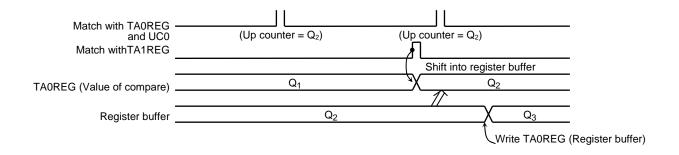
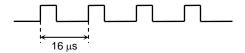
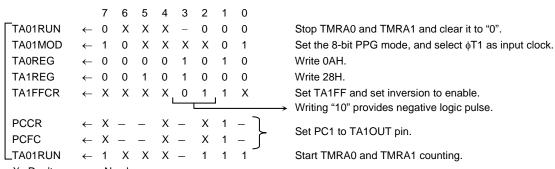



Figure 3.7.15 Operation of Register Buffer

Example: To generate 1/4 duty 62.5 kHz pulses (at f_C= 40 MHz):

Calculate the value that should be set in the timer register.

To obtain a frequency of 62.5 kHz, the pulse cycle t should be: t = 1/62.5 kHz = 16 μ s ϕ T1 (= (16/fc)s (at f_C = 40MHz);


$$16 \mu s/(16/fc)s = 40$$

Therefore set TA1REG to 40 (28H)

The duty is to be set to 1/4: $t \times 1/4 = 16 \mu s \times 1/4 = 4 \mu s$

$$4 \mu s/(16/fc)s = 10$$

Therefore, set TA0REG = 10 = 0AH

X : Don't care, -: No change

(4) 8-bit PWM (Pulse width modulation) output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as PC1). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2ⁿ counter overflow occurs (n = 6, 7, or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2ⁿ counter overflow occurs.

The following conditions must be satisfied before this PWM mode can be used.

Value set in TAOREG < Value of set for 2ⁿ counter overflow

Value set in TA0REG ≠ 0

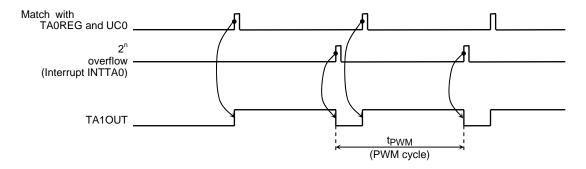


Figure 3.7.16 8-Bit Output Wave Form

Figure 3.7.17 shows a block diagram representing this mode.

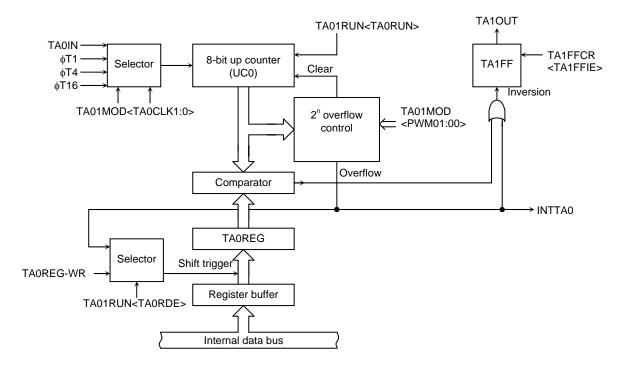


Figure 3.7.17 Block Diagram of 8-Bit PWM Output Mode

In this mode, the value of the register buffer will be shifted into TA0REG if 2^n overflow is detected when the TA0REG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

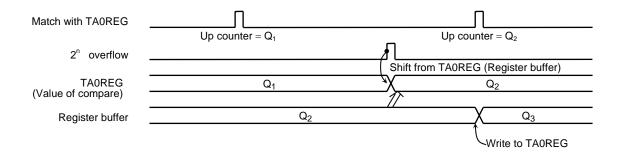
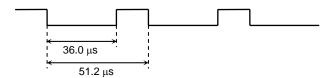



Figure 3.7.18 Operation of Register Buffer

Example: To output the following PWM waves on the TA1OUT pin at $f_C = 40$ MHz:

To achieve a 51.2 μ s PWM cycle by setting ϕ T1=(16/fc)s (at f_C = 40 MHz):

51.2
$$\mu$$
s/(16/fc)s = 128 = 2ⁿ

Therefore n should be set to 7.

Since the low-level period is 36.0 μ s when ϕ T1 = (16/fc)s,

set the following value for TA0REG:

$$36.0 \ \mu s/(16/fc)s = 90 = 5AH$$

	MSB						L	SB	
	7	6	5	4	3	2	1	0	
TA01RUN	← -	Χ	Χ	Χ	_	_	_	0	Stop TMRA0 and clear it to 0.
TA01MOD	← 1	1	1	0	_	-	0	1	Select 8-bit PWM mode (cycle: 2^7) and select $\phi T1$ as the input clock.
TA0REG	← 0	1	0	1	1	0	1	0	Write 5AH.
TA1FFCR	← X	Χ	Χ	Χ	1	0	1	Χ	Clear TA1FF to 0; set inversion to enable.
PCCR PCFC	← X ← X	_ :	_ _	X X	_	X X	1	- -	Set PC1 to TA1OUT pin.
_TA01RUN									Start TMRA0 counting.
X : Don't care	e, – : No d	chang	ge						

92CM22-118 2007-02-16

Table 3.7.4 Relationship of PWM Cycle and 2ⁿ Counter

Clock gear	System clock			PWM cycle TAxxMOD <pwmx1:0></pwmx1:0>								
SYSCR1	SYSCR0	_	2 ⁶ (x64)			2 ⁷ (x128)			2 ⁸ (x256)			
<gear2:0></gear2:0>	<sysck></sysck>		TAxx	MOD <taxc< td=""><td>LK1:0></td><td colspan="3">TAxxMOD<taxclk1:0></taxclk1:0></td><td colspan="3">TAxxMOD<taxclk1:0></taxclk1:0></td></taxc<>	LK1:0>	TAxxMOD <taxclk1:0></taxclk1:0>			TAxxMOD <taxclk1:0></taxclk1:0>			
			φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	
000(x1)			1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	
001(x2)			2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	
010(x4)	0(fc)	×8	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	
011(x8)			8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc	
100(x16)			16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc	65536/fc	262144/fc	1048576/fc	

(5) Mode settings

Table 3.7.5 shows the SFR settings for each mode.

Table 3.7.5 Timer Mode Setting Registers

Register Name		TAC	1MOD		TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	<ta1ffis></ta1ffis>
Function	Timer mode	PWM cycle	Upper timer input clock	Lower timer input clock	Timer F/F inversion select
8-bit timer × 2 channels	00	-	Lower timer match, \$\phi T1\$, \$\phi T16\$, \$\phi T256\$ (00, 01, 10, 11)	External \$\phi T1, \$\phi T4, \$\phi T16\$ (00, 01, 10, 11)	0: Lower timer output 1: Upper timer output
16-bit timer mode	01	-	_	External	-
8-bit PPG × 1 channel	10	_	_	External	_
8-bit PWM × 1 channel	11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	_	External	_
8-bit timer × 1 channel	11	-	φT1, φT16, φT256 (01, 10, 11)	_	Output disable

-: Don't care

3.8 16-Bit Timer/Event Counters (TMRB)

The TMP92CM22 contains 2 channels 16-bit timer/event counter (TMRB) which have the following operation modes:

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)

Can be used following operation modes by capture function:

- Frequency measurement mode
- Pulse width measurement mode
- Time differential measurement mode

Figure 3.8.1 to Figure 3.8.2 show block diagram of TMRB0 and TMRB1. Each timer/event counter consists of a 16-bit up counter, two 16-bit timer registers (One of them with a double-buffer structure), two 16-bit capture registers, two comparators, a capture input controller, a timer flip-flop and a control circuit.

Each timer/event counter is controlled by 11-byte control register (SFR).

This chapter consists of the following items:

- 3.8.1 Block diagram
- 3.8.2 Operation
- 3.8.3 SFRs
- 3.8.4 Operation in Each Mode
 - (1) 16-bit interval timer mode
 - (2) 16-bit event/counter mode
 - (3) 16-bit programmable pulse generation (PPG) output mode
 - (4) Capture function examples

Table 3.8.1 Pins and SFR of TMRB

Spec	Channel	TMRB0	TMRB1
External nin	External clock/ Caputre triggr input pin	None	TB1IN0 (Share with PD0) TB1IN1 (Share with PD1)
External pin	Timer flip-flop output pin	TB0OUT0 (Share with PC6)	TB1OUT0 (Share with PD2) TB1OUT1 (Share with PD3)
	Timre run register	TB0RUN (1180H)	TB1RUN (1190H)
	Timrer mode register	TB0MOD (1182H)	TB1MOD (1192H)
	Timre flip-flop control register	TB0FFCR (1183H)	TB1FFCR (1193H)
		TB0RG0L (1188H)	TB1RG0L (1198H)
SFR	Timer register	TB0RG0H (1189H)	TB1RG0H (1199H)
(Address)	Timer register	TB0RG1L (118AH)	TB1RG1L (119AH)
(/ taarees)		TB0RG1H (118BH)	TB1RG1H (119BH)
		TB0CP0L (118CH)	TB1CP0L (119CH)
	Capture register	TB0CP0H (118DH)	TB1CP0H (119DH)
	Capture register	TB0CP1L (118EH)	TB1CP1L (119EH)
		TB0CP1H (118FH)	TB1CP1H (119FH)

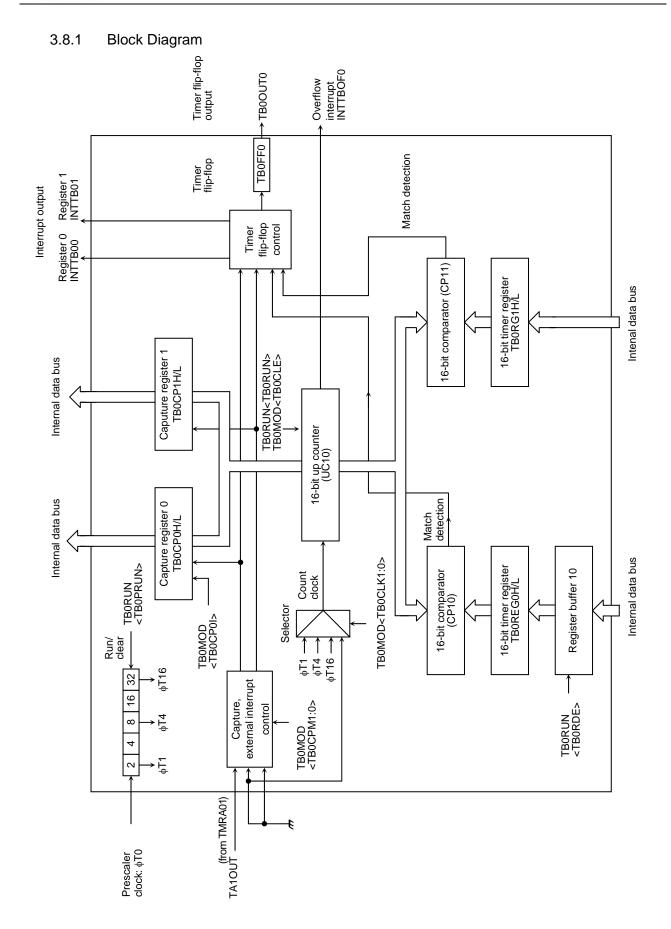


Figure 3.8.1 Block Diagram of TMRB0

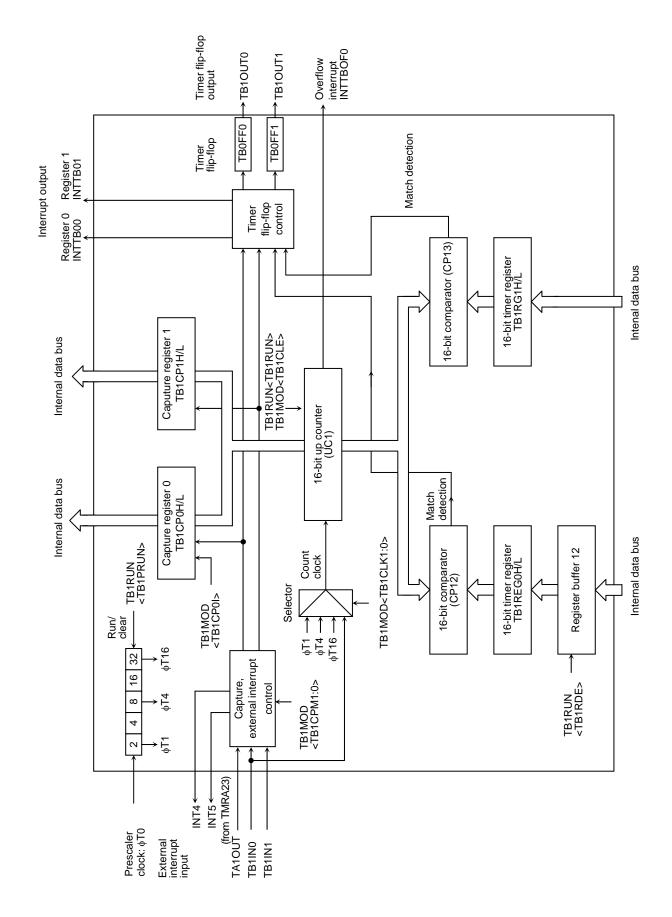


Figure 3.8.2 Block Diagram of TMRB1

3.8.2 Operation

(1) Prescaler

The 5-bit prescaler generates the source clock for TMRB0. The prescaler clock (ϕ T0) is a divided clock (Divided by 8) from selected clock by the register SYSCR1<GEAR1:0> of clock gear.

This prescaler can be started or stopped using TB0RUN<TB0PRUN>. Counting starts when <TB0PRUN> is set to 1; the prescaler is cleared to zero and stops operation when <TB0PRUN> is cleared to 0.

Table 3.8.2 show prescaler output clock resolution.

Clock gear		Time	r counter input	clock
selection		٦ -	TMRB prescale	r
SYSCR1	_	TB0	MOD <tb0clk< td=""><td>1:0></td></tb0clk<>	1:0>
<gear2:0></gear2:0>		φT1(1/2)	φT4 (1/8)	φT16 (1/32)
000 (1/1)		fc/16	fc/64	fc/256
001 (1/2)		fc/32	fc/128	fc/512
010 (1/4)	1/8	fc/64	fc/256	fc/1024
011 (1/8)		fc/128	fc/512	fc/2048
100 (1/16)		fc/256	fc/1024	fc/4096

Table 3.8.2 Prescaler Output Clock Resolution

(2) Up counter (UC10)

UC10 is a 16-bit binary counter that counts up according to input from the clock specified by TB0MOD<TB0CLK1:0> register.

As the input clock, one of the prescaler internal clocks $\phi T1$, $\phi T4$, and $\phi T16$ can be selected. Counting or stopping and clearing of the counter is controlled by timer operation control register TB0RUN<TB0RUN>. And an external clock from TB1IN0 pin can be selected in TB1MOD.

When clearing is enabled, the up counter UC10 will be cleared to zero each time its value matches the value in the timer register TB0RG1H/L. Clearing can be enabled or disabled using TB0MOD<TB0CLE>.

If clearing is disabled, the counter operates as a free-running counter.

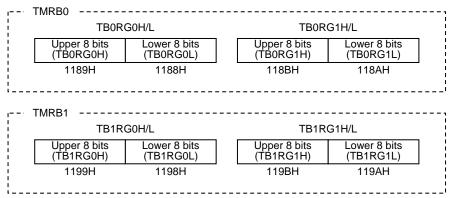
A timer overflow interrupt (INTTBOF0) is generated when UC10 overflow occurs.

(3) Timer registers (TB0RG0H/L and TB0RG1H/L)

These two 16-bit registers are used to set the interval time. When the value in the up counter UC10 matches the value set in this timer register, the comparator match detect signal will go active.

Setting data for both upper and lower timer registers TB0RG0H/L and TB0RG1H/L is always needed. For example, either using 2-byte data transfer instruction or using 1-byte data transfer instruction twice for lower 8 bits and upper 8 bits in order.

The TB0RG0H/L timer register has a double-buffer structure, which is paired with register buffer 10. The value set in TB0RUN<TB0RDE> determines whether the double-buffer structure is enabled or disabled: It is disabled when <TB0RDE> = 0, and enabled when <TB0RDE> = 1.

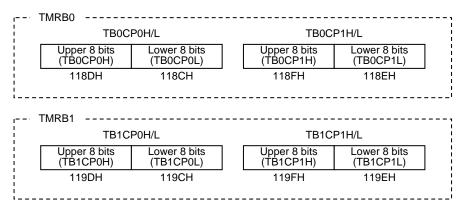

When the double buffer is enabled, data is transferred from the register buffer to the timer register when the values in the up counter (UC10) and the timer register TB0RG1H/L match.

After a reset, TB0RG0H/L and TB0RG1H/L are undefined. If the 16-bit timer is to be used after a reset, data should be written to it beforehand.

On a reset <TB0RDE> is initialized to 0, disabling the double buffer. To use the double buffer, write data to the timer register, set <TB0RDE> to 1, then write data to the register buffer as shown below.

TB0RG0H/L and the register buffer both have the same memory addresses (001188H and 001189H) allocated to them. If <TB0RDE> = 0, the value is written to both the timer register and the register buffer. If <TB0RDE> = 1, the value is written to the register buffer only.

The addresses of the timer registers are as follows:


The timer registers are write-only registers and thus cannot be read.

(4) Capture registers (TB0CP0H/L, TB0CP1H/L, TB1CP0H/L and TB1CP1H/L)

These 16-bit registers are used to latch the values in the up counters UC10.

Data in the capture registers should be read both upper and lower all 16 bits. For example, using 2-byte data transfer instruction or using 1-byte data transfer instruction twice for lower 8 bits and upper 8 bits in order.

The addresses of the capture registers are as follows:

The capture registers are read-only registers and thus cannot be written.

(5) Capture and external interrupt control

This circuit controls the timing to latch the value of up counter UC10 into TB0CP0H/L, TB0CP1H/L and generating for external interrupt.

Interrupt timing of capture register and selection edge of external interrupt are set by TB0MOD<TB0CPM1:0>. (TMRB0 does not include the selection edge of external interrupt.) External interrupt INT5 is fixed to rising edge.

The value in the up counter (UC10) can be loaded into a capture register by software. Whenever 0 is programmed to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0. It is necessary to keep the prescaler in Run mode (e.g., TB0RUN<TB0PRUN> must be held at a value of 1).

(6) Comparators (CP10 and CP11)

CP10 and CP11 are 16-bit comparators which compare the value in the up counter UC10 with the value set in TB0RG0H/L or TB0RG1H/L respectively, in order to detect a match. If a match is detected, the comparator generates an interrupt (INTTB00 or INTTB01 respectively).

(7) Timer flip-flop (TB0FF0 and TB0FF1)

These flip-flops (TB0FF0 and TB0FF1) are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using TB0FFCR<TB0C0T1, TB0E1T1, TB0E0T1>.

After a reset the values of TB0FF0 and TB0FF1 are undefined. If "00" is programmed to TB0FFCR<TB0FF0C1:0> or <TB0FF1C1:0>, TB0FF0 will be inverted. If "01" is programmed to the capture registers, the value of TB0FF0 will be set to "1". If "10" is programmed to the capture registers, the value of TB0FF0 will be cleared to "0".

The values of TB0FF0 can be output via the timer output pins TB0OUT0 (which is shared with PC6). Timer output should be specified using the port C function register.

3.8.3 SFRs

TMRB0 Run Register

TB0RUN (1180H)

	7	6	5	4	3	2	1	0
Bit symbol	TB0RDE	-			I2TB0	TB0PRUN		TB0RUN
Read/Write	R/	W			R	W		R/W
After reset	0	0			0	0		0
Function	Double buffer	Always write "0".			IDLE2 0: Stop	TMRB0 Prescaler		Up counter UC10
	0: Disable 1: Enable				1: Operate	0: Stop and 1: Run (Cou		
		•	•	•	•			

→ Count operation

0	Stop and clear
1	Count

Note: The values of bits 1, 4, and 5 of TB0RUN are undefined when read.

TMRB1 Run Register

TB1RUN (1190H)

	7	6	5	4	3	2	1	0
Bit symbol	TB1RDE	-			I2TB1	TB1PRUN		TB1RUN
Read/Write	R/	W			R	2/W		R/W
After reset	0	0			0	0		0
Function	Double buffer	Always write "0".			IDLE2 0: Stop	TMRB1 Prescaler		Up counter UC12
	0: Disable 1: Enable				1: Operate	0: Stop and of 1: Run (Cour		
	•	•	•	•			•	

→Count operation

0 Stop and clear1 Count

Note: The values of bits 1, 4, and 5 of TB1RUN are undefined when read.

Figure 3.8.3 Register for TMRB

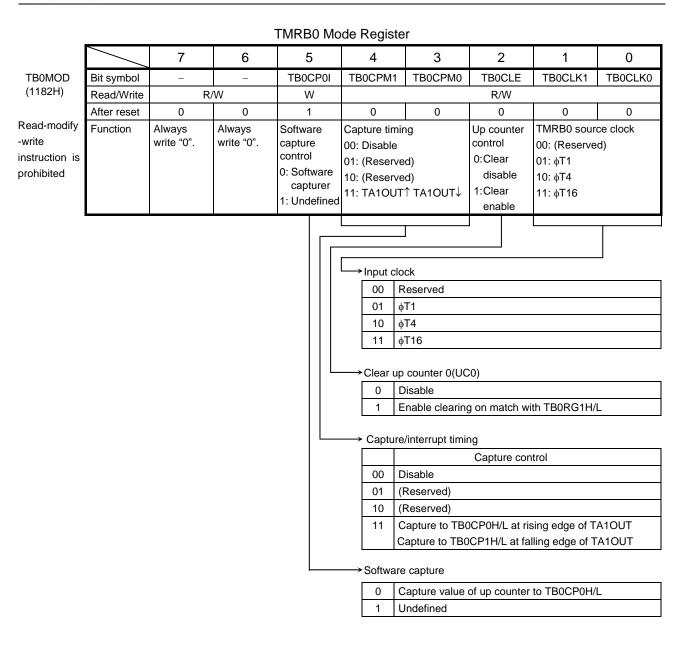


Figure 3.8.4 Register for TMRB

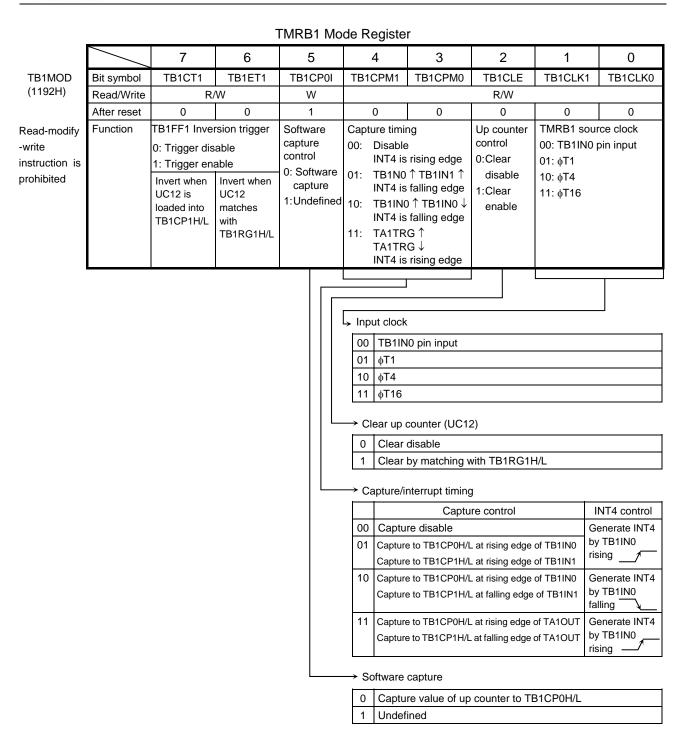


Figure 3.8.5 Register for TMRB

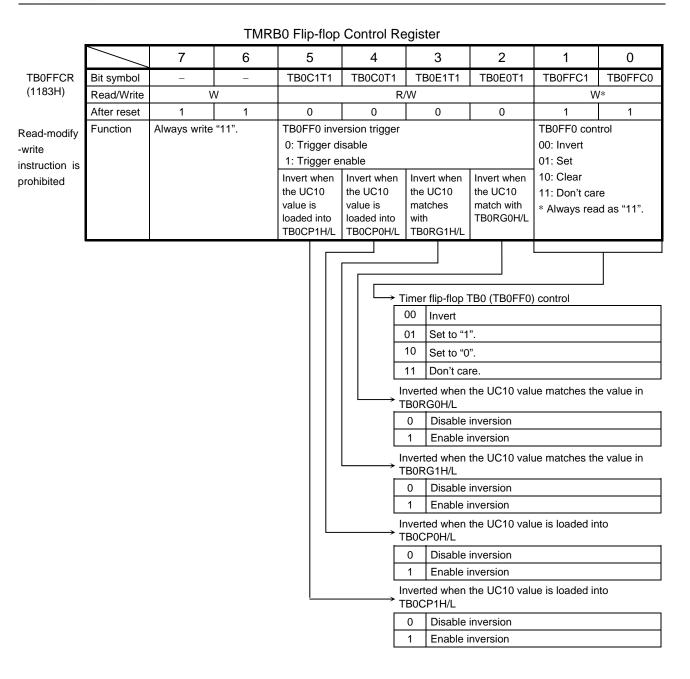


Figure 3.8.6 Register for TMRB

2007-02-16

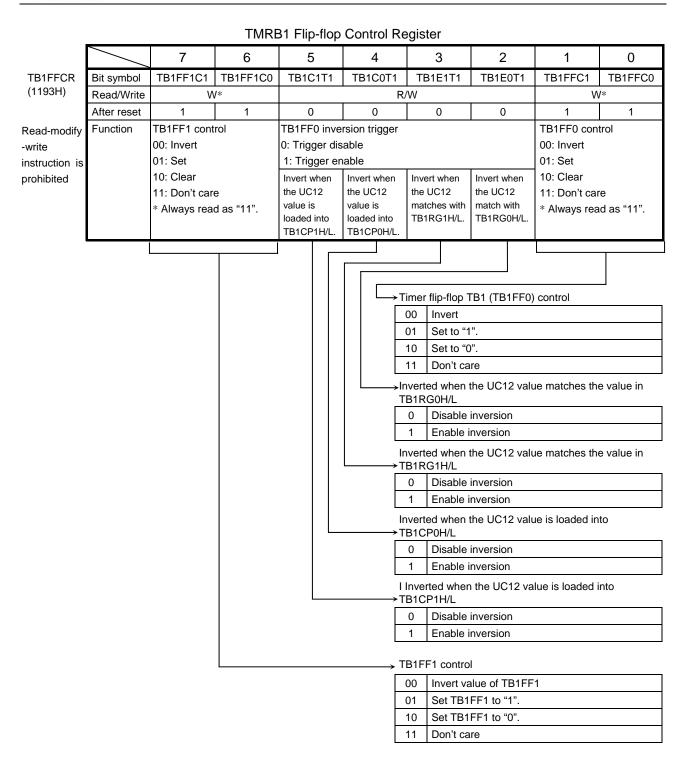


Figure 3.8.7 Register for TMRB

				I IVIE	RB0 registe	r			
		7	6	5	4	3	2	1	0
TB0RG0L	bit Symbol				_	-			
(1188H)	Read/Write				V	I			
	After reset				Unde	fined			
TB0RG0H	bit Symbol				-	-			
(1189H)	Read/Write				V	1			
	After reset				Unde	fined			
TB0RG1L	bit Symbol				_	-			
(118AH)	Read/Write				V				
	After reset				Unde	fined			
TB0RG1H	bit Symbol				_	-			
(118BH)	Read/Write				V				
	After reset				Unde	fined			
TB0CP0L	bit Symbol					-			
(118CH)	Read/Write				V				
	After reset				Unde	fined			
TB0CP0H	bit Symbol				_				
(118DH)	Read/Write				V				
	After reset				Unde	fined			
TB0CP1L	bit Symbol				_	-			
(118EH)	Read/Write				V				
	After reset				Unde	fined			
TB0CP1H (118FH)	bit Symbol								
(погп)	Read/Write								
	After reset				Unde				
				TN/15					
ı					RB1 registe				
		7	6	5	RB1 registe	er 3	2	1	0
TB1RG0L	bit Symbol	7	6		1		2	1	0
TB1RG0L (1198H)	Read/Write	7	6		4	3	2	1	0
	Read/Write After reset	7	6		4	3	2	1	0
(1198H) TB1RG0H	Read/Write After reset bit Symbol	7	6		4 - W Unde	3 / fined	2	1	0
(1198H)	Read/Write After reset bit Symbol Read/Write	7	6		4 - W Unde	3 / / fined	2	1	0
(1198H) TB1RG0H (1199H)	Read/Write After reset bit Symbol Read/Write After reset	7	6		4 - W Unde	3 / / fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L	Read/Write After reset bit Symbol Read/Write After reset bit Symbol	7	6		4	3 // fined // fined	2	1	0
(1198H) TB1RG0H (1199H)	Read/Write After reset bit Symbol Read/Write After reset bit Symbol Read/Write	7	6		4 Unde	3 // fined // fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L (119AH)	Read/Write After reset bit Symbol Read/Write After reset bit Symbol Read/Write After reset	7	6		4 Unde W Unde W Unde Unde	3 // fined // fined // fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H	Read/Write After reset bit Symbol Read/Write After reset bit Symbol Read/Write After reset bit Symbol	7	6		4	3 // fined // fined // fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L (119AH)	Read/Write After reset bit Symbol Read/Write	7	6		4 Unde Unde Unde Unde	3 // fined // fined // fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH)	Read/Write After reset bit Symbol Read/Write After reset	7	6		4	3 // fined // fined // fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L	Read/Write After reset bit Symbol	7	6		4 Unde Unde Unde Unde Unde	3 // fined // fined // fined // fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH)	Read/Write After reset bit Symbol Read/Write	7	6		4 Unde Unde Unde Unde Unde	3 // fined // fined // fined // fined // fined	2	1	0
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH)	Read/Write After reset bit Symbol Read/Write After reset	7	6		4 Unde Unde Unde Unde Unde Unde Unde Unde	3 // fined // fined // fined // fined // fined // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH)	Read/Write After reset bit Symbol Read/Write bit Symbol Read/Write After reset bit Symbol	7	6		4 Unde Unde Unde Unde Unde Unde Unde	3 // fined // fined // fined // fined // fined // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH)	Read/Write After reset bit Symbol Read/Write	7	6		4 Unde Unde Unde Unde Unde Unde	3 // fined // fined // fined // fined // fined // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH) TB1CP0H (119DH)	Read/Write After reset bit Symbol Read/Write After reset	7	6		4 Unde Unde Unde Unde Unde Unde Unde	3 // fined // fined // fined // fined // fined // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH) TB1CP0H (119DH)	Read/Write After reset bit Symbol Read/Write bit Symbol	7	6		4 Unde Unde Unde Unde Unde Unde Unde Unde	3 // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH) TB1CP0H (119DH)	Read/Write After reset bit Symbol Read/Write bit Symbol Read/Write After reset bit Symbol Read/Write After reset bit Symbol Read/Write After reset	7	6		4 Unde Unde Unde Unde Unde Unde Unde Unde	3 // fined // fined // fined // fined // fined // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH) TB1CP0H (119DH) TB1CP1L (119EH)	Read/Write After reset bit Symbol Read/Write After reset	7	6		4 Unde Unde Unde Unde Unde Unde Unde Unde	3 // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH) TB1CP0H (119DH)	Read/Write After reset bit Symbol	7	6		4 Unde Unde Unde Unde Unde Unde Unde Unde	3 // fined	2	1	
(1198H) TB1RG0H (1199H) TB1RG1L (119AH) TB1RG1H (119BH) TB1CP0L (119CH) TB1CP0H (119DH) TB1CP1L (119EH)	Read/Write After reset bit Symbol Read/Write After reset	7	6		4 Unde Unde Unde Unde Unde Unde Unde Unde	3 // fined // fined	2		

Note: All registers are prohibited to execute read-modify-write instruction.

Figure 3.8.8 Register for TMRB

3.8.4 Operation in Each Mode

(1) 16-bit interval timer mode

Generating interrupts at fixed intervals in this example, the interval time is set the timer register TB0RG1H/L to generate the interrupt INTTB01.

```
7 6 5 4 3 2 1 0
TB0RUN
            \leftarrow 0 0 X X - 0 X 0
                                                 Stop TMRB0.
INTETB0
                                                 Enable INTTB01 and set interrupt level 4. Disable
            ← X 1 0 0 X 0 0 0
                                                 INTTB00.
TB0FFCR
           \leftarrow 1 1 0 0 0 0 1 1
                                                 Disable the trigger.
TB0MOD
            ← 0 0 1 0 0 1 * *
                                                 Set input clock to prescaler clock, and set capture function
                                                 to disable.
                           (** = 01, 10, 11)
TB0RG1
                                                 Set the interval time.
                                                 (16 bits)
TB0RUN
            \leftarrow 0 0 X X - 1 X 1
                                                 Start TMRB0.
```

X : Don't care, -: No change

(2) 16-bit event counter mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TB1IN0 pin input) as the input clock.

Up counter counting up by rising edge of TB1IN0 pin input. And execution software capture and reading capture value enable reading count value.

```
7 6 5 4 3 2 1 0
TB1RUN
           \leftarrow 0 0 X X - 0 X 0
                                                Stop TMRB1.
PDCR
           \leftarrow X X X X - - - 0
                                                Set PD0 to TB1IN0 input mode.
PDFC
           ← X X X X - - - 1
INTETB1
           ← X 1 0 0 X 0 0 0
                                                Set INTTB11 to enable (Interrupt level4).
                                                Set INTTB00 to disable.
TB1FFCR
           \leftarrow 1 1 0 0 0 0 1 1
                                                Set trigger to disable.
           \leftarrow 0 0 1 0 0 1 0 0
TR1MOD
                                                Set input clock to TB1IN0 pin input.
TB1RG1
                                                Set number of count.
                                                (16 bits)
TB1RUN
           \leftarrow 0 0 X X - 1 X 1
                                                Start TMRB1.
```

X: Don't care, -: No change

Note: When used as an event counter, set the prescaler to "RUN" (TB1RUN<TB1PRUN> = "1").

(3) 16-bit programmable pulse generation (PPG) output mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip-flop TB0FF0 that is to be enabled by the match of the up counter UC10 with timer register TB0RG0H/L or TB0RG1H/L and to be output to TB0OUT0. In this mode, the following conditions must be satisfied.

(Set value of TB0RG0H/L) < (Set value of TB0RG1H/L)

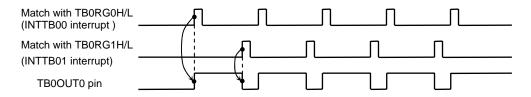


Figure 3.8.9 Programmable Pulse Generation (PPG) Output Waveforms

When the TB0RG0H/L double buffer is enabled in this mode, the value of register buffer 10 will be shifted into TB0RG0H/L at match with TB0RG1H/L. This feature makes easy the handling of low-duty waves.

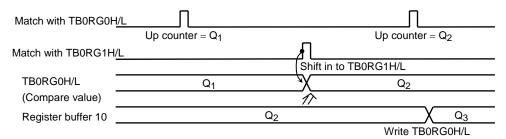


Figure 3.8.10 Operation of Register Buffer

The following block diagram illustrates this mode.

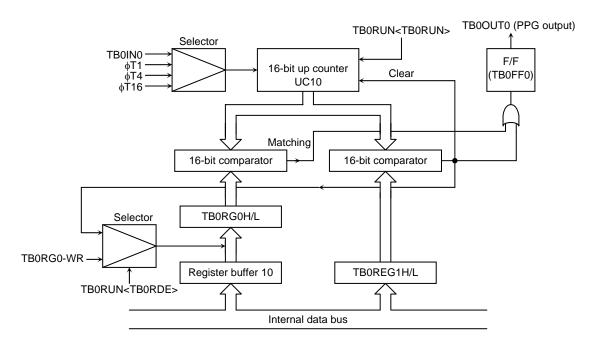


Figure 3.8.11 Block Diagram of 16-Bit PPG Mode

The following example shows how to set 16-bit PPG output mode:

```
7 6 5 4 3 2 1 0
TB0RUN
                                                  Disable the TB0RG0H/L double buffer and stop TMRB0.
TB0RG0H/L
                                                  Set the duty ratio.
                                                  (16 bits)
TB0RG1H/L
                                                  Set the frequency.
                                                  (16 bits)
TB0RUN
                                                  Enable the TB0RG0 double buffer.
                     XX
                              0 X 0
                                                  (The duty and frequency are changed on an INTTB01
                                                  interrupt.)
TB0FFCR
            \leftarrow X X 0 0 1 1 1 0
                                                  Set the mode to invert TB0FF0 at the match with
                                                  TB0RG0H/L/TB0RG1H?L. Clear TB0FF0 to 0.
            ← 0 0 1 0 0 1 * *
                                                  Set input clock to prescaler output clock and disable the
TB0MOD
                                                  capture function.
                            (** = 01, 10, 11)
PCCR
                                                  Set PC6 to function as TB0OUT0.
PCFC
               X 1 - X - X -
TB0RUN
            \leftarrow 1 0 X X - 1 X 1
                                                  Start TMRB0.
X: Don't care, -: No change
```

92CM22-135

(4) Capture function examples

Used capture function, they can be applicable in many ways, for example:

- 1. One-shot pulse output from external trigger pulse
- 2. Frequency measurement
- 3. Pulse width measurement
- 4. Measurement of difference time

One-shot pulse output from external trigger pulse

Set the up counter UC12 in free-running mode with the internal input clock, input the external trigger pulse from TB1IN0 pin, and load the value of up counter into capture register TB1CP0H/L at the rise edge of external trigger pulse.

When the interrupt INT4 is generated at the rise edge of external trigger pulse, set the TB1CP0H/L value (c) plus a delay time (d) to TB1RG0H/L (= c + d), and set the above set value (c + d) plus a one-shot width (p) to TB1RG1H/L (= c + d + p). And, set "11" to timer flip-flop control register TB1FFCR<TB1E1T1, TB1E0T1>. Set to trigger enable for be inverted timer flip-flop TB1FF0 by UC12 matching with TB1RG0H/L and with TB1RG1H/L. When interrupt INTTB11 occurs, this inversion will be disabled after one-shot pulse is output.

The (c), (d), and (p) correspond to c, d, and p in Figure 3.8.12.

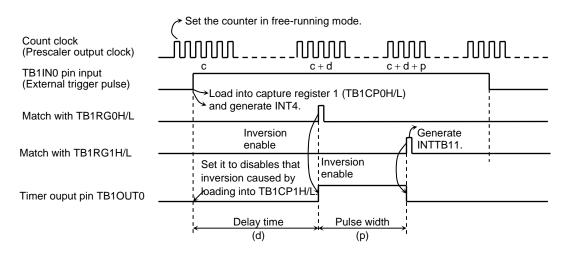



Figure 3.8.12 One-shot Pulse Output (with delay)

Example: To output a 2 [ms] one-shot pulse with a 3 [ms] delay to the external trigger pulse via the TB1IN0 pin.

When delay time is unnecessary, invert timer flip-flop TB1FF0 when up counter value is loaded into capture register (TB1CP0H/L), and set the TB1CP0H/L value (c) plus the one-shot pulse width (p) to TB0RG1H/L when the interrupt INT4 occurs. The TB1FF0 inversion should be enable when the up counter (UC12) value matches TB1RG1H/L, and disabled when generating the interrupt INTTB11.

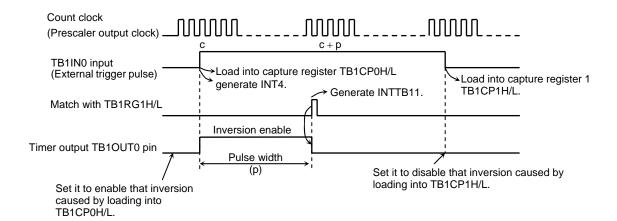


Figure 3.8.13 One-shot Pulse Output (without delay)

Frequency measurement

The frequency of the external clock can be measured in this mode. Frequency is measured by the 8-bit timers TMRA23 and the 16-bit timer/event counter.

TMRA23 is used to setting of measurement time by inversion TA3FF.

Counter clock in TMRB0 select TB1IN0 pin input, and count by external clock input. Set to TB1MOD<TB1CPM1:0> = "11". The value of the up counter (UC12) is loaded into the capture register TB0CP0H/L at the rise edge of the timer flip-flop TA1FF of 8-bit timers (TMRA1), and into TB0CP1H/L at its fall edge.

The frequency is calculated by difference between the loaded values in TB1CP0H/L and TB1CP1H/L when the interrupt (INTTA2 or INTTA3) is generates by either 8-bit timer.

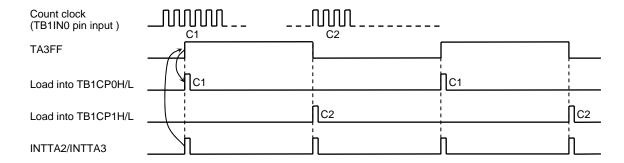


Figure 3.8.14 Frequency Measurement

For example, if the value for the level 1 width of TA3FF of the 8-bit timer is set to 0.5 s and the difference between the values in TB1CP0H/L and TB1CP1H/L is 100, the frequency is $100 \div 0.5 \text{ s} = 200 \text{ Hz}$.

3. Pulse width measurement

This mode allows measuring the high level width of an external pulse. While keeping the 16-bit timer/event counter counting (Free running) with the prescaler output clock input, external pulse is input through the TB1IN0 pin. Then the capture function is used to load the UC12 values into TB1CP0H/L and TB1CP1H/L at the rising edge and falling edge of the external trigger pulse respectively. The interrupt INT4 occurs at the falling edge of TB1IN0.

The pulse width is obtained from the difference between the values of TB1CP0H/L and TB1CP1H/L and the internal clock cycle.

For example, if the prescaler output clock is 0.8 μs and the difference between TB1CP0H/L and TB1CP1H/L is 100, the pulse width will be $100 \times 0.8 \ \mu s = 80 \ \mu s$.

Additionally, the pulse width that is over the UC12 maximum count time specified by the clock source can be measured by changing software.

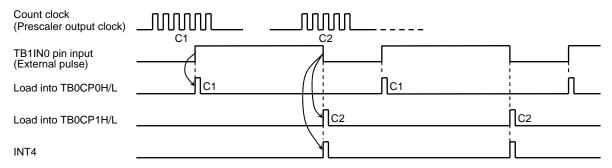


Figure 3.8.15 Pulse Width Measurement

Note: Pulse Width measure by setting "10" to TB1MOD<TB1CPM1:0>. The external interrupt INT4 is generated in timing of falling edge of TB1IN0 input. In other modes, it is generated in timing of rising edge of TB1IN0 input.

The width of low level can be measured from the difference between the first C2 and the second C1 at the second INT4 interrupt.

4. Measurement of difference time

This mode is used to measure the difference in time between the rising edges of external pulses input through TB1IN0 and TB1IN1.

Keep the 16-bit timer/event counter (TMRB1) counting (Free running) with the prescaler output clock, and load the UC12 value into TB1CP0H/L at the rising edge of the input pulse to TB1IN0. Then the interrupt INT4 is generated.

Similarly, the UC012 value is loaded into TB1CP1H/L at the rising edge of the input pulse to TB1IN1, generating the interrupt INT5.

The time difference between these pulses can be obtained by multiplying the value subtracted TB1CP0H/L from TB1CP1H/L and the internal clock cycle together at which loading the UC12 value into TB1CP0H/L and TB1CP1H/L has been done.

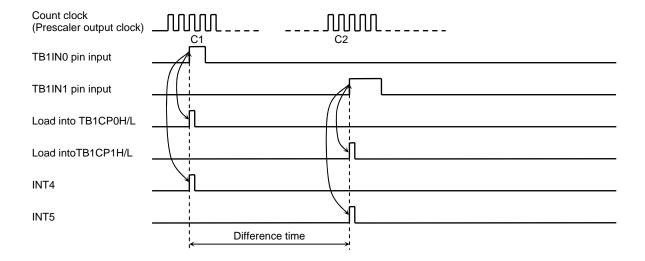


Figure 3.8.16 Measurement of Difference Time

3.9 Serial Channels (SIO)

The TMP92CM22 includes 2 serial I/O channels. Each channel is called SIO0 and SIO1. For both channels either UART Mode (Asynchronous transmission) or I/O interface mode (Synchronous transmission) can be selected.

• I/O interface mode — Mode 0: For transmitting and receiving I/O data using the synchronizing signal SCLK for extending I/O.

Mode 1: 7-bit data
 Mode 2: 8-bit data
 Mode 3: 9-bit data

In mode 1 and mode 2 a parity bit can be added. Mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (Multi-controller system).

Figure 3.9.2 and Figure 3.9.3 are block diagrams for each channel. Each channel is structured in prescaler, serial clock generation circuit, receiving buffer and control circuit, and transfer buffer and control circuit.

Serial channels 0 and 1 can be used independently.

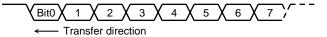
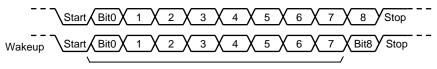

Both channels operate in the same function except for the following points; hence only the operation of channel 0 is explained below.

Table 3.9.1 Differences between Channels 0 to 1

This chapter contains the following sections:

- 3.9.1 Block Diagram
- 3.9.2 Operation of Each Circuit
- 3.9.3 SFRs
- 3.9.4 Operation in Each Mode
- 3.9.5 Support for IrDA Mode

• Mode 0 (I/O interface mode)


• Mode 1 (7-bit UART mode)

• Mode 2 (8-bit UART mode)

• Mode 3 (9-bit UART mode)

If bit8=1, denoted address (Select code). If bit8=0, denoted data.

Figure 3.9.1 Data Format

3.9.1 Block Diagram

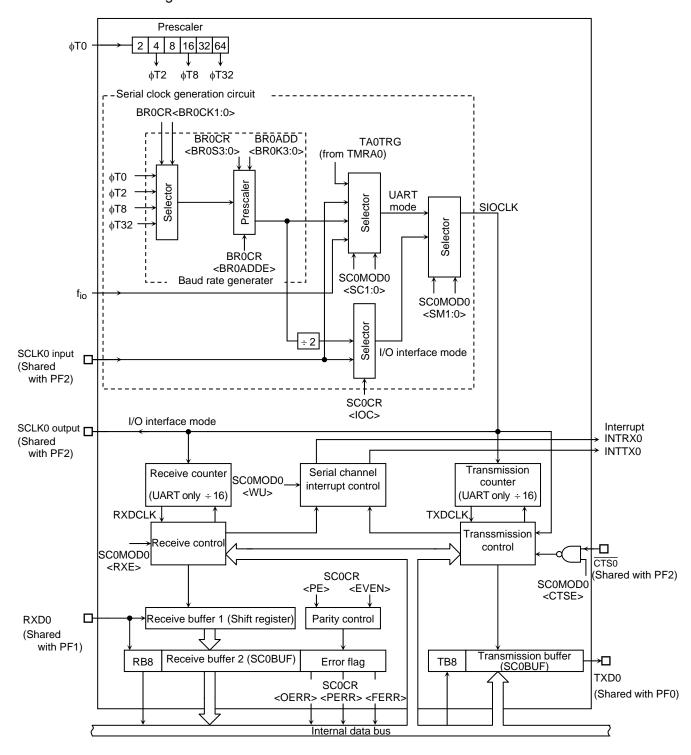


Figure 3.9.2 Block Diagram of SIO0

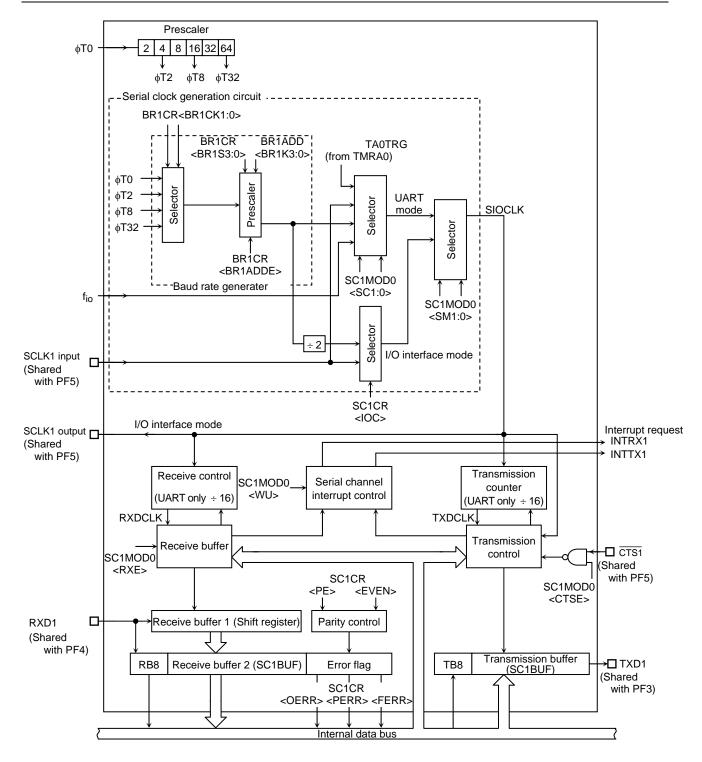


Figure 3.9.3 Block Diagram of SIO1

3.9.2 Operation of Each Circuit

(1) Prescaler

There is a 6-bit prescaler for generating a clock to SIO0. The clock selected using SYSCR1<GEAR2:0> is divided by 8 and input to the prescaler as ϕ T0. The prescaler can be run only case of selecting the baud rate generator as the serial transfer clock.

Table 3.9.2 shows prescaler clock resolution into the baud rate generator.

Table 3.9.2 Prescaler Clock Resolution to Baud Rate Generator

-	Clock Gear SYSCR1	_		Clock Re BR0CR <bf< th=""><th></th><th></th></bf<>		
	<gear2:0></gear2:0>		фТ0	φТ2	φΤ8	фТ32
	000(1/1)		fc/8	fc/32	fc/128	fc/512
	001(1/2)		fc/16	fc/64	fc/256	fc/1024
fc	010(1/4)	1/8	fc/32	fc/128	fc/512	fc/2048
	011(1/8)		fc/64	fc/256	fc/1024	fc/4096
	100(1/16)		fc/128	fc/512	fc/2048	fc/8192

The serial interface baud rate generator selects between 4 clock inputs: $\phi T0$, $\phi T2$, $\phi T8$, and $\phi T32$ among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is a circuit that generates transmission and receiving clocks that determine the transfer rate of the serial channels.

The input clock to the baud rate generator, $\phi T0$, $\phi T2$, $\phi T8$, or $\phi T32$, is generated by the 6-bit prescaler which is shared by the timers. One of these input clocks is selected using the BROCR<BROCK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 to 16 values, determining the transfer rate.

The transfer rate is determined by the settings of BR0CR<BR0ADDE, BR0S3:0> and BR0ADD<BR0K3:0>.

- In UART mode
- (1) When BROCR < BROADDE > = 0

The settings BR0ADD<BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N (N = 1, 2, 3 ... 16), which is set in BR0CR<BR0S3:0>.

(2) When BR0CR < BR0ADDE > = 1

The N + (16 - K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 - K)/16 using the value of N (N = 2, 3 ... 15) set in BR0CR<BR0S3:0> and the value of K (K = 1, 2, 3 ... 15) set in BR0ADD<BR0K3:0>.

Note: If N = 1 and N = 16, the N + (16 - K)/16 division function is disabled. Clear BR0CR<BR0ADDE> register to "0".

• In I/O interface mode

The N + (16 - K)/16 division function is not available in I/O interface mode. Clear BR0CR<BR0ADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

• UART mode

I/O interface mode

• Integer divider (N divider)

For example, when the $f_C = 39.3216$ MHz, the input clock frequency = $\phi T2$, the frequency divider N (BR0CR<BR0S3:0>) = 8, and BR0CR<BR0ADDE> = 0, the baud rate in UART mode is as follows:

* Clock state

[Clock gear: 1/1 (f_C)

Baud rate =
$$\frac{f_C/32}{8} \div 16$$
= 39.3216 × 10⁶ ÷ 16 ÷ 8 ÷ 16 = 9600 (bps)

Note: The N + (16 – K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.

• N + (16 - K)/16 divider (UART mode only)

Accordingly, when fC = 31.9488 MHz, the input clock frequency = ϕ T2, the frequency divider N (BR0CR<BR0S3:0>) = 6, K (BR0ADD<BR0K3:0>) = 8, and BR0CR<BR0ADDE> = 1, the baud rate is as follows:

* Clock state

[Clock gear: 1/1 (f_C)

Baud rate =
$$\frac{f_C/32}{6 + \frac{(16 - 8)}{16}} \div 16$$
= 31.9488 × 10⁶ ÷ 32 ÷ (6 + $\frac{8}{16}$) ÷ 16 = 9600 (bps)

Table 3.9.3 show examples of UART mode transfer rates.

Additionally, the external clock input is available in the serial clock (Serial channels 0 and 1). The method for calculating the baud rate is explained below:

• In UART mode

Baud rate = External clock input frequency ÷ 16

It is necessary to satisfy (External clock input cycle) ≥ 4/f_{SYS}

• In I/O interface mode

Baud rate = External clock input frequency

It is necessary to satisfy (External clock input cycle) \geq 16/f_{SYS}

Table 3.9.3 UART Baud Rate Selection (when using baud rate generater and BR0CR<BR0ADDE> = 0)

Unit (kbps)

	Input Clock				Unit (Kbps
f _{SYS} [MHz]	Frequency Divider	φT0 (f _{SYS} /4)	φT2 (f _{SYS} /16)	φT8 (f _{SYS} /64)	φT32 (f _{SYS} /256)
9.8304	2	76.800	19.200	4.800	1.200
↑	4	38.400	9.600	2.400	0.600
↑	8	19.200	4.800	1.200	0.300
↑	10	9.600	2.400	0.600	0.150
12.2880	5	38.400	9.600	2.400	0.600
↑	A	19.200	4.800	1.200	0.300
14.7456	2	115.200	28.800	7.200	1.800
↑	3	76.800	19.200	4.800	1.200
↑	6	38.400	9.600	2.400	0.600
↑	С	19.200	4.800	1.200	0.300
19.6608	1	307.200	76.800	19.200	4.800
↑	2	153.600	38.400	9.600	2.400
↑	4	76.800	19.200	4.800	1.200
↑	8	38.400	9.600	2.400	0.600
↑	10	19.200	4.800	1.200	0.300
22.1184	3	115.200	28.800	7.200	1.800
24.5760	1	384.000	96.000	24.000	6.000
↑	2	192.000	48.000	12.000	3.000
↑	4	96.000	24.000	6.000	1.500
↑	5	76.800	19.200	4.800	1.200
↑	8	48.000	12.000	3.000	0.750
↑	A	38.400	9.600	2.400	0.600
↑	10	24.000	6.000	1.500	0.375

Note 1: Transfer rates in I/O interface mode are eight times faster than the values given above.

In UART mode, TMRA match detect signal (TA0TRG) can be used for serial transfer clock.

Method for calculating the timer output frequency which is needed when outputting trigger of timer

TA0TRG frequency = Baud rate \times 16

Note: The TMRA0 match detect signal cannot be used as the transfer clock in I/O Interface mode.

(3) Serial clock generation circuit

This circuit generates the basic clock for transmitting and receiving data.

In I/O interface mode

In SCLK output mode with the setting SCOCR<IOC> = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SC0CR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of the SC0CR<SCLKS> register to generate the basic clock.

• In UART mode

The SC0MOD0<SC1:0> setting determines whether the baud rate generator clocks, the internal system clock f_{IO}, the trigger output signal from TMRA0 or the external clock (SCLK0 pin) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode that counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times – on the 7th, 8th, and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0, and 1 on 7th, 8th, and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0, and 1 are taken to be 0.

(5) Receiving control

• In I/O interface mode

In SCLK output mode with the setting SCOCR<IOC> = 0, the RXDO pin is sampled on the rising or falling edge of the shift clock which is output on the SCLKO pin according to the SCOCR<SCLKS> setting.

In SCLK input mode with the setting SCOCR<IOC> = 1, the RXDO pin is sampled on the rising or falling edge of the SCLK input, according to the SCOCR<SCLKS> setting.

In UART mode

The receiving control block has a circuit that detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double-buffer structure.

Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SC0BUF); this causes an INTRX0 interrupt to be generated.

The CPU only reads receiving buffer 2 (SC0BUF). Even before the CPU reads receiving buffer 2 (SC0BUF), the received data can be stored in receiving buffer 1.

However, unless receiving buffer 2 (SC0BUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SC0CR<RB8> will be preserved.

SCOCR<RB8> is used to store either the parity bit – added in 8-bit UART mode – or the most significant bit (MSB) – in 9-bit UART mode.

In 9-bit UART mode the wake-up function for the slave controller is enabled by setting SC0MOD0<WU> to 1; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is 1.

(7) Transmission counter

The transmission counter is a 4-bit binary counter that is used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

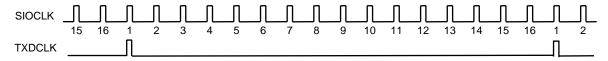


Figure 3.9.4 Generation of Transmission Clock

(8) Transmission controller

• In I/O interface mode

In SCLK output mode with the setting SC0CR<IOC> = 0, the data in the transmission buffer is output one bit at a time to the TXD0 pin on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SC0CR<SCLKS> setting.

In SCLK input mode with the setting SC0CR<IOC> = 1, the data in the transmission buffer is output one bit at a time on the TXD0 pin on the rising or falling edge of the SCLK0 input, according to the SC0CR<SCLKS> setting.

• In UART mode

When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK, generating a transmission shift clock TXDSFT.

Handshake function

Use of $\overline{\text{CTSO}}$ pin allows data to be sent in units of one data format; thus, overrun errors can be avoided. The handshake function is enabled or disabled by the SCOMODO<CTSE> setting.

When the $\overline{\text{CTS0}}$ pin condition is high level, after completed the current data transmission, data transmission is halted until the $\overline{\text{CTS0}}$ pin state is low again. However, the INTTX0 interrupt is generated, and it requests the next send from data to the CPU. The next data is written in the transmission buffer and data transmission is halted.

Though there is no \overline{RTS} pin, a handshake function can be easily configured by setting any port assigned to be the \overline{RTS} function. The \overline{RTS} should be output "High" to request send data halt after data receive is completed by software in the receive interrupt routine.

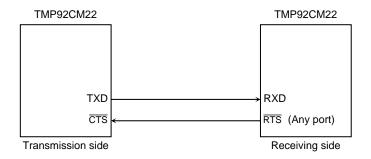
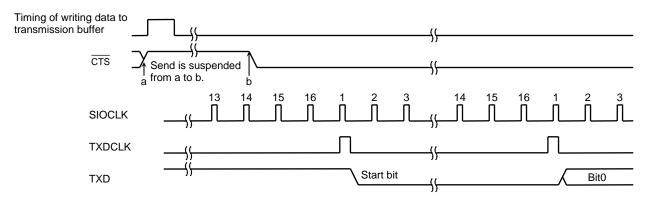



Figure 3.9.5 Handshake Function

Note 1: If the $\overline{\text{CTS}}$ signal goes high during transmission, will be stop next transmission data after completion of the current transmission.

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTS signal has fallen.

Figure 3.9.6 CTS (Clear to send) Signal Timing

(9) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU form the least significant bit in order. When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

(10) Parity control circuit

When SCOCR<PE> in the serial channel control register is set to 1, it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SC0BUF. The data is transmitted after the parity bit has been stored in SC0BUF<TB7> in 7-bit UART mode or in SC0MOD0<TB8> in 8-bit UART mode. SCOCR<PE> and SCOCR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SC0BUF), and then compared with SC0BUF<RB7> in 7-bit UART mode or with SC0CR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SCOCR<PERR> flag is set.

(11) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun-error is generated.

(INTRX interrupt routine)

- 1) Read receiving buffer
- 2) Read error flag
- if < OERR > = "1"then
- Set to disable receiving (Program "0" to SCOMODO<RXE>)
- Wait to terminate current frame
- 6) Read receiving buffer
- 7) Read error flag
- Set to enable receiving (Program "1" to SC0MOD0<RXE>)
- 9) Request to transmit again
- 10) Other

2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a parity error is generated.

3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a framing error is generated.

(12) Timing generation

1. In UART mode

Receiving

Mode	9 Bits	8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt generation timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit
Framing error generation timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error generation timing	-	Center of last bit (Parity bit)	Center of stop bit
Overrun error generation timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit

Note1: In 9 Bits mode and 8 Bits + Parity mode, interrupts coincide with the ninth bit pulse. Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Note2: The higher the transfer rate, the later than the middle receive interrupts and errors occur.

Transmission

Mode	9 Bits	8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt generation timing	Just before stop bit is transmitted	←	←

2. In I/O interface mode

Transmission interrupt timing	SCLK output mode	Immediately after last bit data. (See Figure 3.9.19.)
	SCLK input mode	Immediately after rise of last SCLK signal rising mode, or immediately after fall in falling mode. (See Figure 3.9.20.)
Receiving interrupt	SCLK output mode	Timing used to transfer received to data receive buffer 2 (SC0BUF) (e.g., immediately after last SCLK). (See Figure 3.9.21.)
timing	SCLK input mode	Timing used to transfer received data to receive buffer 2 (SC0BUF) (e.g., immediately after last SCLK). (See Figure 3.9.22.)

3.9.3 SFRs

SC0MOD0 (1202H)

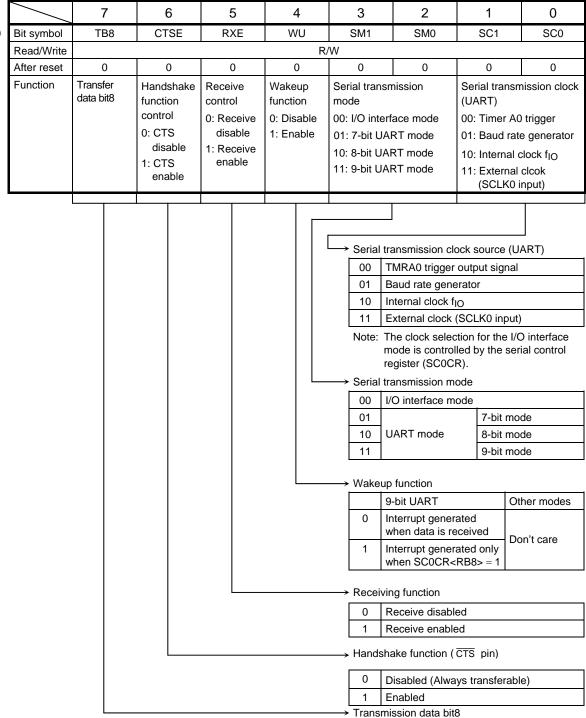


Figure 3.9.7 Serial Mode Control Register 0 (for SIO0 and SC0MOD0)

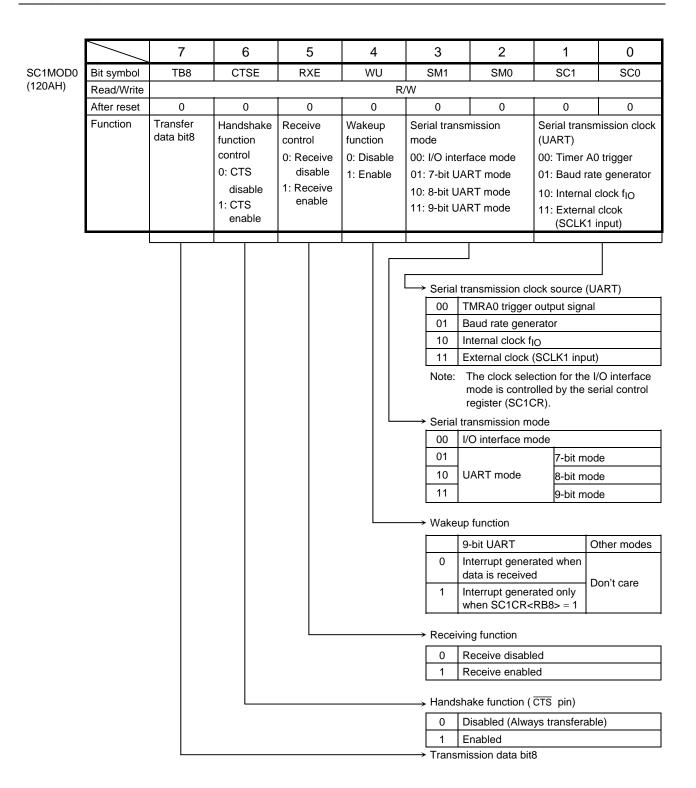
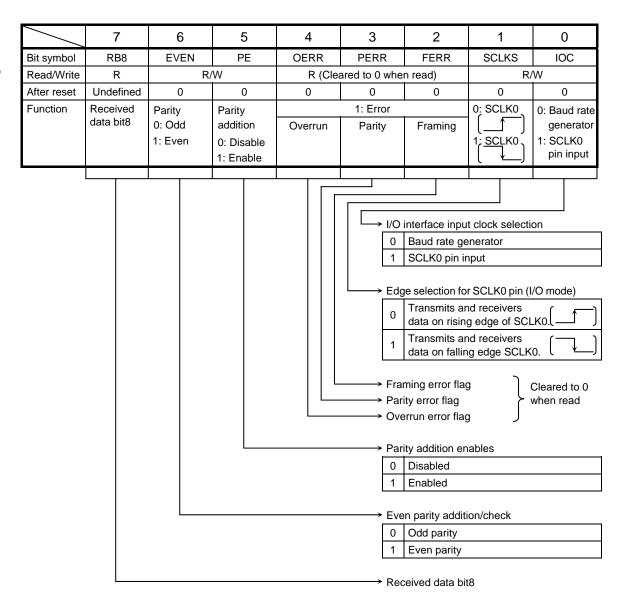
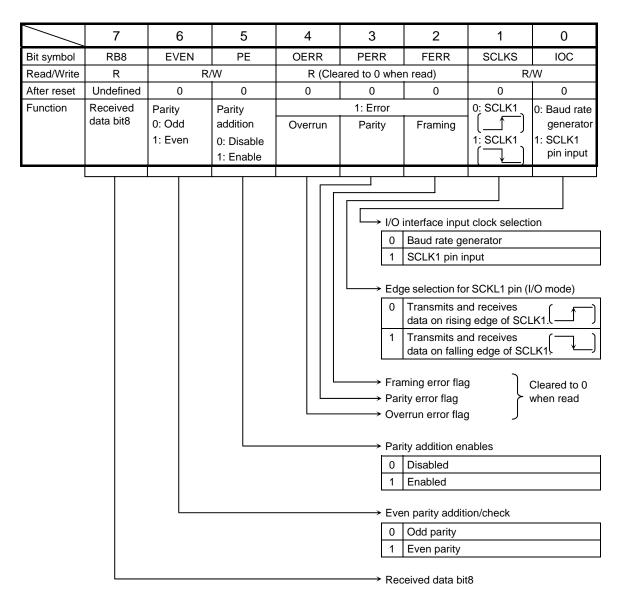



Figure 3.9.8 Serial Mode Control Register (for SIO1 and SC1MOD)


SC0CR (1201H)

Note: As all error flags are cleared after reading, do not test only a single bit with a bit-testing instruction.

Figure 3.9.9 Serial Control Register (for SIO0 and SC0CR)

SC1CR (1209H)

Note: As all error flags are cleared after reading, do not test only a single bit with a bit-testing instruction.

Figure 3.9.10 Serial Control Register (for SIO1 and SC1CR)

5 4 3 2 7 6 1 0 BR0CK0 **BROADDE** BR0CK1 BR0S3 BR0S2 BR0S0 BR0CR Bit symbol BR0S1 (1203H) Read/Write R/W After reset 0 0 0 0 0 0 0 0 Always Function + (16 – K)/16 00: φΤ0 write "0". division 01: _{\$\$T2\$} Divided frequency setting 0: Disable 10: _♦T8 1: Enable 11: _{\$\phi\$T32\$} + (16 - K)/16 divisions enable Setting the input clock of baud rate generator 0 Disable Internal clock \$\psi T0\$ Enable 01 1 10 Internal clock \$\psi T8\$ 11 7 6 5 4 3 2 1 0 BR0ADD BR0K3 BR0K2 BR0K1 BR0K0 Bit symbol (1204H)Read/Write R/W After reset 0 0 0 Function Sets frequency divisor "K" (Divided by N + (16 - K)/16). Sets baud rate generator frequency divisor ← BR0CR<BR0ADDE> = 1 BR0CR<BR0ADDE> = 0 BR0CR 0000 (N = 16)0010 (N = 2)0001 (N = 1) (UART only)<BR0S3:0> or 0001 (N = 1)1111 (N = 15) **BR0ADD** 1111 (N = 15) 0000 (N = 16)<BR0K3:0> 0000 Disable Disable

Note1:Availability of +(16-K)/16 division function

0001 (K = 1)

1111 (K = 15)

N	UART mode	I/O mode
IN	OAKT Mode	1/O IIIOGC
2 to 15	0	×
1 , 16	×	×

Disable

The baud rate generator can be set to "1" in UART mode only when the +(16-K)/16 division function is not used. Do not use in I/O interface mode.

Note2:Set BR0CR <BR0ADDE> to 1 after setting K (K = 1 to 15) to BR0ADD<BR0K3:0> when + (16-K)/16 division function is used. Writes to unused bits in the BROADD register do not affect operation, and undefined data is read from these unused bits.

Divided by

N + (16-K)/16

Figure 3.9.11 Baud Rate Generator Control (for SIO0, BR0CR, and BR0ADD)

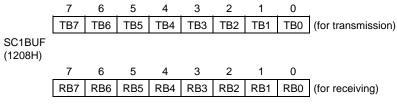
Divided by N

4 2 7 6 5 3 1 0 **BR1ADDE** BR1CK1 BR1CK0 BR1S0 BR1CR Bit symbol BR1S3 BR1S2 **BR1S1** (120BH) Read/Write R/W After reset 0 0 0 0 0 0 0 0 Function Always + (16 – K)/16 00: φΤ0 write "0". division 01: _♦T2 Divided frequency setting 0: Disable 10: _♦T8 1: Enable 11: _{\$\phi\$T32\$} + (16 - K)/16 divisions enable Input clock selection for baud rate generator 0 Disabled 00 Internal clock oT0 01 Enabled Internal clock \$\psi T2\$ 10 Internal clock \$\psi T8\$ 11 7 6 5 4 3 2 1 0 BR1ADD BR1K3 BR1K2 BR1K1 BR1K0 Bit symbol (120CH) Read/Write R/W After reset 0 0 0 Function Set frequency divisor "K" (Divided by N + (16 - K)/16). Baud rate generator frequency divisor setting + BR1CR<BR1ADDE> = 1 BR1CR<BR1ADDE> = 0 BR1CR 0010 (N = 2)0001 (N = 1) (UART only)0000 (N = 16)<BR1S3:0> or 1111 (N = 15) **BR1ADD** 1111 (N = 15) 0001 (N = 1)<BR1K3:0> 0000 (N = 16)0000 Disable Disable 0001 (K = 1)Divided by N Divided by Disable N + (16 - K) / 161111 (K = 15)

Note1:Availability of +(16-K)/16 division function

N	UART mode	I/O mode
2 to 15	0	×
1,16	×	×

The baud rate generator can be set to "1" in UART mode only when the +(16-K)/16 division function is not used. Do not use in I/O interface mode.


Note2:Set BR1CR <BR1ADDE> to 1 after setting K (K = 1 to 15) to BR1ADD

BR1K3:0> when +(16-K)/16 division function is used. Writes to unused bits in the BR1ADD register do not affect operation, and undefined data is read from these unused bits.

Figure 3.9.12 Baud Rate Generater Control (for SIO1, BR1CR, and BR1ADD)

Figure 3.9.13 Serial Transmission/Receiving Buffer Register (for SIO0 and SC0BUF)

		7	6	5	4	3	2	1	0
SC0MOD1	Bit symbol	I2S0	FDPX0						
(1205H)	Read/Write	R/	W						
	After reset	0	0						
	Function	IDLE2	Duplex						
		0: Stop	0: Half						
		1:Run	1: Full						

Figure 3.9.14 Serial Mode Control Regsiter (for SIO and SC0MOD1)

Note: Prohibit read-modify-write for SC1BUF

Figure 3.9.15 Serial Transmission/Receiving Buffer Register (for SIO1 and SC1BUF)

		7	6	5	4	3	2	1	0
SC1MOD1	Bit symbol	I2S1	FDPX1						/
(120DH)	Read/Write	R/	W						
	After reset	0	0						
	Function	IDLE2	Duplex						
		0: Stop	0: Half						
		1: Run	1: Full						

Figure 3.9.16 Serial Mode Control Regsiter (for SIO and SC1MOD1)

3.9.4 Operation in Each Mode

(1) Mode 0 (I/O interface mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.

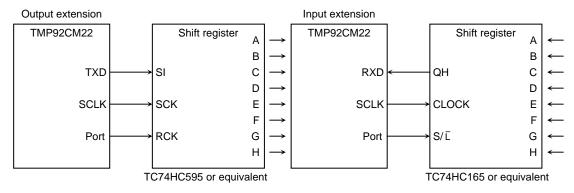


Figure 3.9.17 Example of SCLK Output Mode Connection

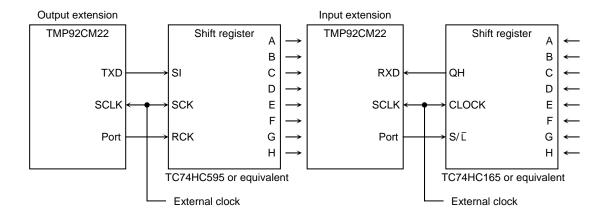


Figure 3.9.18 Example of SCLK Output Mode Connection

1. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes the data to the transmission buffer. When all data is outputted, INTESO<ITX0C> will be set to generate the INTTX0 interrupt.

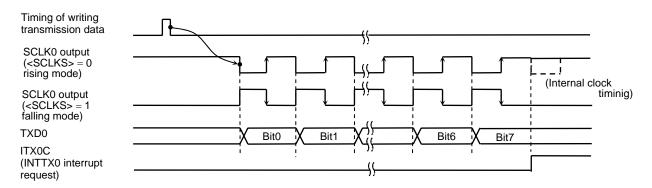


Figure 3.9.19 Transmission Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK input mode, 8-bit data is output from the TXD0 pin when the SCLK0 input becomes active after the data has been written to the transmission buffer by the CPU.

When all data is outputted, INTES0<ITX0C> will be set to generate INTTX0 interrupt.

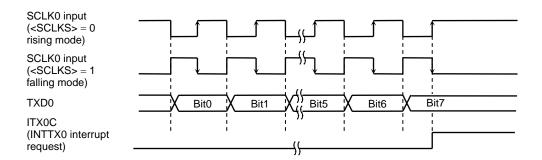


Figure 3.9.20 Transmission Operation in I/O Interface Mode (SCLK0 input mode)

2. Receiving

In SCLK output mode, the synchronous clock is outputted from SCLK0 pin and the data is shifted to receiving buffer 1. This starts when the receive interrupt flag INTES0<IRX0C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred to receiving buffer 2 (SC0BUF according to the timing shown below) and INTES0<IRX0C> will be set to generate INTRX0 interrupt.

The outputting for the first SCLK0 starts by setting SC0MOD0<RXE> to 1.

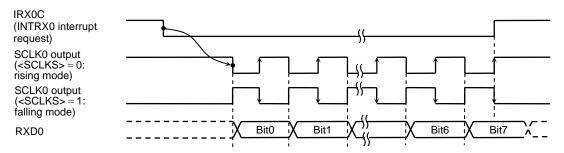


Figure 3.9.21 Receiving Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK input mode, the data is shifted to receiving buffer 1 when the SCLK input becomes active after the receive interrupt flag INTES0<IRX0C> is cleared by reading the received data. When 8-bit data is received, the data will be shifted to receiving buffer 2 (SC0BUF according to the timing shown below) and INTES0<IRX0C> will be set again to be generate INTRX0 interrupt.

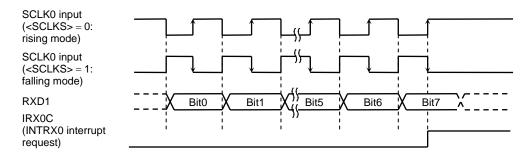


Figure 3.9.22 Receiving Operation in I/O Interface Mode (SCLK0 input mode)

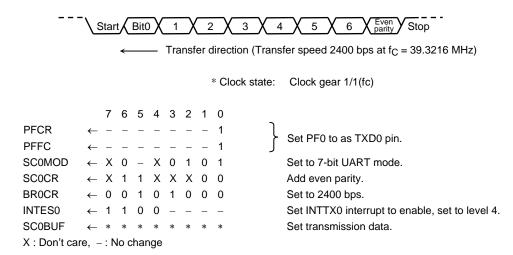
Note: If receiving, set to the receive enable state (SC0MOD0<RXE> = 1) in both SCLK input mode and output mode.

3. Transmission and receiving (Full duplex mode)

When the full duplex mode is used, set the level of receive interrupt to "0" and set enable the interrupt level (1 to 6) to the transfer interrupts. In the transfer interrupt program, the receiving operation should be done like the below example before setting the next transfer data.

Example: Channel 0, SCLK output Baud rate = 9600 bps $f_C = 4.9152 \; \text{MHz}$

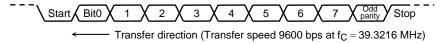
* Clock state: Clock gear 1/1(fc)


Main routine									
	7	6	5	4	3	2	1	0	
INTES0	0	0	0	1	0	0	0	0	Set transmission interrupt level to 1, and disable receiving interrupt level to 0.
PFCR	_	_	_	_	_	1	0	1	Set to PF0 (TXD0), PF1 (RXD0), and PF2 (SCLK0).
PFFC	_	_	_	_	_	1	_	1	
SC0MOD0	0	0	0	0	0	0	0	0	Set to I/O interface mode.
SC0MOD1	1	1	0	0	0	0	0	0	Set to full duplex mode.
SC0CR	0	0	0	0	0	0	0	0	Output SCLK, select rising edge.
BR0CR	0	0	0	1	1	0	0	0	Set to 9600 bps.
SC0MOD0	0	0	1	0	0	0	0	0	Set receive to enable.
SC0BUF	*	*	*	*	*	*	*	*	Set transmission data.
Transmission int	erru	ıpt ı	rout	ine					
Acc SC0BUF									Read receiving data.
SC0BUF	*	*	*	*	*	*	*	*	Set transmission data.
X: Don't care, -:	: No	ch	ang	је					

(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting serial channel mode register SC0MOD0<SM1:0> to 01.

In this mode, a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (Enabled).


Example: When transmitting data of the following format, the control registers should be set as described below. This explanation applies to channel 0.

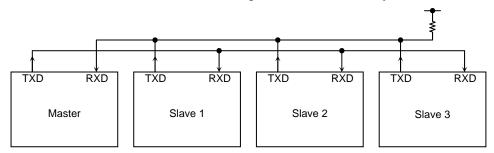
(3) Mode 2 (8-bit UART mode)

8-bit UART mode is selected by setting SC0MOD0<SM1:0> to 10. In this mode, a parity bit can be added (Use of a parity bit is enabled or disabled by the setting of SC0CR<PE>); whether even parity or odd parity will be used is determined by the SC0CR<EVEN> setting when SC0CR<PE> is set to 1 (Enabled).

Example: When receiving data of the following format, the control registers should be set as described below.

* Clock state: Clock gear 1/1(fc)

```
Main routine
PFCR
                                                  Set PF1 (RXD0) to input pin.
SC0MOD
                  0 1 X 1
                                                  Set to 8-bit UART mode, set receives to enable.
               X 0 1 X X X 0 0
SC0CR
                                                  Add odd parity.
BR0CR
                  0 0 1 1 0 0 0
                                                  Set to 9600 bps.
INTES0
                                                  Set INTTX0 interrupt to enable, set to level 4.
Interrupt routine processing
Acc
            ← SC0CR AND 00011100
                                                  Check for error.
if Acc
            ≠ 0 then FRROR
            ← SC0BUF
Acc
                                                  Read receiving data.
X: Don't care, -: No change
```

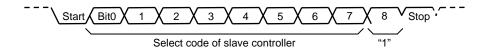

(4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC0MOD0<SM1:0> to 11. In this mode parity bit cannot be added.

In the case of transmission the MSB (9th bit) is programmed to SC0MOD0<TB8>. In the case of receiving it is stored in SC0CR<RB8>. When the buffer is written and read, the MSB is read or written first, before the rest of the SC0BUF data.

Wakeup function

In 9-bit UART mode, the wakeup function for slave controllers is enabled by setting SC0MOD0 < WU > to 1. The interrupt INTRX0 occurs only when < RB8 > = 1.

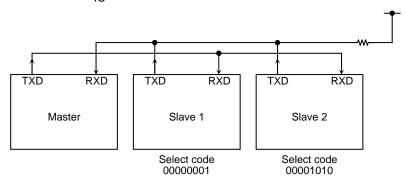


Note: The TXD pin of each slave controller must be in open-drain output mode.

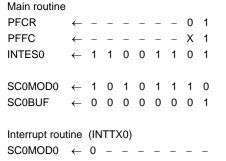

Figure 3.9.23 Serial Link Using Wakeup Function

Protocol

- 1. Select 9-bit UART mode on the master and slave controllers.
- 2. Set the SC0MOD0<WU> bit on each slave controller to 1 to enable data receiving.
- 3. The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (Bit8) <TB8> is set to "1".



- 4. Each slave controller receives the above frame. If it matches with own select code, clears <WU> bit to "0".
- 5. The master controller transmits data to the specified slave controller whose SC0MOD0<WU> bit is cleared to "0". The MSB (Bit8) <TB8> is cleared to "0".



6. The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSB (Bit8 or <RB8>) are set to "0", disabling INTRX0 interrupts. The slave controller (<WU> bit = "0") can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.

Example: To link two slave controllers serially with the master controller using the system clock f_{IO} as the transfer clock.

• Master controller setting

Set PF0 to TXD0, and set PF1 to RXD0 pin.

Set INTTX0 to enable, and set interrupt level to level 4. Set INTRX0 to enable, and set interrupt level to level 5. Set to 9-bit UART mode, and set transfer clock to f_{IO} . Set select code of slave 1.

SC0BUF ← * * * * * * *

Set TB8 to "0". Set transmission data.

• Slave setting

Set PF0 to TXD (open-drain output), and PC1 to RXD.

Set INTTX0 and INTRX0 to enable.

Set to <WU> = "1" in 9-bit UART mode transfer clock f_{IO}.

Interrupt routine (INTRX0)

$$\label{eq:acc} \begin{split} & \mathsf{Acc} \leftarrow \mathsf{SC0BUF} \\ & \text{if } \mathsf{Acc} = \mathsf{Select} \ \mathsf{code} \\ & \mathsf{Then} \qquad \leftarrow \quad - \quad - \quad 0 \quad - \quad - \quad - \quad - \\ & \mathsf{SC0MOD0} \end{split}$$

Clear to <WU> = "0".

3.9.5 Support for IrDA Mode

 ${
m SIO0}$ includes support for the IrDA 1.0 infrared data communication specification. Figure 3.9.24 shows the block diagram.

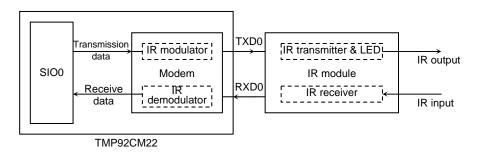


Figure 3.9.24 Block Diagram of IrDA

(1) Modulation of transmission data

When the transmission data is 0, output "H" level with either 3/16 or 1/16 times for width of baud-rate (Selectable in software). When data is "1", modem output "L" level.

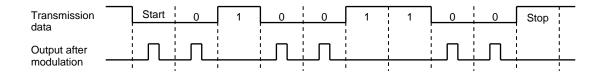


Figure 3.9.25 Example of Modulation of Transmission Data

(2) Modulation of receiving data

When the receive data has the effective high level pulse width (Software selectable), the modem outputs "0" to SIO0. Otherwise modem outputs "1" to SIO0. Receive pulse logic is selectable by SIRCR<RXSEL>.

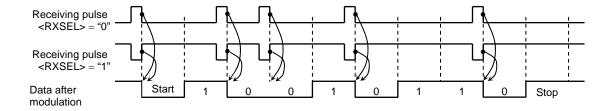


Figure 3.9.26 Example of Modulation of Receiving Data

2007-02-16

(3) Data format

Format of transmission/receiving must set to data length 8-bit, without parity bit, 1 bit of stop bit.

Any other settings don't guarantee the normal operation.

(4) SFR

Figure 3.9.27 shows the control register SIRCR. If change setting this register, must set it after set operation of transmission/receiving to disable (Both <TXEN> and <RXEN> of this register should be clear to 0).

Any changing for this register during transmission or receiving operation doesn't guarantee the normal operation.

The following example describes how to set this register:

1) SIO setting ; Set SIO side.

2) LD (SIRCR), 07H ; Set receiving effect pulse width to 16X.

3) LD (SIRCR), 37H ; TXEN, RXEN enable the transmission and receiving.

 \downarrow

Transmission/receiving; The modem operates as follows:

SIO0 starts transmitting.

IR receiver starts receiving.

(5) Notes

Making baud rate when using IrDA

In baud rate during using IrDA, must set "01" to SC0MOD0<SC1:0> in SIO by using baud rate generator.

TAOTRG, fig., SCLK0 input of except for it can not using.

Output pulse width and baud rate generator during transmission IrDA

As the IrDA 1.0 physical layer specification, the data transfer speed and infra-red pulse width is specified.

	Table 3.9.4 Specification of Transfer Rate and Pulse Width										
ansfer		Transfer Rate	Minimum of	Typical of Pulse							

Transfer Rate	Modulation	Transfer Rate Tolerance (% of Rate)	Minimum of Pulse Width	Typical of Pulse Width 3/16	Maximum of Pulse Width
2.4 kbps	RZI	± 0.87	1.41 μs	78.13 μs	88.55 μs
9.6 kbps	RZI	±0.87	1.41 μs	19.53 μs	22.13 μs
19.2 kbps	RZI	±0.87	1.41 μs	9.77 μs	11.07 μs
38.4 kbps	RZI	±0.87	1.41 μs	4.88 μs	5.96 μs
57.6 kbps	RZI	±0.87	1.41 μs	3.26 μs	4.34 μs
115.2 kbps	RZI	± 0.87	1.41 μs	1.63 μs	2.23 μs

The infra-red pulse width is specified either band rate $T \times 3/16$ or 1.6 μs (1.6 μs is equal to $T \times 3/16$ pulse width when baud rate is 115.2 kbps).

The TMP92CM22 has function which is selectable the transmission pulse width either 3/16 or 1/16. But T \times 1/16 pulse width can be selected when the baud rate is equal or less than 38.4 kbps only. When 57.6 kbps and 115.2 kbps, the output pulse width should not be set to $T \times 1/16$.

As the same reason, +(16 - K)/16 division function in the baud rate generator of SIO0 cannot be used to generate 115.2 kbps baud rate.

Also when the 38.4 kbps and 1/16 pulse width, +(16-K)/16 division function cannot be used.

Table 3.9.5 shows baud rate and pulse width for (16 - K)/16 division function.

Table 3.9.5 Baud Rate and Pulse Width for (16 – K)/16 Division Function

Output Pulse Width	Baud Rate 115.2 kbps	57.6 kbps	38.4 kbps	19.2 kbps	9.6 kbps	2.4 kbps
T × 3/16	×	0	0	0	0	0
T × 1/16	-	-	×	0	0	0

- ○: Can be used (16 K)/16 division function.
- x: Cannot be used (16 K)/16 division function.
- -: Cannot be set to T \times 1/16 pulse width.

7 5 4 2 1 0 6 3 **PLSEL** SIRWD0 **SIRCR RXSEL TXEN** RXEN SIRWD3 SIRWD2 SIRWD1 Bit symbol (1207H) Read/Write R/W After reset 0 Function Selection Receiving Transmission Receiving Select receiving effective pulse width transmission data logic Set effective pulse width for equal or data operation pulse width 0: "H" pulse more than $2x \times (Value + 1) + 100 \text{ ns}$ 0: Disable 0: Disable 0:3/16 1: "L" pulse 1: Enable 1: Enable Can be set: 1 to 14 1: 1/16 Cannot be set: 0. 15 Select receiving effective pulse width Receiving effective pulse width $\geq 2x \times (Setting \ value + 1) +$ 100 ns $x = 1/f_{SYS}$ 0000 Cannot be set. 0001 Pulse width of equal or more than 4x + 100 ns is effective. 1110 Pulse width of equal or more than 30x + 100 ns is effective. 1111 Cannot be set.

→ Enable of transmission operation
 0 Disable transmission operation (Input from SIO is ignored.)
 1 Enable transmission operation.

→ Select transmission pulse width

Disable receiving operation

Disable receiving operation.
(Received input is ignored.)

Enable receiving operation.

0 Pulse width of 3/161 Pulse width of 1/16

Note: If a pulse width complying with the IrDA 1.0 standard (1.6 μ s min.) can be guaranteed with a low baud rate, setting this bit to "1" will result in reduced power dissipation.

2007-02-16

Figure 3.9.27 IrDA Control Register

1

3.10 Serial Bus Interface (SBI)

The TMP92CM22 has a 1-channel serial bus interface. Serial bus interface (SBI0) include following 2 operation modes.

- I²C bus mode (Multi master)
- Clocked-synchronous 8-bit SIO mode

The serial bus interface is connected to an external device through P91 (SDA) and P92 (SCL) in the I²C bus mode; and through P90 (SCK), P91 (SO), and P92 (SI) in the clocked-synchronous 8-bit SIO mode.

Each pin is specified as follows.

	P9ODE	P9CR	P9FC
	<p92ode, p91ode=""></p92ode,>	<p92c, p90c="" p91c,=""></p92c,>	<p92f, p90f="" p91f,=""></p92f,>
I ² C bus mode	11	11X	11X
Clocked-synchronous	XX	011	011
8-bit SIO mode	**	010	010 (Note)

X: Don't care

Note: When using SI and SCK input function, set P9FC<P92F,P90F> to "0" (Function setting).

3.10.1 Configuration

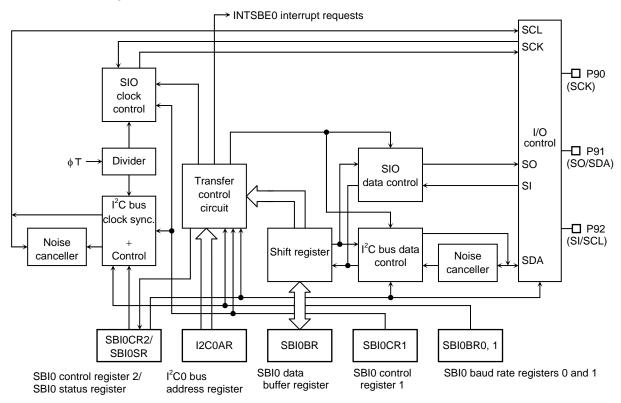
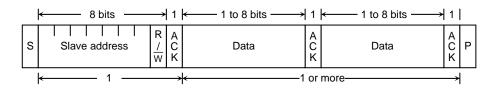


Figure 3.10.1 Serial Bus Interface 0 (SBI0)

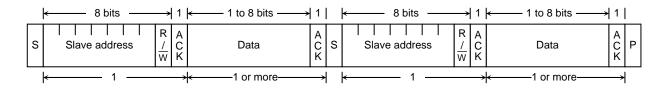
3.10.2 Control

The following registers are used to control the serial bus interface and monitor the operation status.

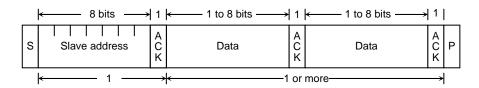
- Serial bus interface 0 control register 1 (SBI0CR1)
- Serial bus interface 0 control register 2 (SBI0CR2)
- Serial bus interface 0 data buffer register (SBI0DBR)
- I²C bus 0 address register (I2C0AR)
- Serial bus interface 0 status register (SBI0SR)
- Serial bus interface 0 baud rate register 0 (SBI0BR0)
- Serial bus interface 0 baud rate register 1 (SBI0BR1)


The above registers differ depending on a mode to be used.

Refer to Section 3.10.4 "I²C Bus Mode Control Register" and 3.10.7 "Clocked-synchronous 8-Bit SIO Mode Control".


3.10.3 Data Format in I²C Bus Mode

Data format in I²C bus mode is shown Figure 3.10.3.


(a) Addressing format

(b) Addressing format (with restart)

(c) Free data format (transfer format transfer from master device to slave device)

 $\begin{array}{lll} \text{S:} & \text{Start condition} \\ \text{R/}\,\overline{\mathbb{W}}: & \text{Direction bit} \\ \text{ACK:} & \text{Acknowledge bit} \\ \text{P:} & \text{Stop condition} \end{array}$

Figure 3.10.2 Data Format in I²C Bus Mode

3.10.4 I²C Bus Mode Control Register

The following registers are used to control and monitor the operation status when using the serial bus interface (SBI) in the I^2C bus mode.

Serial Bus Interface Control Register 1

SBI0CR1 (1240H)

Readmodify-write instruction is prohibited.

	7	6	5	4	3	2	1	0
Bit symbol	BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0/ SWRMON
Read/Write		W		R/W		V	V	R/W
After reset	0	0	0	0		0	0	0/1 (Note 3)
Function	Select numb (Note 1)	er of transferr	ed bits	Acknowledge mode specification 0:Not generate 1:Generate		Internal seria software rese (Note 2)	ıl clock selecti et monitor	on and

Internal serial clock selection <SCK2:0> at write

000	n = 5	- kHz (Note4)	
001	n = 6	- kHz (Note4)	
010	n = 7	- kHz (Note4)	System clock: fSYS
011	n = 8	75.8 kHz	$f_{SYS} = 20 \text{ MHz}$ (output to
100	n = 9	38.5 kHz	SCL pin)
101	n = 10	19.4 kHz	Frequency = $\frac{f_{SYS}}{2^n + 8}$ [Hz]
110	n = 11	9.73 kHz	2"+8 2"
111	(Reserved)	(Reserved)	

Software reset state monitor <SWRMON> at read

0	During software reset
1	Initial data

Acknowledge mode selection

0	Not generate clock pulse for acknowledge signal
1	Generate clock for acknowledge signal

> Select number of bits transferred

	<ack< th=""><th>(>=0</th><th><ack< th=""><th colspan="2">(> = 1</th></ack<></th></ack<>	(>=0	<ack< th=""><th colspan="2">(> = 1</th></ack<>	(> = 1	
<bc2:0></bc2:0>	Number of clock pulses	Data length	Number of clock pulses	Data length	
000	8	8	9	8	
001	1	1	2	1	
010	2	2	3	2	
011	3	3	4	3	
100	4	4	5	4	
101	5	5	6	5	
110	6	6	7	6	
111	7	7	8	7	

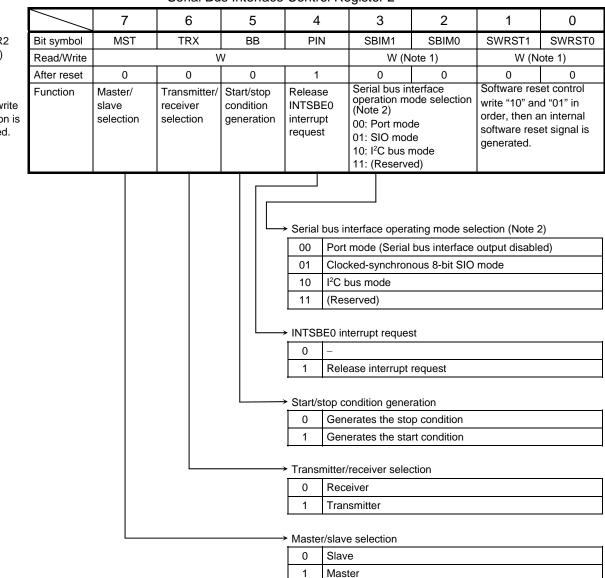
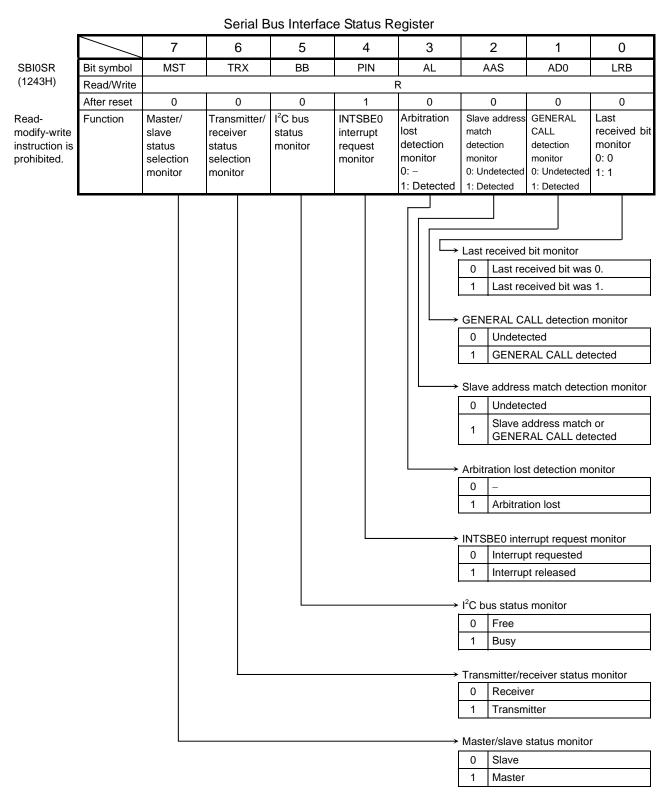

- Note 1: Set the <BC2:0> to "000" before switching to a clocked-synchronous 8-bit SIO mode.
- Note 2: For the frequency of the SCL line clock, see section 3.10.5 (3) "Serial clock".
- Note 3: Initial data of SCK0 is "0", SWRMON is "1".
- Note 4: This I²C bus circuit does not support Fast mode, it supports standard mode only. Although the I²C bus circuit itself allows the setting of a baud rate over 100 kbps, the compliance with the I²C specification is not guaranteed in that case.

Figure 3.10.3 Register for I²C Bus Mode

Serial Bus Interface Control Register 2

SBI0CR2 (1243H)

Readmodify-write instruction is prohibited.



Note 1: Reading this register function as SBI0SR register.

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between I²C bus mode and clocked-synchronous 8-bit SIO mode after confirming that input signals via port are high level.

Figure 3.10.4 Register for I²C Bus Mode

Note: Writing in this register functions as SBI0CR2.

Figure 3.10.5 Register for I²C Bus Mode

Serial Bus Interface Baud Rate Register 0

(1244H)

Readmodify-write
instruction is

prohibited.

SBI0BR0

	7	6	5	4	3	2	1	0
Bit symbol	-	I2SBI0						
Read/Write	W	R/W						
After reset	0	0						
Function	Always write "0".	IDLE2 0: Stop 1: Run						

Operation during IDLE 2 mode

Stop

Run

Serial Bus Interface Baud Rate Register 1

SBI0BR1 (1245H)

Readmodify-write instruction is prohibited.

					- 3			
	7	6	5	4	3	2	1	0
Bit symbol	P4EN	-						
Read/Write	e \	N						
After reset	0	0						
Function	Internal clock 0: Stop 1: Run	Always write "0".						

Operation during IDLE 2 mode

Stop

Run

Sirial Bus Interface Data Buffer Register

SBI0DBR (1241H)

	7	6	5	4	3	2	1	0	
Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Read/Write		R (Receiving)/W (Transmission)							
After reset		Undefined							

Readmodify-write instruction is prohibited.

- Note 1: When writing transmission data, start from the MSB (Bit7). Receiving data is placed from LSB (Bit0).
- Note 2: SBI0DBR can't be read the written data. Therefore read-modify-write instruction (e.g., "BIT" instruction) is prohibited.

I²C Bus Address Register

I2C0AR (1242H)

Readmodify-write instruction is prohibited.

Ī		7	6	5	4	3	2	1	0
ľ	Bit symbol	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
I	Read/Write				V	I			
	After reset	0	0	0	0	0	0	0	0
e s	Function		Slave address	selection for	when device	is operating a	s slave device	9	Address recognition mode specification

Address recognition mode specification

0	Slave address recognition
1	Non slave address recognition

Figure 3.10.6 Register for I²C Bus Mode

3.10.5 Control in I²C Bus Mode

(1) Acknowledge mode specification

Set the SBIOCR1<ACK> to 1 for operation in the acknowledge mode. The TMP92CM22 generates an additional clock pulse for an acknowledge signal when operating in master mode. In the transmitter mode during the clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA pin is set to the low in order to generate the acknowledge signal.

Clear the <ACK> to 0 for operation in the non-acknowledge mode, the TMP92CM22 does not generate a clock pulse for the acknowledge signal when operating in the master mode.

(2) Select number of transfer bits

The SBI0CR1<BC2:0> is used to select a number of bits for next transmission/receiving data.

Since the <BC2:0> is cleared to 000 as a start condition, a slave address and direction bit are transferred in 8 bits. Other than these, the <BC2:0> retains a specified value.

(3) Serial clock

1. Clock source

The SBI0CR1<SCK2:0> is used to select a maximum transfer frequency outputted on the SCL pin in master mode. Set the baud rates, which have been calculated according to the formula below, to meet the specifications of the I²C bus, such as the smallest pulse width of tLOW.

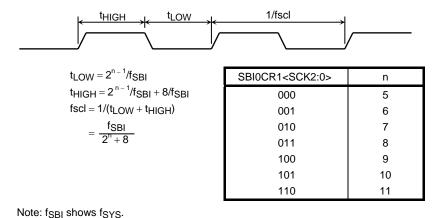


Figure 3.10.7 Clock Source

Clock synchronization

In the I²C bus mode, in order to wired-AND a bus, a master device which pulls down a clock line to low level, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse. The master device with a high-level clock pulse needs to detect the situation and implement the following procedure.

The TMP92CM22 has a clock synchronization function for normal data transfer even when more than one master exists on the bus.

The example explains the clock synchronization procedures when two masters simultaneously exist on a bus.

Internal SCL output (Master A) Reset a counter of Internal SCL output high-level width of (Master B) a clock pulse SCL line

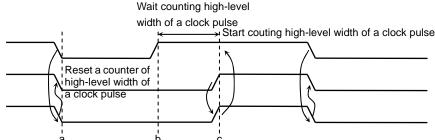


Figure 3.10.8 Clock Synchronization

As master A pulls down the internal SCL output to the low level at point "a", the SCL line of the bus becomes the low level. After detecting this situation, master B resets a counter of high-level width of an own clock pulse and sets the internal SCL output to the low level.

Master A finishes counting low-level width of an own clock pulse at point "b" and sets the internal SCL output to the high level. Since master B holds the SCL line of the bus at the low level, master A waits for counting high-level width of an own clock pulse. After master B finishes counting low-level width of an own clock pulse at point "c" and master A detects the SCL line of the bus at the high level, and starts counting high level of an own clock pulse. The clock pulse on the bus is determined by the master device with the shortest high-level width and the master device with the longest low-level width from among those master devices connected to the bus.

(4) Slave address and address recognition mode specification

When the TMP92CM22 is used as a slave device, set the slave address <SA6:0> and <ALS> to the I2COAR. Clear the <ALS> to "0" for the address recognition mode.

(5) Master/slave selection

Set the SBI0CR2<MST> to "1" for operating the TMP92CM22 as a master device. Clear the SBI0CR2<MST> to "0" for operation as a slave device. The <MST> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.

(6) Transmitter/receiver selection

Set the SBI0CR2<TRX> to "1" for operating the TMP92CM22 as a transmitter. Clear the <TRX> to "0" for operation as a receiver. In slave mode, when transfer data in addressing format, when received slave address is same value with setting value to I2C0AR, or GENERAL CALL is received (All 8-bit data are "0" after a start condition), the <TRX> is set to "1" by the hardware if the direction bit (R/\overline{W}) sent from the master device is "1", and <TRX> is cleared to "0" by the hardware if the bit is "0".

In the master mode, after an acknowledge signal is returned from the slave device, the <TRX> is cleared to "0" by the hardware if a transmitted direction bit is "1", and is set to "1" by the hardware if it is "0". When an acknowledge signal is not returned, the current condition is maintained.

The <TRX> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.

(7) Start/stop condition generation

When programmed "1111" to SBIOCR2 <MST, TRX, BB, PIN> in during SBIOSR<BB> is "0", slave address and direction bit which are set to SBIODBR and start condition are output on a bus. And it is necessary to set transmitted data to the data buffer register (SBIODBR) and set "1" to <ACK> beforehand.

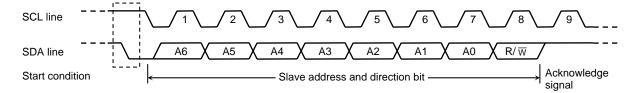


Figure 3.10.9 Generation of Start Condition and Slave Address

When programmed "0" to SBIOCR2<BB> and "111" to <MST, TRX, PIN> in during SBIOSR<BB> is "1", start a sequence of stop condition output. Do not modify the contents of <MST, TRX, BB, and PIN> until a stop condition is generated on a bus.

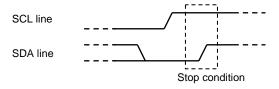


Figure 3.10.10 Generation of Stop Condition

The state of the bus can be ascertained by reading the contents of SBI0SR<BB>. SBI0SR<BB> will be set to 1 (Bus busy status) if a start condition has been detected on the bus, and will be cleared to 0 if a stop condition has been detected (Bus free status).

(8) Interrupt service requests and interrupt cancellation

When a serial bus interface interrupt request 0 (INTSBE0) occurs, the SBI0SR2 <PIN> is cleared to "0". During the time that the SBI0SR2<PIN> is "0", the SCL line is pulled down to the low level.

The <PIN> is cleared to "0" when end of transmission or receiving 1 word of data. And when writing data to SBI0DBR or reading data from SBI0DBR, <PIN> is set to "1".

The time from the <PIN> being set to "1" until the SCL line is released takes tLOW.

In the address recognition mode (<ALS> = 0), <PIN> is cleared to "0" when the received slave address is the same as the value set at the I2C0AR or when a GENERAL CALL is received (All 8-bit data are "0" after a start condition). Although SBI0CR2<PIN> can be set to "1" by the program, the <PIN> is not clear it to "0" when it is programmed "0".

(9) Serial bus interface operation mode selection

SBI0CR2<SBIM1:0> is used to specify the serial bus interface operation mode. Set SBI0CR2<SBIM1:0> to "10" when the device is to be used in I²C bus mode after confirming pin condition of serial bus interface to "H".

Switch a mode to port after confirming a bus is free.

(10) Arbitration lost detection monitor

Since more than one master device can exist simultaneously on the bus in I²C bus mode, a bus arbitration procedure has been implemented in order to guarantee the integrity of transferred data.

Data on the SDA line is used for I²C bus arbitration.

The following shows an example of a bus arbitration procedure when two master devices exist simultaneously on the bus. Master A and master B output the same data until point "a". After master A outputs "L" and master B, "H", the SDA line of the bus is wire-AND and the SDA line is pulled down to the low level by master A. When the SCL line of the bus is pulled up at point b, the slave device reads the data on the SDA line, that is, data in master A. A data transmitted from master B becomes invalid. The state in master B is called "ARBITRATION LOST". Master B device that loses arbitration releases the internal SDA output in order not to affect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

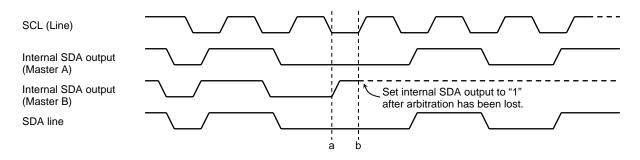


Figure 3.10.11 Arbitration Lost

The TMP92CM22 compares the levels on the bus's SDA line with those of the internal SDA output on the rising edge of the SCL line. If the levels do not match, arbitration is lost and SBI0SR<AL> is set to "1".

When SBIOSR<AL> is set to "1", SBIOSR<MST, TRX> are cleared to "00" and the mode is switched to slave receiver mode. Thus, clock output is stopped in data transfer after setting <AL> = "1".

SBIOSR <AL> is cleared to "0" when data is written to or read from SBIODBR or when data is written to SBIOCR2.

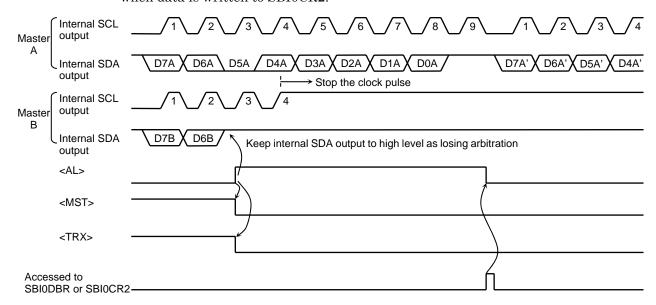


Figure 3.10.12 Example of when TMP92CM22 is a Master Device B (D7A = D7B, D6A = D6B)

(11) Slave address match detection monitor

SBI0SR<AAS> operates following in during slave mode; In address recognition mode (e.g., when I2C0AR<ALS> = "0"), when received GENERAL CALL or same slave address with value set to I2C0AR, SBI0SR<AAS> is set to "1". When <ALS> = "1", SBI0SR<AAS> is set to "1" after the first word of data has been received. SBI0SR<AAS> is cleared to "0" when data is written to SBI0DBR or read from SBI0DBR.

(12) GENERAL CALL detection monitor

SBI0SR<AD0> operates following in during slave mode; when received GENERAL CALL (all 8-bit data is "0", after a start condition), SBI0SR<AD0> is set to "1". And SBI0SR<AD0> is cleared to "0" when a start condition or stop condition on the bus is detected.

(13) Last received bit monitor

The value on the SDA line detected on the rising edge of the SCL line is stored in the SBI0SR<LRB>. In the acknowledge mode, immediately after an INTSBE0 interrupt request has been generated, an acknowledge signal is read by reading the contents of the SBI0SR<LRB>.

(14) Software reset function

The software reset function is used to initialize the SBI circuit, when SBI is rocked by external noises, etc.

When write first "10" next "01" to SBI0CR2<SWRST1:0>, reset signal is inputted to serial bus interface circuit, and circuit is initialized. All command registers except SBI0CR2<SBIM1:0> and status flag except SBI0CR2<SBIM1:0> are initialized to value of just after reset. SBI0CR1<SWRMON> is set to "1" automatically when completed initialization of serial bus interface.

(15) Serial bus interface data buffer register (SBI0DBR)

The received data can be read and transmission data can be written by reading or writing SBI0DBR.

In the master mode, after the slave address and the direction bit are set in this register, the start condition is generated.

(16) I2C bus address register (I2C0AR)

I2C0AR<SA6:0> is used to set the slave address when the TMP92CM22 functions as a slave device.

The slave address outputted from the master device is recognized by setting the I2C0AR<ALS> to "0". And, the data format becomes the addressing format. When set <ALS> to "1", the slave address is not recognized, the data format becomes the free data format.

(17) Baud rate register (SBI0BR1)

Write "1" to baud rate circuit control register SBI0BR1<P4EN> before using I2C bus.

(18) Setting register for IDLE2 mode operation (SBI0BR0)

SBI0BR0<I2SBI0> is the register setting operation/stop during IDLE2 mode. Therefore, setting <I2SBI0> is necessary before the HALT instruction is executed.

3.10.6 Data Transfer in I²C Bus Mode

(1) Device initialization

In first, set the SBI0BR1<P4EN>, SBI0CR1<ACK, SCK2:0>. Set SBI0BR1<P4EN> to "1" and clear bits 7 to 5 and 3 in the SBI0CR1 to "0".

Next, set a slave address \leq SA6:0> and the \leq ALS> (\leq ALS> = "0" when an addressing format) to the I2C0AR.

And, write "000" to SBI0CR2<MST, TRX, BB>, "1" to <PIN>, "10" to <SBIM1:0> and "00" to <SWRST1:0>. Set initialization status to slave receiver mode by this setting.

(2) Start condition and slave address generation

1. Master mode

In the master mode, the start condition and the slave address are generated as follows.

In first, check a bus free status (when SBI0SR<BB> = "0").

Set the SBIOCR1<ACK> to "1" (Acknowledge mode) and specify a slave address and a direction bit to be transmitted to the SBIODBR.

When SBIOSR<BB> = "0", the start condition are generated by writing "1111" to SBIOCR2<MST, TRX, BB, PIN>. Subsequently to the start condition, nine clocks are output from the SCL pin. While eight clocks are output, the slave address and the direction bit which are set to the SBIODBR. At the 9th clock, the SDA line is released and the acknowledge signal is received from the slave device.

An INTSBE interrupt request generate at the falling edge of the 9th clock. The <PIN> is cleared to "0". In the master mode, the SCL pin is pulled down to the low level while <PIN> is "0". When an interrupt request is generated, the <TRX> is changed according to the direction bit only when an acknowledge signal is returned from the slave device.

2. Slave mode

In the slave mode, the start condition and the slave address are received.

After the start condition is received from the master device, while eight clocks are output from the SCL pin, the slave address and the direction bit that are output from the master device are received.

When a GENERAL CALL or the same address as the slave address set in I2C0AR is received, the SDA line is pulled down to the low level at the 9th clock, and the acknowledge signal is output.

An INTSBE interrupt request is generated on the falling edge of the 9th clock. The <PIN> is cleared to "0". In slave mode the SCL line is pulled down to the low level while the <PIN> = "0".

Figure 3.10.13 Start Condition and Slave Address Generation

(3) 1-word data transfer

Check the <MST> by the INTSBE0 interrupt process after the 1-word data transfer is completed, and determine whether the mode is a master or slave.

1. If $\langle MST \rangle = "1"$ (Master mode)

Check the <TRX> and determine whether the mode is a transmitter or receiver.

When the <TRX> = "1" (Transmitter mode)

Check the <LRB>. When <LRB> is "1", a receiver does not request data. Implement the process to generate a stop condition (Refer to 3.10.6 (4)) and terminate data transfer.

When the <LRB> is "0", the receiver is requests new data. When the next transmitted data is 8 bits, write the transmitted data to SBI0DBR. When the next transmitted data is other than 8 bits, set the <BC2:0> <ACK> and write the transmitted data to SBI0DBR. After written the data, <PIN> becomes "1", a serial clock pulse is generated for transferring a new 1-word of data from the SCL pin, and then the 1-word data is transmitted. After the data is transmitted, an INTSBE interrupt request generates. The <PIN> becomes "0" and the SCL line is pulled down to the low level. If the data to be transferred is more than one word in length, repeat the procedure from the <LRB> checking above.

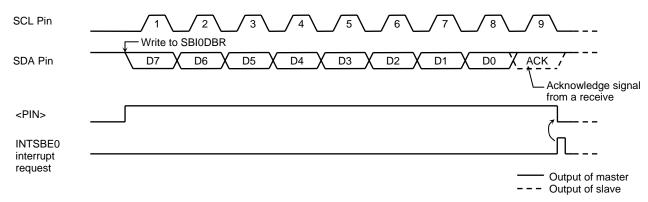


Figure 3.10.14 Example in which <BC2:0> = "000" and <ACK> = "1" (Transmitter mode)

When the <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set <BC2:0> <ACK> and read the received data from SBI0DBR to release the SCL line (Data which is read immediately after a slave address is sent is undefined). After the data is read, <PIN> becomes "1". Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA pin with acknowledge timing.

An INTSBE interrupt request then generates and the <PIN> becomes "0", Then the TMP92CM22 pulls down the SCL pin to the low level. The TMP92CM22 outputs a clock pulse for 1 word of data transfer and the acknowledge signal each time that received data is read from the SBI0DBR.

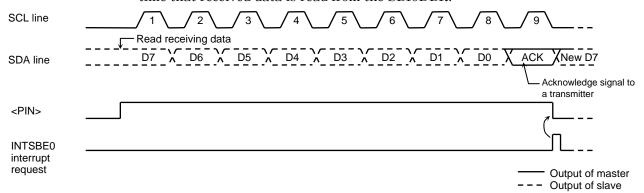


Figure 3.10.15 Example of when <BC2:0> = "000", <ACK> = "1" (Receiver mode)

In order to terminate the transmission of data to a transmitter, clear <ACK> to "0" before reading data which is 1 word before the last data to be received. The last data word does not generate a clock pulse as the acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set <BC2:0> to "001" and read the data. The TMP92CM22 generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA line on the bus remains high. The transmitter receives the high signal as an ACK signal. The receiver indicates to the transmitter that the data transfer is completed.

After the one data bit has been received and an interrupt request has been generated, the TMP92CM22 generates a stop condition (See section 3.10.6 (4)) and terminates data transfer.

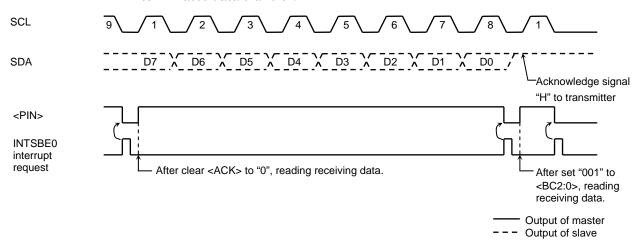


Figure 3.10.16 Termination of Data Transfer (Master receiver mode)

2. If $\langle MST \rangle = 0$ (Slave mode)

In the slave mode the TMP92CM22 operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, an INTSBE0 interrupt request generate when the TMP92CM22 receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is completed, or after matching received address. In the master mode, the TMP92CM22 operates in a slave mode if it losing arbitration. An INTSBE0 interrupt request is generated when a word data transfer terminates after losing arbitration. When an INTSBE0 interrupt request is generated the <PIN> is cleared to "0" and the SCL pin is pulled down to the low level. Either reading/writing from/to the SBI0DBR or setting the <PIN> to "1" will release the SCL pin after taking tLOW time.

Check the SBIOSR<AL>, <TRX>, <AAS>, and <ADO> and implements processes according to conditions listed in the next table.

Table 3.10.1 Operation in the Slave Mode

<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Conditions	Process
1	1	1	0	The TMP92CM22 detects arbitration lost when transmitting a slave address, and receives a slave address for which the value of the direction bit sent from another master is "1".	Set the number of bits of single word to <bc2:0>, and write the transmit data to SBI0DBR.</bc2:0>
	0	1	0	In salve receiver mode, the TMP92CM22 receives a slave address for which the value of the direction bit sent from the master is "1".	
		0	0	In salve transmitter mode, transmission of data of single word is terminated.	Check the <lrb>, If <lrb> is set to "1", set <pin> to "1", reset "0" to <trx> and release the bus for the receiver no request next data. If <lrb> was cleared to "0", set bit number of single word to <bc2:0> and write the transmit data to SBIODBR for the receiver requests next data.</bc2:0></lrb></trx></pin></lrb></lrb>
0	1	1	1/0	The TMP92CM22 detects arbitration lost when transmitting a slave address, and receives a slave address or GENERAL CALL for which the value of the direction bit sent from another master is "0".	Read the SBI0DBR for setting the <pin> to "1" (Reading dummy data) or set the <pin> to "1".</pin></pin>
		0	0	The TMP92CM22 detects arbitration lost when transmitting a slave address or data, and transfer of word terminates.	
	0	1	1/0	In slave receiver mode the TMP92CM22 receives a slave address or GENERAL CALL for which the value of the direction bit sent from the master is "0".	
		0	1/0	In slave receiver mode the TMP92CM22 terminates receiving word data.	Set bit number of single word to <bc2:0>, and read the receiving data from SBI0DBR.</bc2:0>

(4) Stop condition generation

When SBI0SR<BB> = 1, the sequence for generating a stop condition is started by writing "111" to SBI0CR2<MST, TRX, PIN> and "0" to SBI0CR2<BB>. Do not modify the contents of SBI0CR2<MST, TRX, PIN, BB> until a stop condition has been generated on the bus. When the bus's SCL line has been pulled low by another device, the TMP92CM22 generates a stop condition when the other device has released the SCL line and SDA pin rising.

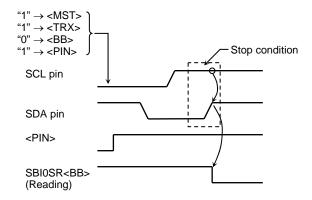


Figure 3.10.17 Stop Condition Generation (Single master)

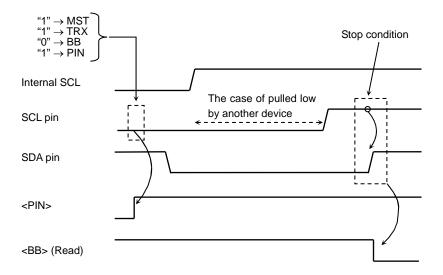


Figure 3.10.18 Stop Condition Generation (Multi master)

(5) Restart

Restart is used during data transfer between a master device and a slave device to change the data transfer direction. The following description explains how to restart when this device is in the master mode.

Clear the SBI0CR2<MST, TRX, BB> to "000" and set the SBI0CR2<PIN> to "1" to release the bus. The SDA line remains the high level and the SCL pin is released. Since a stop condition is not generated on the bus, other devices assume the bus to be in a busy state. Check the SBI0SR<BB> until it becomes "0" to check that the SCL pin of this device is released. Check the <LRB> until it becomes 1 to check that the SCL line on a bus is not pulled down to the low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure described in 3.10.6 (2).

In order to meet setup time when restarting, take at least $4.7 \mu s$ of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.

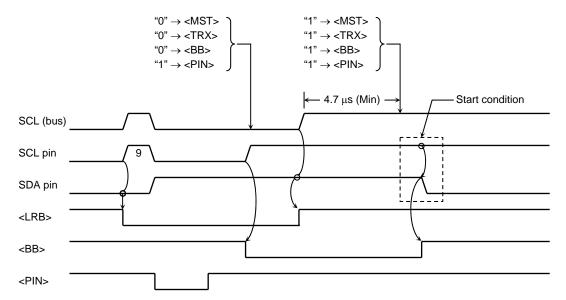
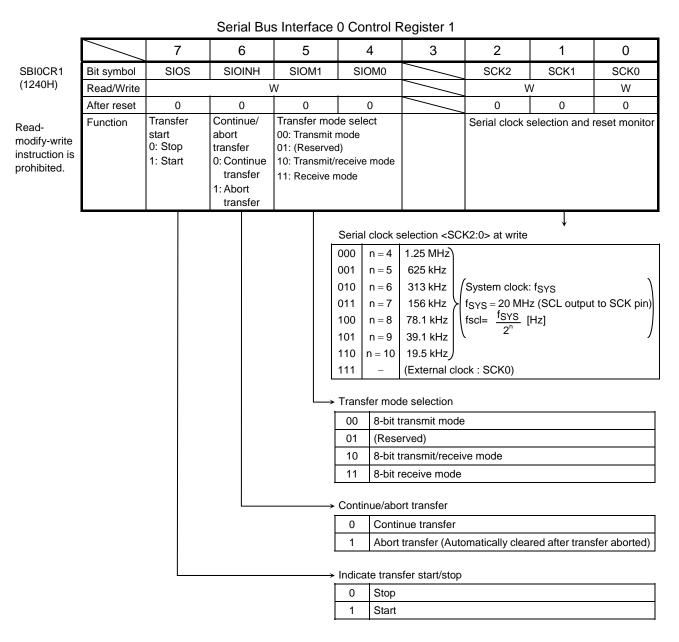



Figure 3.10.19 Timing Diagram when Restarting

Clocked-synchronous 8-bit SIO Mode Control 3.10.7

The following registers are used to control and monitor the operation status when the serial bus interface (SBI) is being operated in clocked synchronous 8-bit SIO mode.

Note: Set the transfer mode and the serial clock after setting <SIOS> to "0" and <SIOINH> to "1".

(1241H)

Read-

Serial Bus Interface 0 Data Buffer Register 7 6 5 4 3 2 1 0 SBI0DBR DB7 DB6 DB5 DB1 DB0 Bit symbol DB4 DB3 DB2 Read/Write R (Receiver)/W (Transfer) After reset Undefined modify-write instruction is prohibited.

Figure 3.10.20 Register for the SIO Mode

Serial Bus Interface 0 Control Register 2 2 7 6 5 4 3 1 0 SBI0CR2 Bit symbol SBIM1 SBIM0 (1243H) Read/Write After reset 0 0 0 0 Serial bus interface Read-Function (Note 2) (Note 2) operation mode selection modify-write 00: Port mode instruction is 01: SIO mode prohibited. 10: I2C bus mode 11: (Reserved) Note 1: Set the SBI0CR1<BC2:0> to "000" before switching Serial bus interface operation mode selection to a clocked-synchronous 8-bit SIO mode. Port mode (Serial bus interface output disabled) Note 2: Please always write "00" to SBICR2<1:0>. Clocked-synchronous 8-bit SIO mode 01 I²C bus mode 10 11 (Reserved) Serial Bus Interface 0 Status Register 7 2 0 6 5 1 SBI0SR SIOF SEF Bit symbol (1243H) Read/Write R After reset 0 0 Function Serial Shift transfer operation operation status status monitor monitor Shift operation status monitor Serial transfer operating status monitor Transfer terminated 0 Shift operation terminated Transfer in progress 1 Shift operation in progress Serial Bus Interface 0 Baud Rate Register 0 7 6 5 4 2 1 0 SBI0BR0 Bit symbol (1244H) Read/Write R/W W Read-After reset 0 0 modify-write **Function** Always write Always write "0". instruction is prohibited. Clocked-syncronous mode cannot operate in IDEL2 mode. Note: Serial Bus Interface 0 Baud Rate Register 1 7 3 2 1 0 6 5 SBI0BR1 P4EN Bit symbol (1245H) Read/Write W After reset 0 0 Read-**Function** Internal Always write modify-write clock "0". instruction is 0: Stop prohibited. 1: Operate Baud rate clock control 0 Stop Operate

Figure 3.10.21 Register for the SIO Mode

2007-02-16

(1) Serial Clock

1. Clock source

SBI0CR1<SCK2:0> is used to select the following functions:

Internal clock

In internal clock mode one of seven frequencies can be selected. The serial clock signal is output to the outside on the SCK pin.

When the device is writing (in transmit mode) or reading (in receive mode), data cannot follow the serial clock rate, so an automatic wait function is executed which automatically stops the serial clock and holds the next shift operation until reading or writing has been completed.

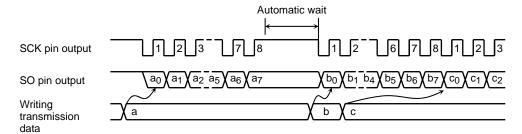


Figure 3.10.22 Automatic Wait Function

External clock (<SCK2:0> = "111")

An external clock input via the SCK pin is used as the serial clock. In order to ensure the integrity of shift operations, both the high and low-level serial clock pulse widths shown below must be maintained. The maximum data transfer frequency is 1.25 MHz (when $f_{\text{SYS}} = 20 \text{ MHz}$).

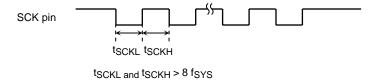


Figure 3.10.23 Maximum Data Transfer Frequency when External Clock Input

2. Shift edge

Data is transmitted on the leading edge of the clock and received on the trailing edge.

Leading edge shift

Data is shifted on the leading edge of the serial clock (on the falling edge of the SCK pin input/output).

Trailing edge shift

Data is shifted on the trailing edge of the serial clock (on the rising edge of the SCK pin input/output).

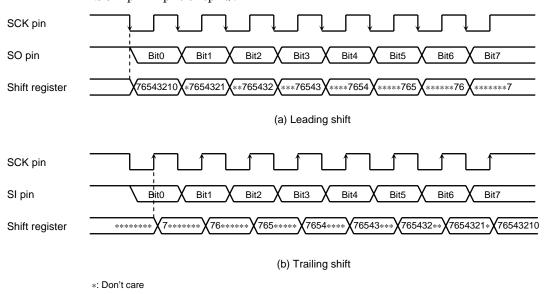


Figure 3.10.24 Shift Edge

(2) Transfer modes

The SBI0CR1<SIOM1:0> is used to select a transmit, receive or transmit/receive mode.

1. 8-bit transmit mode

Set a control register to a transmit mode and write transmission data to the SBIODBR.

After the transmit data has been written, set the SBI0CR1<SIOS> to "1" to start data transfer. The transmitted data is transferred from the SBI0DBR to the shift register and output, starting with the least significant bit (LSB), via the SO pin and synchronized with the serial clock. When the transmission data has been transferred to the shift register, the SBI0DBR becomes empty. The INTSBE0 (Buffer empty) interrupt request is generated to request new data.

When the internal clock is used, the serial clock will stop and the automatic wait function will be initiated if new data is not loaded to the data buffer register after the specified 8-bit data is transmitted. When new transmission data is written, the automatic wait function is canceled.

When the external clock is used, data should be written to the SBI0DBR before new data is shifted. The transfer speed is determined by the maximum delay time between the time when an interrupt request is generated and the time when data is written to the SBI0DBR by the interrupt service program.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

For stopping data transmission, when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the <SIOINH> is set to "1". When the <SIOS> is cleared to "0", the transmitted mode ends when all data is output. In order to confirm whether data is being transmitted properly by the program, the <SIOF> to be sensed. The SBIOSR<SIOF> is cleared to "0" when transmission has been completed. When the <SIOINH> is set to "1", transmitting datat stops. The <SIOF> turns "0".

When the external clock is used, it is also necessary to clear the <SIOS> to "0" before new data is shifted; otherwise, dummy data is transmitted and operation ends.

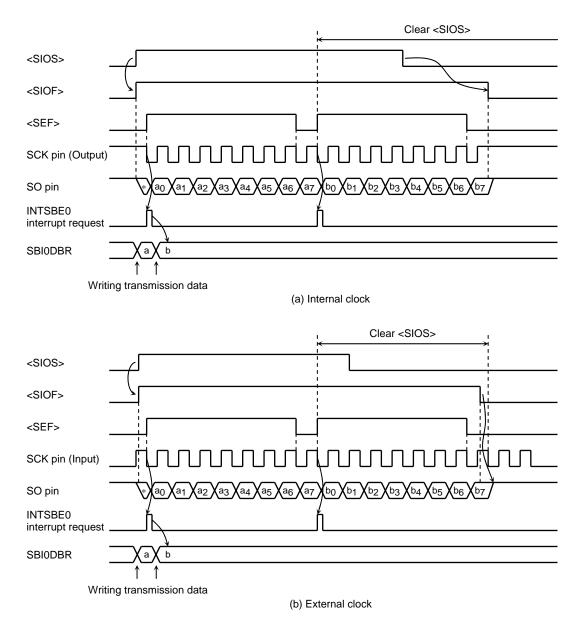


Figure 3.10.25 Transmission Mode

Example: Program to stop data transmission (when an external clock is used)

STEST1: BIT 2, (SBIOSR); If $\langle SEF \rangle = 1$ then loop.

JR NZ, STEST1

STEST2 : BIT 0, (P9) ; If SCK = 0 then loop.

JR Z, STEST2

LD (SBI0CR1), 00000111B ; $\langle SIOS \rangle \leftarrow 0$

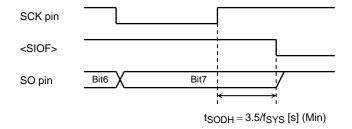


Figure 3.10.26 Transmission Data Hold Time at End Transmit

2. 8-bit receive mode

Set the control register to receive mode and set the SBI0CR1<SIOS> to "1" for switching to receive mode. Data is received into the shift register via the SI pin and synchronized with the serial clock, starting from the least significant bit (LSB). When the 8-bit data is received, the data is transferred from the shift register to the SBI0DBR. The INTSBEO (Buffer full) interrupt request is generated to request that the received data be read. The data is then read from the SBI0DBR by the interrupt service program.

When the internal clock is used, the serial clock will stop and the automatic wait function will be in effect until the received data is read from the SBI0DBR.

When the external clock is used, since shift operation is synchronized with an external clock pulse, the received data should be read from the SBI0DBR before the next serial clock pulse is input. If the received data is not read, further data to be received is canceled. The maximum transfer speed when an external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when the received data is read.

Receiving of data ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the <SIOINH> is set to "1". If <SIOS> is cleared to "0", received data is transferred to the SBI0DBR in complete blocks. The received mode ends when the transfer is completed. In order to confirm whether data is being received properly by the program, the SBI0SR<SIOF> to be sensed. The <SIOF> is cleared to "0" when receiving is completed. When it is confirmed that receiving has been completed, the last data is read. When the <SIOINH> is set to "1", data receiving stops. The <SIOF> is cleared to "0" (The received data becomes invalid, therefore no need to read it).

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data receiving by clearing the <SIOS> to "0", read the last data, then change the mode.

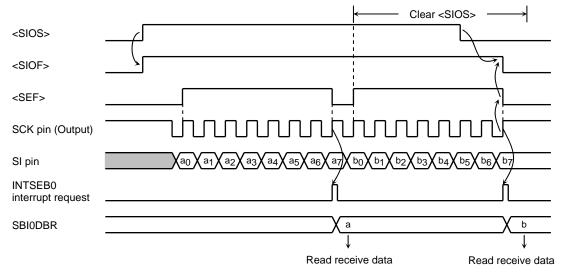


Figure 3.10.27 Receiver Mode (Example: Internal clock)

3. 8-bit transmit/receive mode

Set a control register to a transmit/receive mode and write data to the SBI0DBR. After the data is written, set the SBI0CR<SIOS> to "1" to start transmitting/receiving. When data is transmitted, the data is output from the SO pin, starting from the least significant bit (LSB) and synchronized with the leading edge of the serial clock signal. When data is received, the data is input via the SI pin on the trailing edge of the serial clock signal. 8-bit data is transferred from the shift register to the SBI0DBR and the INTSBE0 interrupt request is generated. The interrupt service program reads the received data from the data buffer register and writes the data which is to be transmitted. The SBI0DBR is used for both transmitting and receiving. Transmitted data should always be written after received data is read.

When the internal clock is used, the automatic wait function will be in effect until the received data is read and the new data is written.

When the external clock is used, since the shift operation is synchronized with the external clock, the received data is read and transmitted data is written before a new shift operation is executed. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time at which received data is read and transmitted data is written.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting/receiving data ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the SBI0CR1<SIOINH> is set to "1". When the <SIOS> is cleared to "0", received data is transferred to the SBI0DBR in complete blocks. The transmit/receive mode ends when the transfer is completed. In order to confirm whether data is being transmitted/received properly by the program, set the SBI0SR to be sensed. The <SIOF> is cleared to "0" when transmitting/receiving is completed. When the <SIOINH> is set to "1", data transmitting/receiving stops. The <SIOF> is then cleared to "0".

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data transmitting/receiving by clearing the <SIOS> to "0", read the last data, and then change the transfer mode.

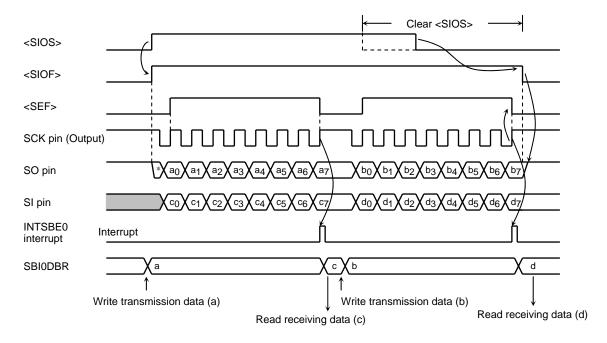


Figure 3.10.28 Transmission/Receiving Mode (when an external clock is used)

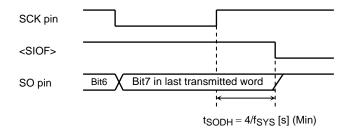


Figure 3.10.29 Transmission Data Hold Time at End of Transmission/Receiving (Transmission/receiving mode)

3.11 Analog/Digital Converter

The TMP92CM22 incorporates a 10-bit successive approximation-type analog/digital converter (AD converter) with 8-channel analog input.

Figure 3.11.1 is a block diagram of the AD converter. The 8-channel analog input pins (AN0 to AN7) are shared with the input-only port G so they can be used as an input port.

Note: When IDLE2, IDLE1, or STOP mode is selected, as to reduce the power, with some timings the system may enter a standby mode even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.

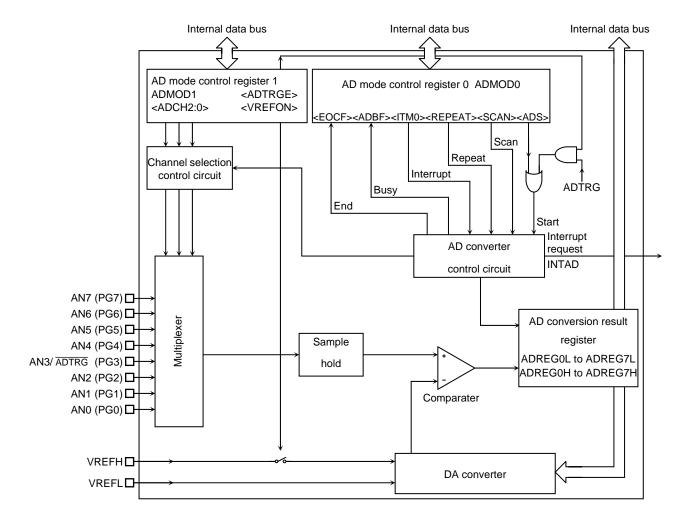


Figure 3.11.1 Block Diagram of AD Converter

3.11.1 Analog/Digital Converter Registers

The AD converter is controlled by the three AD mode control registers: ADMOD0, ADMOD1, and ADMOD2. The eight AD conversion data result registers (ADREG0H/L to ADREG7H/L) store the results of AD conversion.

Figure 3.11.2 shows the registers related to the AD converter.

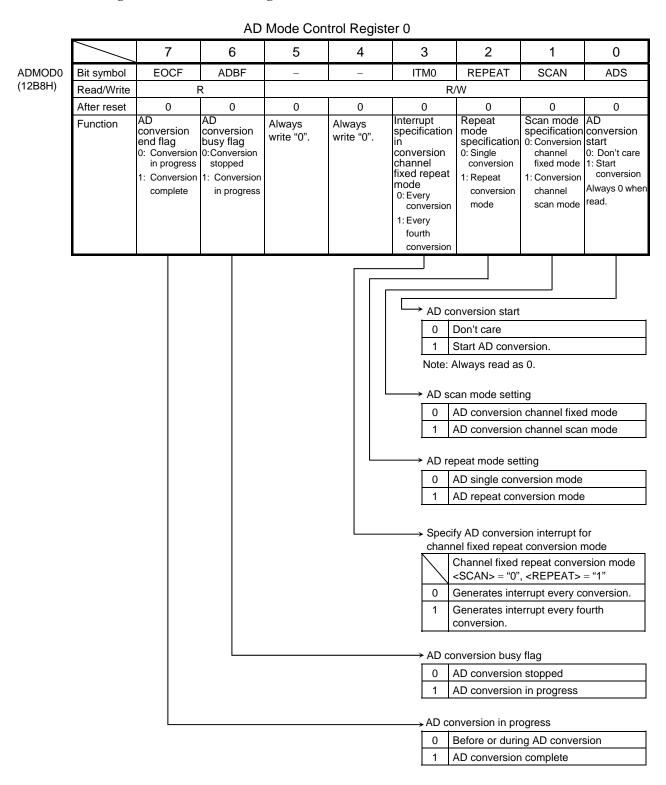


Figure 3.11.2 Register for AD Converter

2007-02-16

AD Mode Control Register 1 2 7 3 1 0 6 5 4 Bit symbol VREFON I2AD ADCH2 ADCH1 ADCH0 Read/Write R/W After reset 0 0 0 0 0 0 0 0 **Function VREF** IDLE2 Always Always write Always Analog input channel selection application write "0". "0". write "0". 0: Stop control 1: Operate 0: OFF 1: ON Analog input channel selection <SCAN> Channel Channel <ADCH2:0> fixed scanned 000 AN0 AN0 $AN0 \rightarrow AN1$ 001 AN1 010 AN2 $AN0 \rightarrow AN1 \rightarrow AN2$ $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$ 011 (Note) AN3 $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$ 100 (Note) AN4 \rightarrow AN4 101 (Note) AN5 $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$ \rightarrow AN4 \rightarrow AN5 $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$ 110 (Note) AN₆ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 111 (Note) AN7 $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$ \rightarrow AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7 IDLE2 control 0 Stopped In operation Control of application of reference voltage to AD converter 0 OFF ON Before starting conversion (before writing 1 to ADMOD0<ADS>), set the <VREFON> bit AD Mode Control Register 2

ADMOD2 (12BAH)

ADMOD1

(12B9H)

	7	6	5	4	3	2	1	0
Bit symbol								ADTRGE
Read/Write								R/W
After reset								0
Function								AD conversion trigger start control 0: Disable 1. Enable

AD conversion start control by external

→ trigger (ADTRG input)

Ī	0	Disabled
I	1	Enabled

Note: As pin AN3 also functions as the \overline{ADTRG} input pin, do not set <ADCH2:0> = "011, 100,101,110,111" when using \overline{ADTRG} with <ADTRGE> set to "1".

Figure 3.11.3 Register for AD Converter

AD Conversion Result Register 0 Low

ADREG0L (12A0H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR01	ADR00						ADR0RF
Read/Write	F	₹						R
After reset	Unde	efined						0
Function		2 bits of AD on result						AD conversion data storage flag 1: Conversion result stored

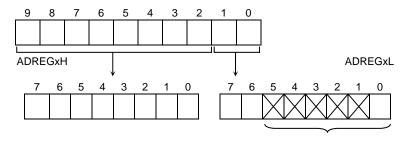
AD Conversion Result Register 0 High

ADREG0H (12A1H)

	7	6	5	4	3	2	1	0	
Bit symbol	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02	
Read/Write		R							
After reset		Undefined							
Function			Stores	upper 8 bits A	D conversion	result.			

AD Conversion Result Register 1 Low

ADREG1L (12A2H)


	7	6	5	4	3	2	1	0
Bit symbol	ADR11	ADR10						ADR1RF
Read/Write	F	R						R
After reset	Unde	efined						0
Function	Stores lower 2 bits of AD conversion result							AD conversion data storage flag
								1: Conversion result stored

AD Conversion Result Register 1 High

ADREG1H (12A3H)

	7	6	5	4	3	2	1	0		
Bit symbol	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12		
Read/Write		R								
After reset		Undefined								
Function			Stores u	pper 8 bits of	AD conversion	n result.				

Channel x conversion result

- Bits 5 to 1 are always read as 1.
- Bit0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

2007-02-16

Figure 3.11.4 Register for AD Converter

AD Conversion Result Register 2 Low

ADREG2L (12A4H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR21	ADR20						ADR2RF
Read/Write	F	₹						R
After reset	Unde	fined						0
Function	Stores lower conversion	2 bits of AD on result.						AD conversion data storage flag 1: Conversion result stored

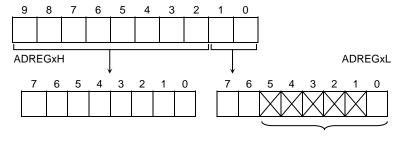
AD Conversion Result Register 2 High

ADREG2H (12A5H)

	7	6	5	4	3	2	1	0		
Bit symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22		
Read/Write		R								
After reset		Undefined								
Function		Stores upper 8 bits of AD conversion result.								

AD Conversion Result Register 3 Low

ADREG3L (12A6H)


	7	6	5	4	3	2	1	0
Bit symbol	ADR31	ADR30						ADR3RF
Read/Write	F	۲						R
After reset	Unde	efined						0
Function	Stores lower 2 bits of AD conversion result.							AD conversion data storage flag 1:Conversion result stored

AD Conversion Result Register 3 High

ADREG3H (12A7H)

	7	6	5	4	3	2	1	0			
Bit symbol	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32			
Read/Write		R									
After reset		Undefined									
Function			Stores u	pper 8 bits of	AD conversion	n result.					

 $\begin{array}{l} \text{Channel} \times \text{conversion} \\ \text{result} \end{array}$

- Bits 5 to 1 are always read as 1.
- Bit0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

Figure 3.11.5 Register for AD Converter

AD Conversion Result Register 4 Low

ADREG4L (12A8H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR41	ADR40						ADR4RF
Read/Write	F	₹						R
After reset	Unde	Undefined						0
Function	Stores lower 2 bits of AD conversion result.							AD conversion data storage flag 1: Conversion result stored

AD Conversion Result Register 4 High

ADREG4H (12A9H)

	7	6	5	4	3	2	1	0		
Bit symbol	ADR49	DR49 ADR48 ADR47 ADR46 ADR45 ADR44 ADR43 ADR42								
Read/Write		R								
After reset		Undefined								
Function		Stores upper 8 bits of AD conversion result.								

AD Conversion Result Register 5 Low

ADREG5L (12AAH)

	7	6	5	4	3	2	1	0
Bit symbol	ADR51	ADR50						ADR5RF
Read/Write	F	₹						R
After reset	Unde	fined						0
Function		2 bits of AD on result.						AD conversion data storage flag 1: Conversion result stored

AD Conversion Result Register 5 High

ADREG5H (12ABH)

	7	6	5	4	3	2	1	0		
Bit symbol	ADR59	DR59 ADR58 ADR57 ADR56 ADR55 ADR54 ADR53 ADR52								
Read/Write		R								
After reset		Undefined								
Function		Stores upper 8 bits of AD conversion result.								

 $\begin{aligned} & \text{Channel} \times \text{conversion} \\ & \text{result} \end{aligned}$

- Bits 5 to 1 are always read as 1.
- Bit0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

Figure 3.11.6 Register for AD Converter

AD Conversion Result Register 6 Low

ADREG6L (12ACH)

	7	6	5	4	3	2	1	0
Bit symbol	ADR61	ADR60						ADR6RF
Read/Write	F	₹						R
After reset	Unde	efined						0
Function		2 bits of AD on result.						AD conversion data storage flag 1:Conversion result stored

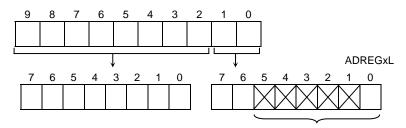
AD Conversion Result Register 6 High

ADREG6H (12ADH)

	7	6	5	4	3	2	1	0		
Bit symbol	ADR69	DR69 ADR68 ADR67 ADR66 ADR65 ADR64 ADR63 ADR62								
Read/Write		R								
After reset		Undefined								
Function			Stores u	pper 8 bits of	AD conversion	n result.		·		

AD Conversion Result Register 7 Low

ADREG7L (12AEH)


		7	6	5	4	3	2	1	0
-	Bit symbol	ADR71	ADR70						ADR7RF
	Read/Write	F	₹						R
	After reset	Unde	fined						0
	Function		2 bits of AD on result.						AD conversion data storage flag 1: Conversion result stored

AD Conversion Result Register 7 High

ADREG7H (12AFH)

	7	6	5	4	3	2	1	0	
Bit symbol	ADR79	DR79 ADR78 ADR77 ADR76 ADR75 ADR74 ADR73 ADR72							
Read/Write		R							
After reset		Undefined							
Function		Stores upper 8 bits of AD conversion result.							

 $\begin{aligned} & \text{Channel} \times \text{conversion} \\ & \text{result} \end{aligned}$

- Bits 5 to 1 are always read as 1.
- Bit0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

Figure 3.11.7 Register for AD Converter

3.11.2 Description of Operation

(1) Analog reference voltage

A high-level analog reference voltage is applied to the VREFH pin; a low-level analog reference voltage is applied to the VREFL pin. To perform AD conversion, the reference voltage, the difference between VREFH and VREFL, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between VREFH and VREFL, program a 0 to ADMOD1<VREFON> in AD mode control register 1. To start AD conversion in the OFF state, first write a 1 to ADMOD1<VREFON>, wait 3 µs until the internal reference voltage stabilizes (This is not related to fSYS), then set ADMOD0<ADS> to 1.

(2) Analog input channel selection

The analog input channel selection varies depends on the operation mode of the AD converter.

- In analog input channel fixed mode (ADMOD0<SCAN> = 0)
 Setting ADMOD1<ADCH2:0> selects one of the input pins AN0 to AN7 as the input channel.
- In analog input channel scan mode (ADMOD0<SCAN> = 1) Setting ADMOD1<ADCH2:0> selects one of the eight scan modes.

Table 3.11.1 illustrates analog input channel selection in each operation mode.

On a reset, ADMOD0<SCAN> is set to "0" and ADMOD1<ADCH2:0> is initialized to "000". Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

<adch2:0></adch2:0>	Channel fixed <scan> = "0"</scan>	Channel scan <scan> = "1"</scan>
000	AN0	AN0
001	AN1	$AN0 \rightarrow AN1$
010	AN2	$AN0 \rightarrow AN1 \rightarrow AN2$
011	AN3	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$
100	AN4	$\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \end{array}$
101	AN5	$\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \end{array}$
110	AN6	$\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \end{array}$
111	AN7	$\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \to AN7 \end{array}$

Table 3.11.1 Analog Input Channel Selection

(3) Starting AD conversion

To start AD conversion, program "1" to ADMOD0<ADS> in AD mode control register 0, or ADMOD1<ADTRGE> in AD mode control register 1 and input falling edge on ADTRG pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> will be set to "1", indicating that AD conversion is in progress.

(4) AD conversion modes and the AD conversion end interrupt

The four AD conversion modes are:

- · Channel fixed single conversion mode
- Channel scan single conversion mode
- Channel fixed repeat conversion mode
- Channel scan repeat conversion mode

The ADMOD0<REPEAT> and ADMOD0<SCAN> settings in AD mode control register 0 determine the AD mode setting.

Completion of AD conversion triggers an INTAD AD conversion end interrupt request. Also, ADMOD0<EOCF> will be set to 1 to indicate that AD conversion has been completed.

1. Channel fixed single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "00" selects conversion channel fixed single conversion mode.

In this mode data on one specified channel is converted once only. When the conversion has been completed, the ADMOD0<EOCF> flag is set to 1, ADMOD0<ADBF> is cleared to "0", and an INTAD interrupt request is generated.

2. Channel scan single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "01" selects conversion channel scan single conversion mode.

In this mode data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to "1", ADMOD0<ADBF> is cleared to "0", and an INTAD interrupt request is generated.

3. Channel fixed repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "10" selects conversion channel fixed repeat conversion mode.

In this mode data on one specified channel is converted repeatedly. When conversion has been completed, ADMOD0<EOCF> is set to "1" and ADMOD0<ADBF> is not cleared to "0" but held at "1". INTAD interrupt request generation timing is determined by the setting of ADMOD0<ITM0>.

Clearing <ITM0> to "0" generates an interrupt request every time an AD conversion is completed.

Setting <ITM0> to "1" generates an interrupt request on completion of every fourth conversion.

4. Channel scan repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "11" selects conversion channel scan repeat conversion mode.

In this mode data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMOD0<EOCF> is set to "1" and an INTAD interrupt request is generated. ADMOD0<ADBF> is not cleared to "0" but held at "1".

To stop conversion in a repeat conversion mode (e.g., in cases c and d), program a "0" to ADMODO<REPEAT>. After the current conversion has been completed, the repeat conversion mode terminates and ADMODO<ADBF> is cleared to "0".

Switching to a halt state (IDLE2 mode with ADMOD1<I2AD> cleared to "0", IDLE1 mode or STOP mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (e.g., in cases c and d), when the halt is released, conversion restarts from the beginning. In single conversion modes (e.g., in cases a and b), conversion does not restart when the halt is released (The converter remains stopped).

Table 3.11.2 shows the relationship between the AD conversion modes and interrupt requests.

Table 3.11.2 Relationship between the AD Conversion Modes and Interrupt Requests AD

Mode	Interrupt Request		ADMOD0		
mode	Generation	<itm0></itm0>	<repeat></repeat>	<scan></scan>	
Channel fixed single conversion mode	After completion of conversion	Х	0	0	
Channel scan single conversion mode	After completion of scan conversion	Х	0	1	
Channel fixed repeat	Every conversion	0	1	0	
conversion mode	Every forth conversion	1	l	U	
Channel scan repeat conversion mode	After completion of every scan conversion	Х	1	1	

X: Don't care

(5) AD conversion time

84 states (8.4 µs at fSYS = 20 MHz) are required for the AD conversion of one channel.

(6) Storing and reading the results of AD conversion

The AD conversion data upper and lower registers (ADREG0H/L to ADREG7H/L) store the results of AD conversion. (ADREG0H/L to ADREG7H/L are read-only registers.)

In channel fixed repeat conversion mode, the conversion results are stored successively in registers ADREG0H/L to ADREG3H/L. In other modes the ANO, AN1, AN2, AN3, AN4 AN5, AN6, AN7 conversion results are stored in ADREG0H/L, ADREG1H/L, ADREG2H/L, ADREG3H/L, ADREG4H/L, ADREG5H/L, ADREG6H/L, ADREG7H/L respectively.

Table 3.11.3 shows the correspondence between the analog input channels and the registers which are used to hold the results of AD conversion.

Table 3.11.3 Correspondence between Analog Input Channel and AD Conversion Result Register

Analog Input	AD Conversion	Result Register
Channel (Port G)	Conversion Modes Other than at Right	Channel Fixed Repeat Conversion Mode (ADMOD0 <itm0>= "1")</itm0>
AN0	ADREG0H/L	
AN1	ADREG1H/L	
AN2	ADREG2H/L	ADREG0H/L←
AN3	ADREG3H/L	ADREĞ1H/L ↓
AN4	ADREG4H/L	ADREĞ2H/L
AN5	ADREG5H/L	ADREĠ3H/L ——J
AN6	ADREG6H/L	
AN7	ADREG7H/L	

<ADRxRF>, bit0 of the AD conversion data lower register, is used as the AD conversion data storage flag. The storage flag indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to "1". When either of the AD conversion result registers (ADREGxH or ADREGxL) is read, the flag is cleared to "0".

Reading the AD conversion result also clears the AD conversion end flag ADMOD0<EOCF> to "0".

Example:

1. Convert the analog input voltage on the AN3 pin and write the result, to memory address 0800H using the AD interrupt (INTAD) processing routine.

Setting of main routine 7 6 5 4 3 2 1 0 INTEOAD \leftarrow X 1 0 0 - - - -Enable INTAD and set it to interrupt level 4. $ADMOD1 \leftarrow 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1$ Set pin AN3 to the analog input channel. $\mathsf{ADMOD0} \; \leftarrow \; \mathsf{X} \; \; \mathsf{X} \; \; \mathsf{0} \; \; \mathsf{1}$ Start conversion in channel fixed single conversion mode. Interrupt routine processing example WA ← ADREG3 Read value of ADREG3L, ADREG3H to general purpose register WA (16 bits). WA > > 6 Shift contents read into WA six times to right and zero-fill upper bits. (H0080) $\leftarrow WA$ Write contents of WA to memory address 0800H.

2. Converts repeatedly the analog input voltages on the three pins AN0, AN1, and AN2, using channel scan repeat conversion mode.

```
INTE0AD ← X 0 0 0 − − − − Disable INTAD.

ADMOD1 ← 1 1 0 0 0 0 1 0 Set pins AN0 to AN2 to be the analog input channels.

ADMOD0 ← X X 0 0 0 1 1 1 1 Start conversion in channel scan repeat conversion mode.

X: Don't care, −: No change
```

3.12 Watchdog Timer (Runaway detection timer)

The TMP92CM22 contains a watchdog timer of runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (Runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset. (The level of external $\overline{\text{RESET}}$ pin is not changed.)

3.12.1 Configuration

Figure 3.12.1 is a block diagram of the watchdog timer (WDT).

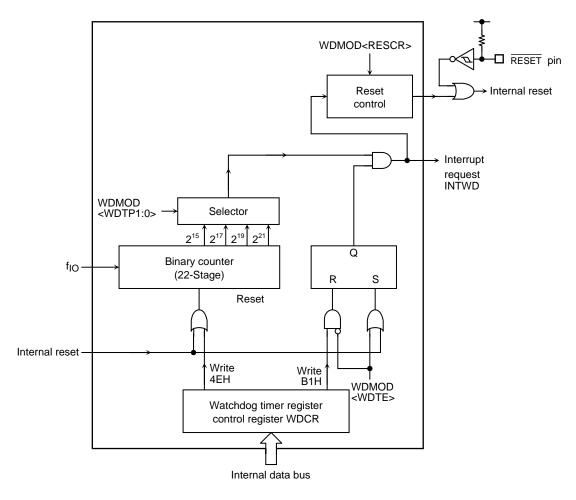


Figure 3.12.1 Block Diagram of Watchdog Timer

Note: Care must be exercised in the overall design of the apparatus since the watchdog timer may fail to function correctly due to external noise, etc.

3.12.2 Operation

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<WDTP1:0> has elapsed. The watchdog timer must be cleared "0" in software before an INTWD interrupt will be generated. If the CPU malfunctions (e.g., if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (runaway) due to the INTWD interrupt and in this case it is possible to return to the CPU to normal operation by means of an anti-malfunction program.

The watchdog timer begins operating immediately on release of the watchdog timer reset.

The watchdog timer is halted in IDLE1 or STOP mode. The watchdog timer counter continues counting during bus release (when $\overline{\text{BUSAK}}$ goes low).

When the device is in IDLE2 mode, the operation of WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.

The watchdog timer consists of a 22-stage binary counter which uses the clock ϕ (2/f_{IO}) as the input clock. The binary counter can output 2¹⁵/f_{IO}, 2¹⁷/f_{IO}, 2¹⁹/f_{IO} and 2²¹/f_{IO}.

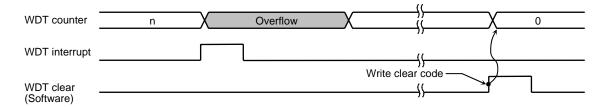


Figure 3.12.2 Normal Mode

The runaway detection result can also be connected to the reset pin internally. In this case, the reset time will be between 22 and 29 system clocks (35.2 to 46.4 μ s at fosch = 40 MHz) as shown in Figure 3.12.3. After a reset, the fsys clock is ffpH/2, where ffpH is generated by dividing the high-speed oscillator clock (fosch) by sixteen through the clock gear function

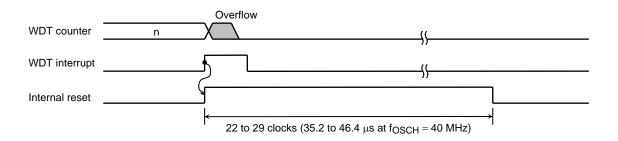


Figure 3.12.3 Reset Mode

3.12.3 Control Registers

The watchdog timer (WDT) is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
 - 1. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway.

On a reset this register is initialized to WDMOD<WDTP1:0> = 00.

The detection time for WDT is $2^{15}/f_{SYS}$ [s]. (The number of system clocks is approximately 65, 536.)

2. Watchdog timer enable/disable control register <WDTE>

At reset, the WDMOD<WDTE> is initialized to 1, enabling the watchdog timer.

To disable the watchdog timer, it is necessary to set this bit to 0 and to write the disable code (B1H) to the watchdog timer control register (WDCR). This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to 1.

3. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR> is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

Disable control

The watchdog timer can be disabled by clearing WDMOD<WDTE> to 0 and then writing the disable code (B1H) to the WDCR register.

• Enable control

Set WDMOD<WDTE> to 1.

• Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

```
WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).
```

Note1: If the disable control, set the disable code (B1H) to WDCR after weirint the clear code (4EH) once. (Please refer to setting example.)

Note2: If the Watchdog timer setting, change setting after setting to disable condition once.

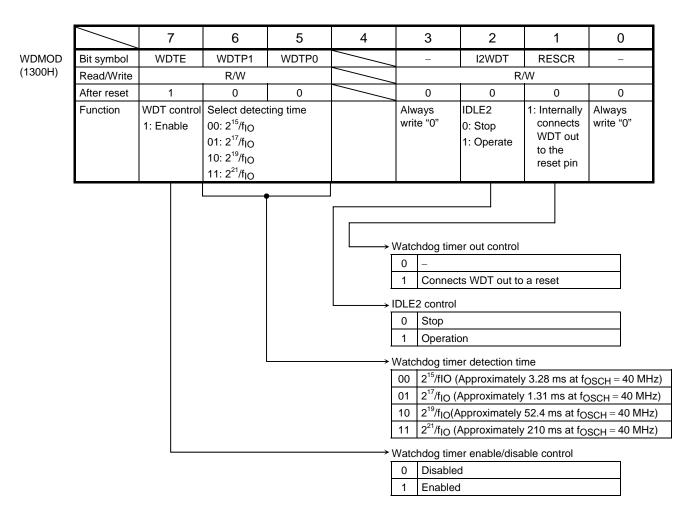


Figure 3.12.4 Watchdog Timer Mode Register

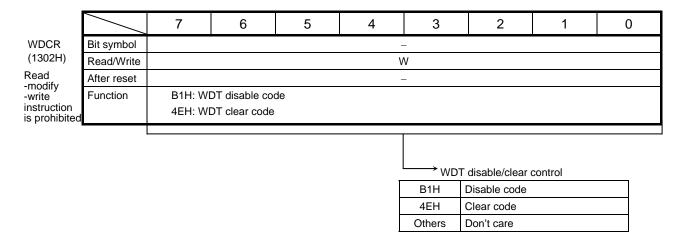


Figure 3.12.5 Watchdog Timer Control Register

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Power supply voltage	Vcc	-0.5 to 4.0	V	
Input voltage	VIN	-0.5 to Vcc + 0.5	V	
Output current (1 pin)	IOL	2		
Output current (1 pin)	IOH	-2	mA	
Output current (Total)	ΣIOL	80	IIIA	
Output current (Total)	ΣΙΟΗ	-80		
Power dissipation (Ta = 85°C)	PD	600	mW	
Soldering temperature (10 s)	TSOLDER	260		
Storage temperature	TSTG	-65 to 150	°C	
Operation temperature	TOPR	-40 to 85		

Note: The absolute maximum ratings are rated values that must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, the device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products that include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability of lead-free products

	7	
Test parameter	Test condition	Note
Solderability	 Use of Sn-37Pb solder Bath Solder bath temperature =230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature =245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead-free) 	Pass: solderability rate until forming ≥ 95%

DC Characteristics (1/2)

 $Vcc = 3.3 \pm 0.3 \text{ V/fc} = 4 \text{ to } 40 \text{ MHz/Ta} = -40 \text{ to } 85^{\circ}\text{C}$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Power supply voltage (DVCC = AVCC)	Vcc	fc = 4 to 40 MHz (f _{SYS} = 125 kHz to 20 MHz)	3.0		3.6	V
(DVSS = AVSS = 0 V)		(-010	3.0		3.0	V
Input low voltage	V _{ILO}					
P00 to P07 (D0 to D7)	120				0.6	
P10 to P17 (D8 to D15)						
Input low voltage	V _{IL1}					
P40 to P47						
P50 to P57						
P60 to P67					0.0 1/00	
P76					0.3 × VCC	
PD2, PD3						
PF0, PF3, PF6, PF7						
PG0 to PG7			0.0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Input low voltage	V_{IL2}		-0.3			V
P90 to P92						
PA0 to PA2, PA7						
PC0, PC1, PC3, PC5, PC6					0.25 × VCC	
PD0, PD1					VCC	
PF1, PF2, PF4, PF5						
RESET, NMI						
Input low voltage	V _{IL3}				0.3	
AMO, AM1					0.3	
Input low voltage	V_{IL4}				0.2 × VCC	
X1					0.2 × VCC	
Input high voltage	V _{IH0}					
P00 to P07 (D0 to D7)			2.0			
P10 to P17 (D8 to D15)						
Input high voltage	V _{IH1}					
P40 to P47						
P50 to P57						
P60 to P67			0.7 × VCC			
P76						
PD2, PD3						
PF0, PF3, PF6, PF7						
PG0 to PG7					VCC + 0.3	V
Input high voltage	V _{IH2}					
P90 to P92						
PA0 to PA2, PA7			0.75 ×			
PC0, PC1, PC3, PC5, PC6			VCC			
PD0, PD1						
PF1, PF2, PF4, PF5						
RESET, NMI	Maria					
Input high voltage	V _{IH3}		VCC - 0.3			
AM0, AM1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Input high voltage	V _{IH4}		0.8 × VCC			
X1						

DC Characteristics (2/2)

 $\mbox{Vcc} = 3.3 \pm 0.3 \mbox{ V/fc} = 4 \mbox{ to } 40 \mbox{ MHz/Ta} = -40 \mbox{ to } 85\mbox{°C}$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Output low voltage	V _{OL}	IOL = 1.6 mA			0.45	V
Output high voltage	V _{OH}	IOH = -400 μA	2.4			v
Input leakage current	ILI	$0.0 \le Vin \le VCC$		0.02	5	
Output leakage current	ILO	$0.2 \le Vin \le VCC - 0.2$		0.05	10	μΑ
Power down voltage (at STOP, RAM backup)	V _{STOP}	$ \begin{aligned} \text{VIL2} &= 0.2 \times \text{Vcc}, \\ \text{VIH2} &= 0.8 \times \text{Vcc} \end{aligned} $	1.8		3.6	٧
RESET pull-up resistor	R _{RST}		100			
Programmable pull-up resistor	R _{KH}				400	kΩ
Pin capacitance	C _{IO}	fc = 1 MHz			10	pF
Schmitt width	V _{TH}	P90 to P92 PA0 to PA2, PA7 PC0, PC1, PC3, PC5, PC6 PD0, PD1 PF1, PF2, PF4, PF5 RESET, NMI	0.4	1.0		V
NORMAL	ICC	V _{CC} = 3.6 V, X1 = 40 MHz (Internal 20 MHz)		30	42	
IDLE2 mode	ICC _{IDLE2}			17	25	mA
IDLE1 mode	ICC _{IDLE1}			3	5	
STOP	ICC _{STOP}	Vcc = 3.6 V		1	100	μА

4.2 AC Characteristics

4.2.1 Basis Bus Cycle

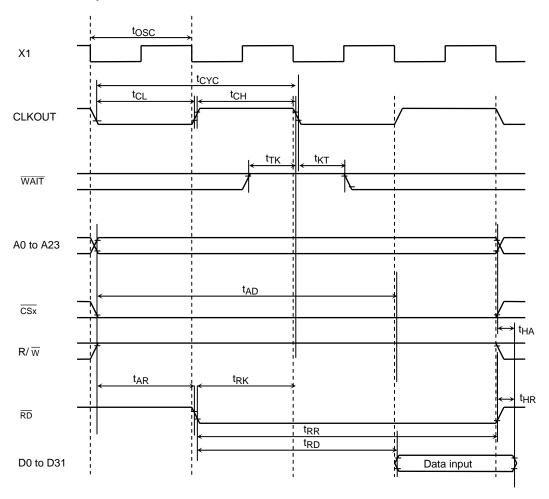
Read cycle

 $\mbox{Vcc} = 3.3 \pm 0.3 \mbox{ V/fc} = 4 \mbox{ to } 40 \mbox{ MHz/Ta} = -40 \mbox{ to } 85\mbox{°C}$

No.	Parameter	Symbol	Min	Max	f _{SYS} = 20 MHz (fc = 40 MHz)	f _{SYS} = 125 kHz (fc = 4 MHz)	Unit
1	OSC period (X1/X2)	tosc	25	250	25	250	ns
2	System clock period (= T)	tcyc	50	8000	50	8000	ns
3	CLKOUT low width	t _{CL}	0.5T – 15		10	3985	ns
4	CLKOUT high width	tCH	0.5T – 15		10	3985	ns
5-1	A0 to A23 valid \rightarrow D0 to D15 input at 0 waits	t _{AD}		2.0T – 30	70	15970	ns
5-2	A0 to A23 valid \rightarrow D0 to D15 input at 1 wait	t _{AD3}		3.0T – 30	120	23970	ns
6-1	$\overline{\text{RD}}$ fall \rightarrow D0 to D15 input at 0 waits	t _{RD}		1.5T – 30	45	11970	ns
6-2	$\overline{\text{RD}} \text{ fall} \rightarrow$ D0 to D15 input at 1 wait	t _{RD3}		2.5T – 30	95	19970	ns
7-1	RD low width at 0 waits	t _{RR}	1.5T – 20		55	11980	ns
7-2	RD low width at 1 wait	t _{RR3}	2.5T – 20		105	19980	ns
8	A0 to A23 valid \rightarrow \overline{RD} fall	t _{AR}	0.5T – 15		10	3985	ns
9	$\overline{\text{RD}} \text{ fall} \rightarrow \text{CLKOUT fall}$	t _{RK}	0.5T – 20		5	3980	ns
10	A0 to A23 valid \rightarrow D0 to D15 hold	t _{HA}	0	-	0	0	ns
11	$\overline{\text{RD}} \text{ rise } \rightarrow \qquad \qquad \text{D0 to D15 hold}$	t _{HR}	0		0	0	ns
12	WAIT setup time	t _{TK}	15	-	15	15	ns
13	WAIT hold time	t _{KT}	5		5	5	ns

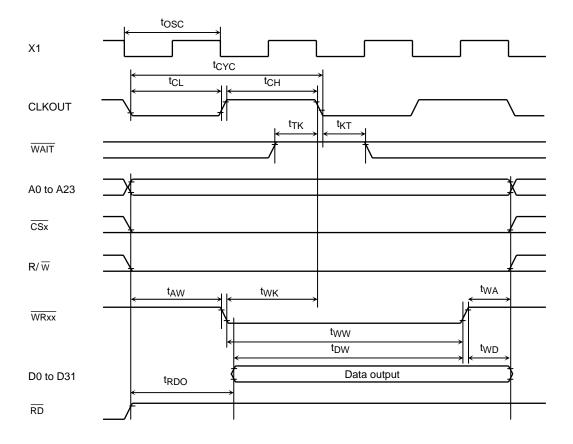
Write cycle

 $Vcc = 3.3 \pm 0.3 \text{ V/fc} = 4 \text{ to } 40 \text{ MHz/Ta} = -40 \text{ to } 85^{\circ}\text{C}$

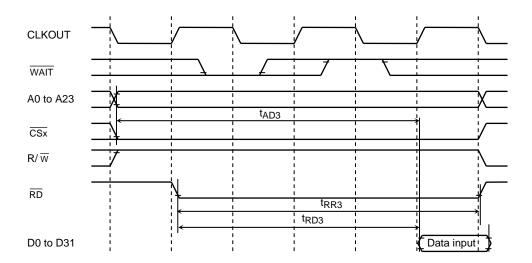

No.	Parameter	Symbol	Min	Max	f _{SYS} = 20 MHz (fc = 40 MHz)		Unit
1	OSC period (X1/X2)	tosc	25	250	25	250	ns
2	System clock period (= T)	tcyc	50	8000	50	8000	ns
3	CLKOUT low width	t _{CL}	0.5T – 15		10	3985	ns
4	CLKOUT high width	t _{CH}	0.5T – 15		10	3985	ns
5-1	D0 to D15 valid $\rightarrow \overline{\text{WRxx}}$ rise at 0 waits	t _{DW}	1.25T – 35		28	9965	ns
5-2	D0 to D15 valid $\rightarrow \overline{WRxx}$ rise at 1 wait	t _{DW3}	2.25T - 35		78	17965	ns
6-1	WRxx low width at 0 waits	t _{WW}	1.25T – 30		33	9970	ns
6-2	WRxx low width at 1 wait	t _{WW3}	2.25T - 30		83	17970	ns
7	A0 to A23 valid $\rightarrow \overline{\text{WR}} \text{ fall}$	t _{AW}	0.5T – 15		10	3985	ns
8	WRxx fall → CLKOUT fall	t _{WK}	0.5T - 20		5	3980	ns
9	$\overline{\text{WRxx}}$ rise \rightarrow A0 to A23 hold	t _{WA}	0.25T – 5		8	1995	ns
10	$\overline{\text{WRxx}}$ rise \rightarrow D0 to D15 hold	t _{WD}	0.25T – 3		10	1997	ns
11	WAIT setup time	t _{TK}	15		15	15	ns
12	WAIT hold time	t _{KT}	5		5	5	ns
13	\overline{RD} rise \rightarrow D0 to D15 output	t _{RDO}	0.5T – 5	-	20	3995	ns

AC condition

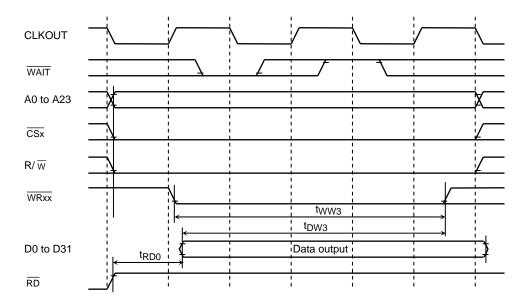
 Output : High = 0.7Vcc, Low = 0.3Vcc, C_L = 50 pF


• Input : High = 0.9Vcc, Low = 0.1Vcc

(1) Read cycle (0 waits, $fc = f_{OSCH}$, $f_{FPH} = fc/1$)


Note: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.

(2) Write cycle (0 waits, $fc = f_{OSCH}$, $f_{FPH} = f_{c}/1$)



Note: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.

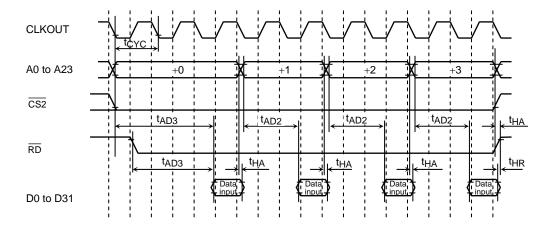
(3) Read cycle (1 wait)

(4) Write cycle (1 wait)

4.2.2 Page ROM Read Cycle

(1) 3-2-2-2 mode

 $\mbox{Vcc} = 3.3 \pm 0.3 \mbox{ V/fc} = 4$ to 40 MHz/Ta = -40 to $85^{\circ}\mbox{C}$


No.	Parameter	Symbol	Min	Max	$\begin{array}{c} f_{SYS} = \\ 20 \text{ MHz} \\ \text{(fc} = 40 \text{ MHz)} \end{array}$	f _{SYS} = 125 kHz (fc = 4 MHz)	Unit
1	System clock period (= T)	tcyc	50	8000	50	8000	ns
2	A0, A1 \rightarrow D0 to D31 input	t _{AD2}		2.0T - 50	50	15950	ns
3	A2 to A23 \rightarrow D0 to D31 input	t _{AD3}		3.0T – 50	100	23950	ns
4	RD falling \rightarrow D0 to D31 input	t _{RD3}		2.5T – 45	80	19955	ns
5	A0 to A23 invalid \rightarrow D0 to D31 hold	t _{HA}	0		0	0	ns
6	\overline{RD} rising \rightarrow D0 to D31 hold	t _{HR}	0		0	0	ns

AC condition

• Output: High = 0.7 Vcc, Low = 0.3 Vcc, $C_L = 50 \ pF$

• Input: High = 0.9 Vcc, Low = 0.1 Vcc

(2) Page ROM read cycle (3-2-2-2 mode)

4.3 AD Conversion Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Analog reference voltage (+)	V _{REFH}	VCC - 0.2	VCC	VCC	
Analog reference voltage (-)	V_{REFL}	VSS	VSS	VSS + 0.2	
AD converter power supply voltage	A _{VCC}	VCC	VCC	VCC	V
AD converter power supply ground	A _{VSS}	VSS	VSS	VSS	
Analog input voltage	A _{VIN}	VREFL		VREFH	
Analog current for analog reference voltage <vrefon> = 1</vrefon>	I _{REF}		1.0	1.2	mA
Analog current for analog reference voltage <vrefon> = 0</vrefon>			0.02	5.0	UA
Total error (Include quantize error of \pm 0.5 LSB)	E _T		±1.0	±4.0	LSB

4.4 Event Counter (TA0IN, TB1IN0, and TB1IN1)

Parameter	Symbol	Vari	able	20 1	/S = MHz 0 MHz)	f _{SYS} = 125 kHz (fc = 4 MHz)		Unit
		MIN	MAX	MIN	MAX	MIN	MAX	
Clock cycle	T _{VCK}	8X + 100		500		64100		ns
Low-level clock width	T _{VCKL}	4X + 40		240		32040		ns
High-level clock width	T _{VCKH}	4X + 40		240		32040		ns

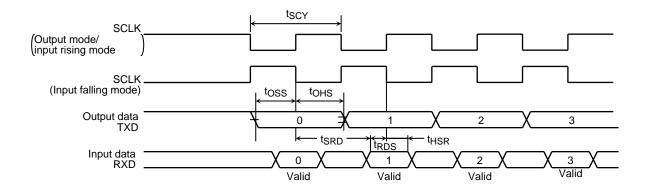
Note: Symbol "x" in the above table means the period of clock "f_{SYS}", it's same period of the system clock "f_{SYS}" for CPU core. The period of f_{SYS} depends on the clock gear setting or changing high-speed oscillator/low-speed oscillator and so on.

4.5 Serial Channel Timing (I/O interface mode)

Note: Symbol "X" in the following table means the period of clock "f_{SYS}", it's same period of the system clock "f_{SYS}" for CPU core. The period of f_{SYS} depends on the clock gear setting or changing high-speed oscillator/low-speed oscillator and so on.

(1) SCLK input mode

Parameter	Symbol	Variable	f _{SY} 20 M (fc = 40	ЛHz	$f_{SYS} =$ 125 kHz (fc = 4 MHz)		Unit	
		Min	Max	Min	Max	Min	Max	
SCLK period	t _{SCY}	16X		0.8		128		μS
Output data → SCLK rising/falling*	toss	t _{SCY} /2 - 4X - 110		90		31890		ns
SCLK rising/falling* → Output data hold	tons	t _{SCY} /2 + 2X + 0		500		80000		ns
SCLK rising/falling* → Input data hold	tHSR	3X + 10		160		24010		ns
SCLK rising/falling → Valid data input	tSRD		t _{SCY} - 0		800		128000	ns
Valid data input \rightarrow SCLK rising/falling	t _{RDS}	0		0		0		ns


*) SCLK rinsing/falling edge: The rising edge is used in SCLK rising mode.

The falling edge is used in SCLK falling mode.

Note: Value of $f_{SYS} = 20$ MHz, 125 kHz is value if $t_{SCY} = 16X$.

(2) SCLK output mode

Parameter		Symbol		ble	$\begin{array}{c} f_{SYS} = \\ 20 \text{ MHz} \\ \text{(fc} = 40 \text{ MHz)} \end{array}$		f _{SYS} = 125 kHz (fc = 4 MHz)		Unit
			Min	Max	Min	Max	Min	Max	
SCLK period		tscy	16X	8192X	0.8	409.6	128	65536	μS
Output data → SCLK rising/falling*		toss	t _{SCY} /2 - 40		360		3960		ns
SCLK rising/falling*	→ Output data hold	tons	t _{SCY} /2 - 40		360		3960		ns
SCLK rising/falling*	→ Input data hold	tHSR	0		0		0		ns
SCLK rising/falling	→ Valid data input	tSRD		t _{SCY} – 1X – 180		409.4		65528	ns
Valid data input	\rightarrow SCLK rising/falling	t _{RDS}	1X + 180			230		8180	ns

4.6 Interrupt, Capture

Note: Symbol "X" in the following table means the period of clock "fSYS", it's same period of the system clock "fSYS" for CPU core. The period of fSYS depends on the clock gear setting or changing high-speed oscillator/low-speed oscillator and so on.

(1) NMI and INTO to INT3 interrupts

Parameter	Symbol	Variable		$f_{SYS} =$ 20 MHz (fc = 40 MHz)		f _{SYS} = 125 kHz (fc = 4 MHz)		Unit	
			Min	Max	Min	Max	Min	Max	
INT0 to INT3 low width	T _{INTAL}	4X + 40		240		32040		nc	
INT0 to INT3 high width	T _{INTAH}	4X + 40		240		32040		ns	

(2) INT4 to INT5 interrupts

	INTBL ow Level Pulse Width)	(INT4 to INT5	^t INTBH (INT4 to INT5 High Level Pulse Width)		
Variable	f _{SYS} = 20 MHz (fc = 40 MHz)	Variable	f _{SYS} = 20 MHz (fc = 40 MHz)	Unit	
Min	Min	Min	Min		
8X + 100	500	8X + 100	500	ns	

4.7 Recommended Oscillation Circuit

TMP92CM22 is evaluated by below oscillator vender. When selecting external parts, make use of this information.

Note 1: Total loads value of oscillation is sum of external (or internal) loads (C1 and C2) and floating loads of actual assemble board. There is a possibility of miss operating using C1 and C2 values in below table. When designing board, it should design minimum length pattern around oscillator. And we recommend that oscillator evaluation try on your actual using board.

Note 2: When use function of reduced drivability for high-frequency oscillator, must be used at $f_{OSCH} = 4$ to 10 MHz.

(1) Example of oscillation connection circuit

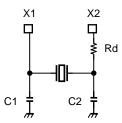


Figure 4.7.1 High-frequency Oscillator

(2) TMP92CM22 recommended ceramic oscillator: Murata Manufacturing Co., Ltd. Following table shows circuit parameter recommended.

	Oscillation		Item of Oscillator		ameter	of Eleme	ents	Running (Condition
IC Name	Frequency [MHz]	Type	(Old number)	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage of Power [V]	Tc [°C]
4.000		SMD	CSTCR4M00G55-R0 (New and old is same product No.)	(39)	(39)	Open	0		
		Lead	CSTLS4M00G56-B0 (CSTS0400MG06)	(47)	(47)	Open	0		
	6.000	SMD	CSTCR6M00G55-R0 (New and old is same product No.)	(39)	(39)	Open	0		
	L	Lead	CSTLS6M00G56-B0 (CSTS0600MG06)	(47)	(47)	Open	0		
TMP92CM22FG	TMP92CM22FG 10.000	SMD	CSTCE10M0G55-R0 (New and old is same product No.)	(33)	(10)	Open	0	3.0 to 3.6	-40 to +85
		Lead	CSTLS10M0G53-B0 (CSTS1000MG03)	(15)	(15)	Open	0		
	20,000	SMD (New)	CSTCG20M0V51-R0 (New and old is same product No.)	(6)	(15)	Open	0		
		SMD	CSCTW20M0X51-R0 (CSTCW2000MX01)	(5)	(5)	Open	0		
	36.000	SMD	CSTCW36M0X51-R0 (CSTCW3600MX01)	(6)	(6)	15 k	0		
	40.000	2-pin SMD	CSACW40M0X51-R0) (CSACW4000MX01)	3	3	15 k	0		

Note 1: "()" of C1 and C2 are built in condenser type.

Note 2: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL:

http://www.murata.co.jp

5. Table of Special Function Registers (SFRs)

The SFRs include the I/O ports and peripheral control registers allocated to the 8 Kbytes address space from 000000H to 001FFFH.

- (1) I/O port
- (2) Interrupt controller
- (3) DMA controller
- (4) Memory controller
- (5) Clock gear/PLL
- (6) 8-bit timer
- (7) 16-bit timer
- (8) UART/SIO
- (9) I2C bus/SIO
- (10) 10-bit ADC
- (11) WDT

Table layout

Symbol	Name	Address	7	6	\mathcal{L}	1	0	
					/)		Bit symbol Read/Write Initial value after reset Remarks
					 _	•	-	

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these register.

Example: When setting bit0 only of the register PxCR, the instruction "SET 0, (PxCR)" cannot be used.

The LD (Transfer) instruction must be used to write all eight bits.

Read/Write

R/W: Both read and write are possible.

R: Only read is possible.

W: Only write is possible.

W*: Both read and write are possible (when this bit is read as 1).

Prohibit RMW: Read-modify-write instructions are prohibited. (The EX, ADD,

ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD, and

RRD instruction are read-modify-write instructions.)

R/W*: Read-modify-write is prohibited when controlling the pull-up

resistor.

2007-02-16

Table 5.1 I/O Register Address Map

[1] I/O port

Address	Name
0000H	
1H	
2H	
3H	
4H	P1
5H	
6H	P1CR
7H	P1FC
8H	
9H	
AH	
ВН	
CH	
DH	
EH	
FH	

Address	Name
0010H	P4
1H	
2H	P4CR
3H	P4FC
4H	P5
5H	
6H	P5CR
7H	P5FC
8H	P6
9H	
AH	P6CR
BH	P6FC
CH	P7
DH	
EH	P7CR
FH	P7FC

Address	Name
0020H	P8
1H	
2H	
3H	P8FC
4H	P9
5H	P9ODE
6H	P9CRP
7H	9FC
8H	PA
9H	
AH	
ВН	
CH	
DH	
EH	
FH	

Address	Name
0030H	PC
1H	
2H	PCCR
3H	PCFC
4H	PD
5H	
6H	PDCR
7H	PDFC
8H	
9H	
AH	
BH	
CH	PF
DH	
EH	PFCR
FH	PFFC

Address	Name
0040H	PG
1H	
2H	
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
BH	
CH	
DH	
EH	
FH	

Note: Do not access un-named addresses.

[2] Interrupt controller

[2] Inter	[2] Interrupt controller				
Address	Name		Addı		
00D0H	INTE12		00		
1H	INTE3				
2H					
3H					
4H	INTETA01				
5H	INTETA23				
6H					
7H					
8H	INTETB0				
9H					
AH	INTETBO0				
ВН	INTES0				
CH	INTES1				
DH					
EH					
FH					

Address	Name
00E0H	INTE45
1H	INTETB1
2H	INTETBO1
3H	INTESB0
4H	
5H	
6H	
7H	
8H	
9H	
AH	
BH	
CH	
DH	
EH	INTEP0
FH	
	-

Address	Name
00F0H	INTE0AD
1H	INTETC01
2H	INTETC23
3H	INTETC45
4H	INTETC67
5H	SIMC
6H	IIMC
7H	INTWDT
8H	INTCLR
9H	
AH	IIMC2
ВН	
СН	
DH	
EH	
FH	

[3] DMA controller Address Name 0100H DMA0V 1H DMA1V 2H DMA2V 3H DMA3V 4H DMA4V 5H DMA5V 6H DMA6V 7H DMA7V 8H DMAB 9H DMAR Reserved AΗ ВН СН DH EΗ FΗ

[4] Memory controller

Address	Name
0140H	B0CSL
1H	B0CSH
2H	MAMR0
3H	MSAR0
4H	B1CSL
5H	B1CSH
6H	MAMR1
7H	MSAR1
8H	B2CSL
9H	B2CSH
AH	MAMR2
ВН	MSAR2
CH	B3CSL
DH	B3CSH
EH	MAMR3
FH	MSAR3

Address	Name
0150H	
1H	
2H	
3H	
4H	
5H	
6H	
7H	
8H	BEXCSL
9H	BEXCSH
AH	
BH	
CH	
DH	
EH	
FH	

Address	Name				
0160H					
1H					
2H					
3H					
4H					
5H	PMEMCR				
6H					
7H					
8H					
9H					
AH					
ВН					
CH					
DH					
EH					
FH					

[5] Clock gear/PLL						
Address	Name					
10E0H	SYSCR0					
1H	SYSCR1					
2H	SYSCR2					
3H	EMCCR0					
4H	EMCCR1					
5H	EMCCR2					
6H	Reserved					
7H						
8H	PLLCR					
9H	Reserved					
AH						
ВН						
СН						
DH						
EH						
FH						

[6] 8-bit timer

[7] 16-bit timer

[8] UART/SIO

[0] 0 510					
Address	Name				
1100H	TA01RUN				
1H					
2H	TA0REG				
3H	TA1REG				
4H	TA01MOD				
5H	TA1FFCR				
6H					
7H					
8H	TA23RUN				
9H					
AH	TA2REG				
BH	TA3REG				
CH	TA23MOD				
DH	TA3FFCR				
EH					
FH					

[1] 10 01	UUIIICI
Address	Name
1180H	TB0RUN
1H	
2H	TB0MOD
3H	TB0FFCR
4H	
5H	
6H	
7H	
8H	TB0RG0L
9H	TB0RG0H
AH	TB0RG1L
BH	TB0RG1H
CH	TB0CP0L
DH	TB0CP0H
EH	TB0CP1L
FH	TB0CP1H

Address	Name				
1190H	TB1RUN				
1H					
2H	TB1MOD				
3H	TB1FFCR				
4H					
5H					
6H					
7H					
8H	TB1RG0L				
9H	TB1RG0H				
AH	TB1RG1L				
ВН	TB1RG1H				
CH	TB1CP0L				
DH	TB1CP0H				
EH	TB1CP1L				
FH	TB1CP1H				

[6] CARTISIO							
Address	Name						
1200H	SC0BUF						
1H	SC0CRS						
2H	C0MOD0						
3H	BR0CR						
4H	BR0ADD						
5H	SC0MOD1						
6H							
7H	SIRCR						
8H	SC1BUF						
9H	SC1CR						
AH	SC1MOD0						
BH	BR1CR						
СН	BR1ADD						
DH	SC1MOD1						
EH							
FH							

[9] I²C bus/SIO

[10] 10-bit ADC

[11] WDT

Address	Name			
1240H	SBI0CR1			
1H	SBI0DBR			
2H	I2C0AR			
3H	SBI0CR2/SBI0SR			
4H	SBI0BR0			
5H	SBI0BR1			
6H				
7H				
8H				
9H				
AH				
ВН				
CH				
DH				
EH				
FH				

[10] 10 0	TUTIDO				
Address	Name				
12A0H	ADREG0L				
1H	ADREG0H ADREG1L ADREG1H				
2H					
3H					
4H	ADREG2L				
5H	ADREG2H				
6H	ADREG3L				
7H	ADREG3H				
8H	ADREG4L				
9H	ADREG4H				
AH	ADREG5L				
BH	ADREG5H				
CH	ADREG6L				
DH	ADREG6H				
EH	ADREG7L				
FH	ADREG7H				

Address	Name
12B0H	
1H	
2H	
3H	
4H	
5H	
6H	
7H	
8H	ADMOD0
9H	ADMOD1
AH	ADMOD2
ВН	Reserved
CH	
DH	
EH	
FH	

Address	Name
1300H	WDMOD
1H	WDCR
2H	
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
BH	
CH	
DH	
EH	
FH	

(1) I/O port (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P17	P16	P15	P14	P13	P12	P11	P10
P1	Port 1	0004H	R/W							
			Data from external port (Output latch register is cleared to "0")							
		P47	P46	P45	P44	P43	P42	P41	P40	
P4	Port 4	0010H				R	/W			
			Data from external port (Output latch register is cleared to "0")							
			P57	P56	P55	P54	P53	P52	P51	P50
P5	Port 5	0014H					/W			
				Data f	rom external	port (Outpu	t latch regist	er is cleared	,	
_	_		P67	P66	P65	P64	P63	P62	P61	P60
P6	Port 6	0018H					/W			
							t latch regist		·	
				P76	P75	P74	P73	P72	P71	P70
					I	I	R/W			
P7	Port 7	001CH		Data from external port						
				(Output latch	1	1	1	1	1	1
				register is						
				cleared to "0")						
							P83	P82	P81	P80
P8	Port 8	0020H						R/W		
							1	0	1	1
								P92	P91	P90
P9	Port 9	0024H							R/W	
									from externa ch register is	
			PA7				$\overline{}$	PA2	PA1	PA0
			R					. , , _	R	
PA	Port A	0028H	Data from							
			external				Data from externa		al port	
			port						T	
				PC6	PC5		PC3		PC1	PC0
				R/	W		R/W		R/	W
PC	Port C	Port C 0030H		Data fron	n external		Data from external port		Data from	ovternal
	Data from port (Outp						(Output latch		port (Out	
			set to "1")		register is		register is			
						\	set to "1")			
		Port D 0034H					PD3	PD2	PD1	PD0
PD Port [Port D								W	
								Data from external port put latch register is set to "1")		
			PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
PF	Port F	003CH	rr/		FFO		1	FFZ	ן ררו	rru
''	i oiti	003011	R/W Data from external port (Output latch register is set to "1")							
			PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0
PG Port G 0040H			PG7 PG6 PG5 PG4 PG3 PG2 PG1 PG0							
	1 0.10	00-7011								
			Data from external port							

I/O port (2/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Port 1	0006H	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
P1CR	control	(Prohibit		1	1	١	N			
	register	RMW)	0	0	0	0	0	0	0	0
						0: Input	1: Output			
										P1F
	Port 1	0007H								W
P1FC	function	(Prohibit								0/1
	register	RMW)								0: Port
										1: Data bus (D8 to D15)
			P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C
	Port 4	0012H	1 470	1 400	1 400		N 1 400	1 420	1 410	1 400
P4CR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)		1 -	1 -		1: Output		1 -	
			P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F
P4FC	Port 4	0013H		l	l	\	N	I .	I	I
P4FC	function register	(Prohibit RMW)	1	1	1	1	1	1	1	1
	register	,			0: P	ort 1: Addre	ss bus (A0 to	A7)		
	Port 5	0016H	P57C	P56C	P55C	P54C	P53C	P52C	P51C	P50C
P5CR	control	(Prohibit				\	N			
1 0011	register	RMW)	0	0	0	0	0	0	0	0
						0: Input	1: Output		,	
	Port 5	0017H	P57F	P56F	P55F	P54F	P53F	P52F	P51F	P50F
P5FC	function	(Prohibit		1	1	1	N	I	1	
	register	RMW)	1	1	1	1	1	1	1	1
						ī	ss bus (A8 to			
	Port 6	001AH	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
P6CR	control	(Prohibit				1	N		1 0	
	register	RMW)	0	0	0	0 O: Input	1: Output	0	0	0
			P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
	Port 6	001BH	FUIF	FOOF	FOOF	l	N	FOZE	FOIF	FOUF
P6FC	function	(Prohibit	1	1	1	1	1	1	1	1
	register	RMW)	•	'			s bus (A16 to			'
				P76C	<u></u>					
	Port 7	001EH		W						
P7CR	control	(Prohibit		0						
	register	RMW)		0: Input						
				1: Output						
				P76F	P75F	P74F	P73F	P72F	P71F	P70F
	Port 7	001FH					W			
P7FC	function	(Prohibit		0	0	0	0	0	0	1
	register	RMW)		0: Port 1: WAIT	0: Port 1: R/ ₩	0: Port 1: CLKOUT	0: Port 1: Don't set.	0: <u>Port</u> 1: WRLU	0: Port 1: WRLL	0: Port 1: RD
							P83F	P82F	P81F	P80F
	Port 8	0023H						V	1	1
P8FC	control	(Prohibit					0	0	0	0
	register	RMW)					0: Port	0: Port	0: Port	0: Port
							1: CS3	1: CS2	1: CS1	1: CS0

I/O port (3/3)

1	port (3/3)	ı		ı	ı	ı	ı	ı	ı	
Symbol	Name	Address	7	6	5	4	3	2	1	0
	Port 9	0026H						P92C	P91C	P90C
P9CR	control	(Prohibit							W	
1 3010	register	RMW)						0	0	0
	. og.oto.	,						0:	Input 1: Ou	tput
								P92F	P91F	P90F
									W	
	Port 9	0027H						0	0	0
P9FC	function	(Prohibit						0: Port, SI	0: Port	0: Port, SCK
	register	RMW)						1: SCL	1: SO, SDA	input
								Note		1: SCK output
										Note
								P92ODE	P91ODE	
	Port 9	0025H							N	
P9ODE	ODE	(Prohibit						0	0	
	register	RMW)						1: Open	1: Open	
								drain	drain	
				PC6C	PC5C		PC3C		PC1C	PC0C
	Port C	0032H		V	V		W		,	N
PCCR	control	(Prohibit		0	0		0		0	0
	register	RMW)	_	0: Input			0: Input		0: Input	
				1: Output			1: Output		1: Output	
				PC6F	PC5F		PC3F		PC1F	PC0F
	Port C	0033H		V	V		W		1	N
PCFC	function	(Prohibit		0	0		1		0	0
	register	RMW)		0: Port	0: Port		0: Port		0: Port	0: Port
				1: INT3 TB0OUT0	1: INT2 TA3OUT		1: INT0		1: INT1 TA1OUT	1: TA0IN
				1500010	1/3001		PD3C	PD2C	PD1C	PD0C
	Port D	0036H					FD3C		N LDIC	FDUC
PDCR	control	(Prohibit					0	0	0	0
	register	RMW)					0: Input	0: Input	0: Input	0: Input
	J						1: Output	1: Output	1: Output	1: Output
							PD3F	PD2F	PD1F	PD0F
		205=::					. 20.	L	N	
PDFC	Port D	0037H (Prohibit					0	0	0	0
FDFC	function register	(Prohibit RMW)					0: Port	0: Port	0: Port	0: Port
	rogistor	,					1: TB1OUT1	1: TB1OUT0	1: TB0IN1	1: TB0IN0
									INT5 input	INT4 input
	Port F	003EH	PF7C	PF6C	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
PFCR	control	(Prohibit		<u> </u>	i	V		<u> </u>	<u> </u>	
	register	RMW)	0	0	0	0	0	0	0	0
	J - · ·			1	1	0: Input	1: Output	1		
			-	_	PF5F		PF3F	PF2F		PF0F
	Port F	003FH		W	i		١	N		W
PFFC	function	(Prohibit	0	0	0		0	0		0
	register	RMW)	Always	Always	0: Port		0: Port	0: Port		0: Port
			write "0".	write "0".	1: SCLK1		1: TXD1	1: SCLK0		1: TXD0
					output			output		

Note: When using SI and SCK input function, set P9FC<P92F,P90F> to "0" (Function setting).

(2) Interrupt control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				IN	T2			IN	T1	
	INT1 & INT2		I2C	I2M2	I2M1	12M0	I1C	I1M2	I1M1	I1M0
INTE12	enable	00D0H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INT2	Inter	rupt request l	level.	1: INT1	Inter	rupt request	level
				-	_			IN	T3	
			-	-	-	-	I3C	I3M2	I3M1	I3M0
INTE3	INT3	00D1H	_	_	_	_	R		R/W	
	enable		0	0	0	0	0	0	0	0
					write "0".		1: INT3	•	rupt request	_
				INTTA1				INTTA0		
	INTTA0 &		ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
INTETA01	INTTAG &	00D4H	R	ITATIVIZ	R/W	TIATIVIO	R	TTAUMZ	R/W	TTAOMO
INTERNOT	enable	005411	0	0	0	0	0	0	0	0
	Chable		1: INTTA1		rrupt request	_	1: INTTA0		rupt request	_
			I. IINI IAI			ievei	1. 11111770			ievei
	INITTAGA		ITAGO		(TMRA3)	ITA ON 40	ITAGO	INTTA2	<u> </u>	ITAOMO
INTETA23	INTTA2 &	00D5H	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETAZ3	INTTA3	บบบอก	R		R/W		R		R/W	_
	enable		0	0	0	0	0	0	0	0
ļ			1: INTTA3		rrupt request	ievel	1: INTTA2		rupt request	ievei
					(TMRB0)	I		INTTB0		
INITETOO	INTTB00 &	0050::	ITB1C	ITB1M2	ITB1M1	ITB1M0	ITB0C	ITB0M2	ITB0M1	ITB0M0
INTETB01	INTTB01	00D8H	R		R/W		R		R/W	t
	enable		0	0	0	0	0	0	0	0
			1: INTTB1	Inter	rrupt request	level	1: INTTB0		rrupt request	level
				-	_			INTTBO0		
	INTTBO0		-	-	_	_	ITBO0C	ITBO0M2		ITBO0M0
INTETBO0	(Overflow)	00DAH	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	
				Always	write "0".		1: INTTBO0	Inter	rrupt request	level
				INT	TX0			INT	RX0	
	INTRX0 &		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	INTTX0	00DBH	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTTX0	Inter	rrupt request	level	1: INTRX0	Inter	rupt request	level
				INT	TX1			INT	RX1	
	INTRX1 &		ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	INTTX1	00DCH	R		R/W		R		R/W	II.
	enable		0	0	0	0	0	0	0	0
			1: INTTX1	Inter	rrupt request	level	1: INTRX1	Inter	rupt request	level
1					T5				T4	
			I5C	I5M2	15M1	I5M0	I4C	I4M2	I4M1	I4M0
INTE45	INT4 & INT5	00E0H	R		R/W	1	R		R/W	1
]	enable		0	0	0	0	0	0	0	0
			1: INT5		rrupt request	_	1: INT4	•	rupt request	_
					(TMRB1)				(TMRB1)	
	INTB10 &		ITB11C	ITB11M2	ITB11M1	ITB11M0	ITB10C	ITB10M2	ITB10M1	ITB10M0
INTETB1	INTERIO &	00E1H	R	אווווטוו	R/W	טואוויטיי	R	אוטועוניו	R/W	11010IVIO
"112101	enable	00E 111	0	0	0	0	0	0	0	0
	CHADIE		1: INTTB11		rrupt request		1: INTTB10		rupt request	_
			1. 11011	inter	i upi iequesi	IC 4CI	1. 1141 1010			10101
	INTTBO1			-	- 	i	ITPO40	INTTBO1		ITBO1M0
INTETBO1	(Overflow)	00E2H	_	-	_	_	ITBO1C	ITBO1M2	ITBO1M1	TIDUTIVIU
	enable		_		_	_	R		R/W	
				Always	write "0".		0	0	0	0
								INTS	SBE0	
	INTSBE0		=	=	_	-	ISBE0C	ISBE0M2	ISBE0M1	ISBE0M0
INTESB0		00E3H					R		R/W	
	enable		_	-	-	-	0	0	0	0
				Always	write "0".	•	1: INTSBE0	Inter	rupt request	level
							•			

Interrupt control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Gymbol	INAITIC	Address	,	U	3	7	3		TP0	U
			_	_	- _	_	IP0C	IP0M2	IP0M1	IP0M0
INTEP0	INTP0	00EEH		_	_		R	II OIVIZ	R/W	II OIVIO
	enable	0022	0	0	0	0	0	0	0	0
				-	write "0".		1: INTP0		rrupt request	
					TAD		1	1	тартточасот IT0	10 7 01
	INT0 &		IADC	IADM2	IADM1	IADM0	I0C	I0M2	IOM1	IOMO
INTE0AD	INTAD	00F0H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTAD	Inte	rrupt request	level	1: INT0	Inte	rrupt request	level
				INTTC1	(DMA1)			INTTC0	(DMA0)	
	INTTC0 &		ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETC01	INTTC1	00F1H	R		R/W	•	R		R/W	•
	enable		0	0	0	0	0	0	0	0
			1: INTTC1	Inte	rrupt request	level	1: INTTC0	Inte	rrupt request	level
				INTTC3	(DMA3)			INTTC2	(DMA2)	
	INTTC2 &		ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
INTETC23	INTTC3	00F2H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTTC3		rrupt request	level	1: INTTC2		rrupt request	level
					(DMA5)	•			(DMA4)	
	INTTC4 &		ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	INTTC5	00F3H	R	_	R/W		R		R/W	·
	enable		0	0	0	0	0	0	0	0
			1: INTTC5		rrupt request	level	1: INTTC4		rrupt request	level
			ITOTO		(DMA7)	1707140	ITOOO	•	(DMA6)	ITOOMO
INTETC67	INTTC6 &	00F4H	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTETCO	INTTC7 enable	00F4FI	R 0	0	R/W 0	0	R 0	0	R/W 0	0
	enable		1: INTTC7	-	rrupt request		1: INTTC6		rrupt request	
			1.1111107	-	Tupi request	ievei .	1.1111100	11110	IR1LE	IR0LE
										N
	SIO								1	1
SIMC	interrupt	00F5H	_	_					0:INTRX1	0:INTRX0
SINC	mode	(Prohibit RMW)							edge	edge
	control	,							mode 1:INTRX1	mode 1:INTRX0
									level	level
									mode	mode
					I3EDGE	I2EDGE	I1EDGE	10EDGE	IOLE	NMIREE
	Interrupt							N	1	
	input	00F6H			0	0	0	0	0	0
IIMC	mode	(Prohibit			INT3	INT2	INT1	INTO	INTO	NMI
	control	RMW)			0:Rising/ high	0:Rising/ high	0:Rising/ high	0:Rising/ high	0:Edge mode	0:Falling
	CONTION				1:Falling/	1:Falling/	1:Falling/	1:Falling/	1:Level	1:Falling and
					low	low	low	low	mode	rising
			=	=	=	=	INTWD		_	=
INTWDT	INTWD	00F7H	_	-	-	-	R	-	-	-
//	enable		_	-	_	-	0	_	-	-
				Always	write "0".		1: INTWD			
	Interrupt	00F8H			CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR	clear	(Prohibit				_		N		
	control	RMW)			0	0	0	0	0	0
						_		t vector	141 =	
	Intorment						I3LE	I2LE	I1LE	
	Interrupt	00FAH					_	W	Ι ο	
	incut			_			0	0	0	/
IIMC2	input	(Prohibit						INITO	INIT4	
IIMC2	mode						INT3	INT2	INT1	
IIMC2		(Prohibit						INT2 0: Edge 1: Level	INT1 0: Edge 1: Level	

(3) DMA controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
	21112				DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	DMA0 start	0100H					R/	W		
DIVIAUV	vector	010011			0	0	0	0	0	0
	10010.						DMA0 st	art vector		
	DMAA				DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA1 start	0101H					R/	W		
DIVINITY	vector	010111			0	0	0	0	0	0
							DMA1 sta	art vector		
	DMA2				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	start	0102H					R/	W		
DIVID LE V	vector	010211			0	0	0	0	0	0
							DMA2 st	art vector		
	DMA3				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	start	0103H					R/	W		
21111101	vector	0.00			0	0	0	0	0	0
							DMA3 st	art vector		_
	DMA4				DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
DMA4V	start	0104H					R/	W		
2	vector	0.0			0	0	0	0	0	0
							DMA4 st	art vector		_
	DMA5				DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0
DMA5V	start	0105H				1		W	1	1
	vector				0	0	0	0	0	0
						1	DMA5 st	art vector	ı	
	DMA6				DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
DMA6V	start	0106H					R/			
	vector				0	0	0	0	0	0
						1	DMA6 st	art vector	1	1
	DMA7				DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0
DMA7V	start	0107H				1		W	1	1
	vector				0	0	0	0	0	0
						1		art vector	1	
			DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
DMAB	DMA	0108H		1	1		W	1	1	
	burst		0	0	0	0	0	0	0	0
				I		DMA reques			I	ı
		0109H	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
DMAR	DMA	(Prohibit		i	1	1	W	İ	i	i
	request	RMW)	0	0	0	0	0	0	0	0
					1	: DMA reque	est in softwar	е		

(4) Memory controller (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	IVAITIC	Addicas	,	B0WW2	B0WW1	B0WW0		B0WR2	B0WR1	B0WR0
	5			DOVVVZ	W	DOVVVO		DOWNZ	W	DOWING
	Block 0 MEMC	0140H		0	1	0		0	1	0
B0CSL	control	(Prohibit		Write waits)			Read waits	3	
20002	register	RMW)		001: 0 wait		1 wait		001: 0 wait		1 wait
	low	''		101: 2 wait		3 waits		101: 2 wait		3 waits
				111: 4 wait Others: Re		WAIT pin		111: 4 wait Others: Re		WAIT pin
			B0E	Olliels. Ne	_	B0REC	B0OM1	B0OM0	B0BUS1	B0BUS0
			DOL		l		V	DOONO	Вовоот	Вовобо
	Block 0		0	0	0	0	0	0	0/1	0/1
	MEMCT	0141H	CS select	Always	Always	0: No insert	00: ROM/S	RAM	Data bus w	ridth
B0CSH	control	(Prohibit	0: Disable	write "0".	write "0".	dummy	01: Reserv		00: 8 bits	
	register	`RMW)	1: Enable			cycle (Default)	10: Reserv		01: 16 bits	
	high					1: Insert	11: Reserv	ed	10: Reserv	
						dummy			11: Reserv	ed
						cycle				
				B1WW2	B1WW1	B1WW0		B1WR2	B1WR1	B1WR0
	Block 1				W				W	^
D400'	MEMC	0144H		0 Write waits	1	0		0 Read waits	1	0
B1CSL	control register	(Prohibit		001: 0 wait		1 wait		001: 0 wait		1 wait
	low	RMW)		101: 2 wait		3 waits		101: 2 wait		3 waits
				111: 4 wait		WAIT pin		111: 4 wait		WAIT pin
			D.15	Others: Re	1	DAREO	D40144	Others: Re		D 4 D 1 10 0
			B1E	-	_	B1REC	B1OM1 V	B1OM0	B1BUS1	B1BUS0
	Block 1		0	0	0	0	0	0	0/1	0/1
	MEMC	0145H	CS select	Always	Always	0: No insert	00: ROM/S	RAM	Data bus w	ridth
B1CSH	control register	(Prohibit	0: Disable	write "0".	write "0".	dummy	01: Rese		00: 8 bits	
	high	RMW)	1: Enable			cycle (Default)	10: Reser		01: 16 bit 10: Rese	
	g					1: Insert	II. Nesei	veu	11: Rese	
						dummy				
				B2WW2	B2WW1	B2WW0		B2WR2	B2WR1	B2WR0
	Block 2				W				W	
	MEMC	0148H		0	1	0		0	1	0
B2CSL	control	(Prohibit		Write waits 001: 0 wait		1 wait		Read waits 001: 0 wait		1 wait
	register low	RMW)		101: 2 wait		3 waits		101: 2 wait		3 waits
	1			111: 4 wait		WAIT pin		111: 4 wait	s 011:	WAIT pin
			505	Others: Re	served	WAIT pin	20011	Others: Re	s 011: served	WAIT pin
			B2E			WAIT pin B2REC	B2OM1		s 011:	
	Block 2		B2E	Others: Re	served	WAIT pin B2REC	B2OM1 V 0	Others: Re	s 011: served B2BUS1	WAIT pin
	Block 2 MEMC	0149H	1 CS select	Others: Re B2M 0 0:16 MB	served – 0 Always	WAIT pin B2REC	0 00: ROM/SF	Others: Re B2OM0 0 RAM	s 011: served B2BUS1 0/1 Data bus wi	B2BUS0 0/1
B2CSH	Block 2 MEMC control	0149H (Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets	served - 0	B2REC 0 0: No insert dummy	0 00: ROM/SF 01: Reserve	Others: Re B2OM0 0 RAM	s 011: served B2BUS1 0/1 Data bus wi 00: 8 bits	B2BUS0 0/1
B2CSH	MEMC control register		1 CS select	Others: Re B2M 0 0:16 MB	served – 0 Always	B2REC 0 0: No insert dummy cycle	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed	s 011: served B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits	WAIT pin B2BUS0 0/1 dth
B2CSH	MEMC control	(Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets	served – 0 Always	B2REC 0 0: No insert dummy	0 00: ROM/SF 01: Reserve	Others: Re B2OM0 0 RAM ed	s 011: served B2BUS1 0/1 Data bus wi 00: 8 bits	WAIT pin B2BUS0 0/1 dth
B2CSH	MEMC control register	(Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets	served – 0 Always	B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed	B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve	WAIT pin B2BUS0 0/1 dth
B2CSH	MEMC control register	(Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets area	0 Always write "0".	B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed	0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve	WAIT pin B2BUS0 0/1 dth ed
B2CSH	MEMC control register	(Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets	0 Always write "0".	B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed	8 011: served B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve 11: Reserve	WAIT pin B2BUS0 0/1 dth
B2CSH	MEMC control register high	(Prohibit RMW)	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets area	0 Always write "0".	B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed ed ed	0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve 11: Reserve	WAIT pin B2BUS0 0/1 dth ed B3WR0
	MEMC control register high Block 3 MEMC	(Prohibit RMW)	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets area B3WW2	0 Always write "0".	B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed ed ed d	S 011: served B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve 11: Reserve	WAIT pin B2BUS0 0/1 dth ed
B2CSH B3CSL	MEMC control register high Block 3 MEMC control	(Prohibit RMW) 014CH (Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets area	0 Always write "0".	B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed ed ed	S 011: Served B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve 11: Reserve B3WR1 W 1	WAIT pin B2BUS0 0/1 dth ed B3WR0
	MEMC control register high Block 3 MEMC	(Prohibit RMW)	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1: Sets area B3WW2 0 Write waits 001: 0 wait 101: 2 wait	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ad ad bd B3WR2 0 Read waits 001: 0 wait 101: 2 wait	011: served B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve 11: Reserve B3WR1 W 1 s 010: s 110:	B2BUS0 0/1 dth ed B3WR0 0 1 wait 3 waits
	MEMC control register high Block 3 MEMC control register	(Prohibit RMW) 014CH (Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 001: 0 wait 101: 2 wait 111: 4 wait	0	B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed ded B3WR2 0 Read waits 001: 0 wait 101: 2 wait 111: 4 wait	011: served B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve 11: Reserve B3WR1 W 1 s 010: s 110: s 011:	B2BUS0 O/1 dth ed ad B3WR0 0 1 wait
	MEMC control register high Block 3 MEMC control register	(Prohibit RMW) 014CH (Prohibit	1 CS select 0: Disable 1: Enable	Others: Re B2M 0 0:16 MB 1: Sets area B3WW2 0 Write waits 001: 0 wait 101: 2 wait	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits WAIT pin	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed ded 0 Read waits 001: 0 wait 101: 2 wait 111: 4 wait Others: Re	011: served B2BUS1	B2BUS0 O/1 dth ed dd B3WR0 0 1 wait 3 waits WAIT pin
	MEMC control register high Block 3 MEMC control register	(Prohibit RMW) 014CH (Prohibit	1 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 001: 0 wait 101: 2 wait 111: 4 wait	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits WAIT pin	0 00: ROM/SI 01: Reserve 10: Reserve	Others: Re B2OM0 0 RAM ed ed ded B3WR2 0 Read waits 001: 0 wait 101: 2 wait 111: 4 wait	011: served B2BUS1 0/1 Data bus wi 00: 8 bits 01: 16 bits 10: Reserve 11: Reserve B3WR1 W 1 s 010: s 110: s 011:	B2BUS0 0/1 dth ed B3WR0 0 1 wait 3 waits
	MEMC control register high Block 3 MEMC control register	(Prohibit RMW) 014CH (Prohibit	1 CS select 0: Disable 1: Enable	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 001: 0 wait 101: 2 wait 111: 4 wait Others: Re -	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits WAIT pin B3REC	0 00: ROM/SI 01: Reserve 10: Reserve 11: Reserve	Others: Re B2OM0 0 RAM ed ed ed d 101: 2 wait 111: 4 wait Others: Re B3OM0	Served B2BUS1 O/1 Data bus wi O0: 8 bits O1: 16 bits 10: Reserve 11: Reserve B3WR1 W 1 S S O10: 5 O11: Served B3BUS1 O/1	B2BUS0 O/1 dth ed B3WR0 0 1 wait 3 waits WAIT pin B3BUS0 O/1
B3CSL	MEMC control register high Block 3 MEMC control register low Block 3 MEMC	(Prohibit RMW) 014CH (Prohibit	1 CS select 0: Disable 1: Enable B3E 0 CS select	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 101: 2 wait 111: 4 wait Others: Re - 0 Always	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits WAIT pin B3REC 0 0: No insert	B3OM1 V 0 00: ROM/Si 01: Reserve 11: Reserve	Others: Re B2OM0 0 RAM ed ed ed dd B3WR2 0 Read waits 001: 0 wait 111: 4 wait Others: Re B3OM0 0 RAM	Served B2BUS1 O/1 Data bus wi	B2BUS0 O/1 dth ed B3WR0 0 1 wait 3 waits WAIT pin B3BUS0 O/1
	MEMC control register high Block 3 MEMC control register low Block 3 MEMC control	(Prohibit RMW) 014CH (Prohibit RMW) 014DH (Prohibit	1 CS select 0: Disable 1: Enable B3E 0 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 001: 0 wait 101: 2 wait 111: 4 wait Others: Re -	0	B2REC O O: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 O 1 wait 3 waits WAIT pin B3REC O O: No insert dummy	B3OM1 V 0 00: ROM/Si 01: Reserve 11: Reserve	Others: Re B2OM0 0 RAM ed ed ed d 101: 2 wait 111: 4 wait Others: Re B3OM0 0 RAM ed	Served B2BUS1 O/1 Data bus wi	B2BUS0 O/1 dth ed B3WR0 0 1 wait 3 waits WAIT pin B3BUS0 O/1
B3CSL	Block 3 MEMC control register high Block 3 MEMC control register low Block 3 MEMC control register	(Prohibit RMW) 014CH (Prohibit RMW)	1 CS select 0: Disable 1: Enable B3E 0 CS select	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 101: 2 wait 111: 4 wait Others: Re - 0 Always	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits WAIT pin B3REC 0 0: No insert	B3OM1 V 0 00: ROM/Si 01: Reserve 11: Reserve	Others: Re B2OM0 0 RAM ed ad dd B3WR2 0 Read waits 001: 0 wait 101: 2 wait 111: 4 wait Others: Re B3OM0 0 RAM ed ed	Served B2BUS1 O/1 Data bus wi	B2BUS0 0/1 dth B3WR0 0 1 wait 3 waits WAIT pin B3BUS0 0/1 ridth
B3CSL	MEMC control register high Block 3 MEMC control register low Block 3 MEMC control	(Prohibit RMW) 014CH (Prohibit RMW) 014DH (Prohibit	1 CS select 0: Disable 1: Enable B3E 0 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 101: 2 wait 111: 4 wait Others: Re - 0 Always	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits WAIT pin B3REC 0 0: No insert dummy cycle	B3OM1 V 0 00: ROM/Si 01: Reserve 11: Reserve 11: Reserve 11: Reserve 11: Reserve 11: Reserve 11: Reserve	Others: Re B2OM0 0 RAM ed ad dd B3WR2 0 Read waits 001: 0 wait 101: 2 wait 111: 4 wait Others: Re B3OM0 0 RAM ed ed	Served B2BUS1 O/1 Data bus wi	B2BUS0 O/1 dth B3WR0 O 1 wait 3 waits WAIT pin B3BUS0 O/1 ridth
B3CSL	Block 3 MEMC control register high Block 3 MEMC control register low Block 3 MEMC control register	(Prohibit RMW) 014CH (Prohibit RMW) 014DH (Prohibit	1 CS select 0: Disable 1: Enable B3E 0 CS select 0: Disable	Others: Re B2M 0 0:16 MB 1:Sets area B3WW2 0 Write waits 101: 2 wait 111: 4 wait Others: Re - 0 Always	0	WAIT pin B2REC 0 0: No insert dummy cycle (Default) 1: Insert dummy cycle B3WW0 0 1 wait 3 waits WAIT pin B3REC 0 0: No insert dummy cycle (Default)	B3OM1 V 0 00: ROM/Si 01: Reserve 11: Reserve 11: Reserve 11: Reserve 11: Reserve 11: Reserve 11: Reserve	Others: Re B2OM0 0 RAM ed ad dd B3WR2 0 Read waits 001: 0 wait 101: 2 wait 111: 4 wait Others: Re B3OM0 0 RAM ed ed	Served B2BUS1 O/1 Data bus wi	B2BUS0 O/1 dth B3WR0 O 1 wait 3 waits WAIT pin B3BUS0 O/1 ridth

Memory controller (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				BEXWW2	BEXWW1	BEXWW0		BEXWR2	BEXWR1	BEXWR0
	Block EX				W				W	
	MEMC	0158H		0	1	0		0	1	0
BEXCSL	control	(Prohibit		Write waits				Read waits		
	register	`RMW)		001: 0 wait		1 wait		001: 0 wait		1 wait
	low			101: 2 wait		3 waits		101: 2 wait		3 waits
				111: 4 wait Others: Re		WAIT pin		111: 4 wait Others: Re		WAIT pin
				Others. No	l	_	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
	Block EX		$\overline{}$			1	W	BEXONO	BEABOOT	BEXBOOD
	MEMC	0159H	$\overline{}$	0	0	0	0	0	0/1	0/1
BEXCSH		(Prohibit	_	Always	Always	Always	00: ROM/S	_	Data bus w	
BEACSIT	control	RMW)		write "0".	write "0".	write "0".	01: Reserv		00: 8 bits	idiii
	register	T CIVIVV)					10: Reserv	ed	01: 16 bits	
	high						11: Reserv	ed	10: Reserv	
								1	11: Reserv	
			$\overline{}$			OPGE	OPWR1	OPWR0	PR1	PR0
			$\overline{}$					R/W		
	Page ROM					0	0	0	1	0
PMEMCR	control	0166H				ROM	Wait number			er in a page
	register					page		-1-1-1 mode)		
	Ü					access		n-2-2-2 mode) n-3-3-3 mode)		
						0: Disable	11: (Reserve		11: 8 bytes	
						1: Enable	(۵,	0 27100	
			M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-9	M0V8
MAMR0	Memory	0142H				R	/W			
WAWKU	mask register 0	014211	1	1	1	1	1	1	1	1
	register 0				0: Com	pare enable	1: Compare	disable	•	
	Memory		M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
MCADO	start	04.401.1				R	/W	•	•	
MSAR0	address	0143H	1	1	1	1	1	1	1	1
	register 0				Se	et start addre	ess A23 to A	.16		
			M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	MV15-9	M1V8
MANADA	Memory	04.401.1			l	R	W	l	I	•
MAMR1	mask	0146H	1	1	1	1	1	1	1	1
	register 1				0: Com	pare enable	1: Compare	disable	1	I.
	Memory		M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
	start	04			-		/W			
MSAR1	address	0147H	1	1	1	1	1	1	1	1
	register 1			1		L	ess A23 to A		1	•
	. oglotor 1		M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
	Memory		1716 V 66	1714 V 4 1	1112 4 20		/W	1712 V 11	1712 7 10	1712 V 10
MAMR2	mask	014AH	1	1	1	1	1 1	1	1	1
	register 2			'			1: Compare		'	'
	Momoni		M2S23	M2S22	M2S21	M2S20	M2S19	M2S18	M2S17	M2S16
	Memory start		1712020	IVILULL	1412021		/W	1412010	1412011	1412010
MSAR2	address	014BH	1	1	1	1 1	1 1	1	1	1
			<u>'</u>	'		L	ess A23 to A		<u>'</u>	'
	register 2		Mayroo	M2\/24					M3V16	MOVAE
	Memory		M3V22	M3V21	M3V20	M3V19	M3V18 /W	M3V17	IVISV16	M3V15
MAMR3	mask	014EH	1	1	1	1	1 1	1	1	1
	register 3		1				1: Compare		<u> </u>	<u> </u>
			Macca	Magaa					M0047	M0040
	Memory		M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
MSAR3	start	014FH					/W			
	address		11	1	1	1	1 1	1	1	1
	register 3				Se	et start addre	ess A23 to A	.16		

(5) Clock gear

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-					_		
	System		R/W					R/W		
SYSCR0	clock	10E0H	1					0		
	control 0		Always write "1".					Always write "0".		
							=	GEAR2	GEAR1	GEAR0
								R/	W	
							0	1	0	0
SYSCR1	System clock control 1	10E1H					Always write "0".	Select gear (fc) 000: fc 001: fc/2 010: fc/4 011: fc/8 100: fc/16 101: (Rese 110: (Rese	rved)	h frequency
			=		WUPTM1	WUPTM0	HALTM1	HALTM0	SELDRV	DRVE
			R/W			1		/W	1	-1.1
			0		1	0	1	1	0	0
			Always		Warm-up ti		HALT mod	l .	<drve></drve>	Pin state
	System		write "0".		00: Reserve		00: Reserv		mode	control in
SYSCR2	clock	10E2H			01: 2 ⁸ /input		01: STOP r	mode	select	STOP mode
	control 2					t frequency	10: IDLE1 i	mode	0: STOP	0: I/O off
					11: 2 ¹⁶ /inpu	t frequency	11: IDLE2 i	mode	1: IDLE1	1: Remains the state before halt
			PLLON	FCSEL	LWUPFG					
			R/	W	R					
			0	0	0					
			0: PLL off	fc select	PLL					
PLLCR	PLL	10E8H	1: PLL on	0: OSCH	warm-up					
PLLCK	control	IUEON		1: PLL (x4)	flag					
					0: Don't end					
					warm up					
					1: End					
		<u> </u>		<u> </u>	warm up				<u> </u>	
			PROTECT					EXTIN	DRVOSCH	_
			R						R/W	
	EMC		0					0	1	1
EMCCR0	control	10E3H	Protect					1: External	fc oscillator	Always
	register 0		flag					clock	driver ability	write "1".
			0: OFF						1: NORMAL	
			1: ON						0: WEAK	
	EMC									
EMCCR1	control	10E4H		Switching	the protect	ON/OFF by	write to follo	wing 1st-KE	Y, 2nd-KEY	
	register 1			-		-		H in success		
EMCCR2	EMC	10E5H		2nd-k	KEY: EMCCF	R1 = A5H, El	MCCR2 = 5A	AH in succes	sion write	
EIVICCK2	control register 2	HC⊒UI								
	register 2									

(6) 8-bit timer

Symbol	Name	Address	7	6	5	4	3	2	1	0
- 7 - 1 1			TA0RDE				I2TA01	TA01PRUN	TA1RUN	TA0RUN
			R/W					l	/W	
	TMRA01		0				0	0	0	0
TA01RUN	RUN register	1100H	Double buffer				IDLE2 0: Stop	TMRA01 prescaler	UP counter (UC1)	UP counter (UC0)
			0: Disable 1: Enable				1: Operate	0: Stop and 1: Run (Co	clear	(/
	0.1.77	1102H			•		_			
TA0REG	8-bit timer register 0	(Prohibit				\	V			
	register o	RMW)				Unde	efined			
	8-bit timer	1103H				-	_			
TA1REG	register 1	(Prohibit					N			
		RMW)		ſ			efined	ſ	ſ	ı
			TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0
							W			
	TMRA01		0	. 0	0	0	0	0	0	0
TA01MOD	mode	1104H	Operation n		PWM cycle 00: Reserv	vod.	Source clock 00: TA0TF		Source clock 00: TA0IN	
	register		00: 8-bit tii	mer mode timer mode	00. Reserv	ou	00. ΤΑΟΤΡ 01: φT1		00. ΤΑΟΙΝ 01: φT1	hui
			10: 8-bit P		10: 2 ⁷		10: φT16		10: φT4	
			11: 8-bit P		11: 2 ⁸		11: φT256		11: φT16	
							TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS
							٧	V	R/	W
	TMRA1	1105H					1	1	0	0
TA1FFCR	flip-flop	(Prohibit					00: Invert T	A1FF	TA1FF	TA1FF
	control	`RMW)					01: Set TA1	FF	control for	inversion
	register						10: Clear T	A1FF	inversion	select
							11: Don't ca	are	0: Disable 1: Enable	0: TMRA0 1: TMRA1
			TA2RDE				I2TA23	TA23PRUN	TA3RUN	TA2RUN
			R/W				1217120		W	TALITOIT
	TMRA23		0				0	0	0	0
TA23RUN	RUN	1108H	Double				IDLE2	TMRA23	UP counter	UP counter
	register		buffer 0: Disable				0: Stop 1: Operate	prescaler 0: Stop and	(UC3)	(UC2)
			1: Enable				· · · · · · · · · · · · · · · · · · ·	1: Run (Cou		
	8-bit timer	110AH					_			
TA2REG	register 2	(Prohibit					N .			
	<u> </u>	RMW)				Unde	efined			
TARREC	8-bit timer	110BH								
TA3REG	register 3	(Prohibit RMW)					N ofinad			
		,	TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK0
			I MZSIVI I	IMZSIVIU	F VVIVI∠I	l .	W	IASCLAU	IAZULNI	IAZULNU
			0	0	0	0	0	0	0	0
TAGG::==	TMRA23	4455	Operation n		PWM cycle	<u> </u>	Source clock		Source clock	
TA23MOD	mode	110CH	00: 8-bit tii		00: Reserve	ed	00: TA2TR		00: Reserve	ed
	register			timer mode	01: 2 ⁶		01: φT1		01: φT1 10: φT4	
			10: 8-bit P	PG mode	10: 2 ⁷		10: φT16 11: φT256		10: φ14 11: φT16	
			11: 8-bit P	WM mode	11: 2 ⁸		. τ. φτ200			
							TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS
	TMEAS							V .	R/	
	TMRA3 flip-flop	110DH					1	1	0	0
TA3FFCR	control	(Prohibit					00: Invert 7		TA3FF	TA3FF
	register	RMW)					01: Set TA		control for inversion	inversion select
	- 3						10: Clear 1		0: Disable	0: TMRA2
							TI. DOILE	aıc	1: Enable	1: TMRA3
					•					1

(7) 16-bit timer (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TB0RDE	ï			I2TB0	TB0PRUN		TB0RUN
	Timer DO		R/	W			R	W		R/W
TB0RUN	Timer B0	1180H	0	0			0	0		0
IBUKUN	RUN register	110011	Double	Always			IDLE2	TMRB0		UP counter
	register		buffer 0: Disable	write "0".			0: Stop 1: Operate	prescaler 0: Stop and	clear	(UC10)
			1: Enable				1. Operato	1: Run (Cou		
			=	=	TB0CP0I	TB0CPM1	ТВ0СРМ0	TB0CLE	TB0CLK1	TB0CLK0
			R/	W	W			R/W		
			0	0	1	0	0	0	0	0
	Timer B0	1182H	Always	Always	Software	Capture tim		Up counter	Timer B0 s	ource clock
TB0MOD	mode	(Prohibit	write "0".	write "0".	capture	00: Disable		control	00: Reser	ved
	register	RMW)			control	01: Reserve		0: Clear	01: φT1	
					0:Software	11: TA1OU		disable	10: φT4 11: φT16	
					capture 1:Undefined	TA10U		1: Clear	Ι 11. Ψ1.10	
					1.Ondenned			enable		
			-	ı	TB0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FFC1	TB0FFC0
			V	/ *		R	W		V	/ *
			1	1	0	0	0	0	1	1
	Timer B0		Always writ	e "11".	TB0FF0 inv	version trigg	er		Control TB	0FF0
TB0FFCR	flip-flop	1183H			0: Trigger of				00: Invert	
IBUFFCK	control	(Prohibit RMW)			1: Trigger e	enable	.	.	01: Set	
	register	T CIVIVV)				Invert when	Invert when	Invert when	10: Clear	
					the UC10	the UC10 value is	the UC10	the UC10	11: Don't c	
					value is loaded in to	loaded in to	matches with TB0RG1H/L.		* Always re	ead as 11.
						TB0CP0H/L.	T BOTTO IT I/ E.	Dortoor # E.		
	16-bit timer	1188H				-	=			
TB0RG0L	register 0	(Prohibit				V	٧			
	low	RMW)				Unde	efined			
	16-bit timer	1189H				-	_			
TB0RG0H	register 0	(Prohibit				-	٧			
	high	RMW)				Unde	efined			
	16-bit timer	118AH				=	=			
TB0RG1L	register 1	(Prohibit					٧			
	low	RMW)				Unde	efined			
TD05 0	16-bit timer	118BH								
TB0RG1H	register 1 high	(Prohibit RMW)					<u>v</u>			
	ŭ	LZIALAA)				Unde	efined			
TDOCDO	Capture	110011				-				
TB0CP0L	register 0	118CH					?			
	low					Unde	efined			
ТВ0СР0Н	Capture	118DH				-	<u> </u>			
IBUCFUN	register 0 high	ווטטח								
						Unae	efined			
TB0CP1L	Capture register 1	118EH				-	- २			
IDOOFIL	low	IIOLII					efined			
						Onde	, III IGU			
TB0CP1H	Capture register 1	118FH				-	 २			
1.500. 111	high	1.5111					efined			
	9					Unde	iii i c u			

16-bit timer (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TB1RDE	-			I2TB0	TB1PRUN		TB1RUN
			R/	W			R	/W		R/W
	Timer B1		0	0			0	0		0
TB1RUN	RUN	1190H	Double	Always			IDLE2	TMRB1		UP counter
	register		buffer	write "0".			0: Stop	prescaler	oloor	(UC12)
			0: Disable				1: Operate	0: Stop and 1: Run (Cou		
			1: Enable					1. IXuii (Coc	int up)	
			TB1CT1	TB1ET1	TB1CP0I	TB1CPM1	TB1CPM0	TB1CLE	TB1CLK1	TB1CLK0
			R/		W		1	R/W	T	
			0	0	1	0	0	0	0	0
	Timer B1	1192H	TB1FF1 inv	ersion	Software capture	Capture tim 00: Disable		Up counter control	Timer B1 so 00: TB1IN0	
TB1MOD	mode	(Prohibit	0: Disable t	rigger	control		; ↑ TB1IN1 ↑	0: Clear	00: ΤΒΤΙΝΟ 01: φT1	piii iiiput
	register	RMW)	1: Enable tr	-	0: Software	10:TB1IN0	↑TB1IN0↓	disable	10: φT4	
	Ü	•	Invert when		capture	11: TA1OU		1: Clear	11: φT16	
				UC12 matches	1: Undefined	TA1OU	1 1	enable		
			TB1CP1H/L							
				TB1RG1H/L			ı			
			TB1FF1C1	TB1FF1C0	TB1C1T1	TB1C0T1	TB1E1T1	TB1E0T1	TB1FFC1	TB1FFC0
			W				/W	ı	V	
			1	1	0	0	0	0	1	1
	Timer B1	440011	Control TB	1FF1		version trigge	er		Control TB	1FF0
TB1FFCR	flip-flop	1193H	00: Invert 01: Set		0: Disable t				00: Invert 01: Set	
IBIFFCK	control	(Prohibit RMW)	10: Clear		1: Enable t		Investudes	lavart whom	10: Clear	
	register	,	11: Don't ca	aro	Invert when the UC12	Invert when the UC12	Invert when the UC12	Invert when the UC12	11: Don't ca	are
			*Always rea		value is	value is	value	value	*Always rea	
			7 ayo . o.		loaded in to	loaded in to	matches the	matches the	7	
					TB1CP1H/L.	TB1CP0H/L.	value in TB1RG1H/L.	value in TB1RG0H/L.		
	16-bit timer	1198H				_				
TB1RG0L	register 0	(Prohibit				V	V			
	low	RMW)				Unde	efined			
	16-bit timer	1199H				-	_			
TB1RG0H	register 0	(Prohibit				V	V			
	high	RMW)				Unde	efined			
	16-bit timer	119AH				_	_			
TB1RG1L	register 1	(Prohibit					V			
	low	RMW)				Unde	efined			
TD (D 6 :::	16-bit timer	119BH								
TB1RG1H	register 1 high	(Prohibit					<u> </u>			
	_	RMW)				Unde	efined			
TD4 CD0	Capture	110011								
TB1CP0L	register 0 low	119CH					R			
						Unde	efined			
TB4CD0LL	Capture	110011								
TB1CP0H	register 0 high	119DH					R ofined			
	_					Unde	efined			
TB1CP1L	Capture	119EH								
IDIOPIL	register 1 low	IISEN					R ofined			
							efined			
TB1CP1H	Capture register 1	119FH					 २			
10104111	register 1 high	11917								
	9''					Unde	efined			

(8) UART/Serial channel (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial	400011	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
SC0BUF	channel 0	1200H (Prohibit	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
SCOBOL	buffer	RMW)			R(R	eceiving) / V	V(Transmiss	ion)		
	register	,				Unde	fined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R	R/	W	R (Cle	ar o after re	ading)	R/	W
SC0CR	channel 0	1201H	Undefined	0	0	0	0	0	0	0
SCUCK	control	120111	Receive	Parity	Parity		1: Error		0: SCLK0 ↑ 1: SCLK0 ↓	0: Baud rate
	register		data	0: Odd 1: Even	0: Disable 1: Enable	Overrun	Parity	Framing	1. SCLNU ‡	generator
			bit8	I. EVCII	1. Lilabic					1: SCLK0 pin input
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						R/	W			
	Serial		0	0	0	0	0	0	0	0
SC0MOD0	channel 0	1202H	Transmis-	0:CTS	0:Receive	Wake up		erface mode		
	mode 0		sion data	disable	disable	0: Disable	01: 7-bit U/ 10: 8-bit U/		01: Baud ra	
	register		bit8	1:CTS	1:Receive	1: Enable	11: 9-bit U		10: Interna	clock fio
				enable	enable				11: Externa	
			_	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	(SCLK) BR0S1	BR0S0
	Serial			DITOADDE	DINOCINI	R/		DIXOUZ	DIXOGI	DIXOGO
	channel 0		0	0	0	0	0	0	0	0
BR0CR	baud rate	1203H	Always	(16 – K)/	00: φT0					
	control		write "0".	16 divided	01: φT2			Divided frequ	uency setting	,
	register			0: Disable	10: φT8			Jiviaca ireqi	acricy setting	9
				1: Enable	11: ∳T32		DDOKO	DDOMO	DD01/4	DDOKO
	Serial			$\overline{}$			BR0K3	BR0K2	BR0K1 W	BR0K0
BR0ADD	channel 0	1204H	//	//			0	0	0	0
	K setting								cy divisor "K	
	register								+ (16 – K)/10	
			I2S0	FDPX0						
	Serial		R/	W						
SC0MOD1	channel 0	1205H	0	0						
SCOMODI	mode 1	120511	IDLE2	I/O interface						
	register		0: Stop	mode						
			1: Operate	0: Half duplex 1: Full duplex						
			PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0
						R/	W			
	IrDA		0	0	0	0	0	0	0	0
SIRCR	control	1207H	Select	Receive	Transmit	Receive		ive pulse wi		
	register		transmit pulse	data	0: Disable	0: Disable		•	dth for equ	al or more
	- 3			0: "H" pulse 1: "L" pulse	1: Enable	1: Enable	-	√alue + 1) +	100 ns	
			0: 3/16	i. L puise			Can be set			
			1: 1/16				Can not be	set: 0, 15		

UART/Serial channel (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
SC1BUF	Serial channel 1	1208H (Prohibit	RB7 TB7	RB6 TB6	RB5 TB5	RB4 TB4	RB3 TB3	RB2 TB2	RB1 TB1	RB0 TB0
301001	buffer	RMW)			R (R	<u></u>	(Transmiss	ion)		
	register	,		1	1	Unde	fined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R		W	,	ar 0 after re	- 0,	R/	
	channel 1		Undefined	0	0	0	0	0	0	0
SC1CR	control register	1209H	Receive data bit8	Parity 0: Odd 1: Even	Parity 0: Disable 1: Enable	Overrun	1: Error Parity	Framing	0: SCLK1 ↑ 1: SCLK1 ↓	0:Baud rate generator 1:SCLK1 pin input
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						R/	W			
	Serial		0	0	0	0	0	0	0	0
SC1MOD0	SC1MOD0 channel 1 mode 0 register	120AH	Transmis- sion data bit8	0: CTS disable 1: CTS enable	0: Receive disable 1: Receive enable	Wake up 0: Disable 1: Enable	00: I/O interface mode 01: 7-bit UART mode 10: 8-bit UART mode 11: 9-bit UART mode 11: External clo (SCLK1 intercolor)		ate ator I clock f _{IO} al clock (1 input)	
	0:-1		=	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0
	Serial channel 1			T	T	R/				
BR1CR	baud rate	120BH	0	0	0	0	0	0	0	0
BRICK	control register	120011	Always write "0".	(16 – K)/ 16 divided 0: Disable 1: Enable	00: φT0 01: φT2 10: φT8 11: φT32		1	Divided frequ	uency setting	
	Serial						BR1K3	BR1K2	BR1K1	BR1K0
554455	channel 1	400011							W	
BR1ADD	K setting	120CH					0	0	0	0
	register						Sets frequency divisor "K" (divided by N + (16 – K)/16).		" 6).	
			I2S1	FDPX1						
	Serial		R/							
SC1MOD1	channel 1	120DH	0	0						
	mode 1 register	node 1	IDLE2 0: Stop 1: Operate	I/O interface mode 0: Half duplex 1: Full duplex						

(9) I²C bus/Serial channel (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0/ SWRMON
		1240H		W		R/W		V	V	R/W
	(Prohib		0	0	0	0		0	0	0/1
	SBI0	`RMW) I ² C mode	000: 8 000	transfer bits 01: 1 010: 01: 5 110:	2 011: 3	Acknowledge mode 0: Disable 1: Enable		000: 5 0	he divide va 01: 6 010: 01: 10 110:	7 011: 8
SBI0CR1	control		SIOS	SIOINH	SIOM1	SIOM0		SCK2	SCK1	SCK0
	register 1				V				W	
		1240H	0	0	0	0		0	0	0
		(Prohibit RMW) SIO mode	Transfer 0: Stop 1: Start	0: Stop 0: Continue 00: 8-bit transmit			000:4 001 100:8 101	he divide va :5 010:6 01 :9 110:10 al clock SCI	11:7	
	SBI0	1241H	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
SBI0DBR	buffer	(Prohibit			R (F	Receiving)/M	`	sion)		
	register	RMW)					efined	I		
			SA6	SA5	SA4	SA3	SA2 V	SA1	SA0	ALS
	I ² C bus0	1242H	0	0	0	0	0	0	0	0
I2C0AR	address register	ess (Prohibit					Address recognition 0 :Enable 1: Disable			
			MST	TRX	BB	PIN	AL/SBIM1	AAS/ SBIM0	AD0/ SWRST	LARB/ SWRST0
	Serial bus		0	0	0	1	O	0	0	0
SBI0SR when read	interface status register	1243H (I ² C mode) (Prohibit RMW)	0: Slave 1: Master	-	Bus status	INTSBE0 request monitor 0: Request 1: Cancel	Arbitration lost detection monitor 0: – 1: Detect	Slave address match detection monitor 0: Undetect 1: Detect	GENERAL CALL detection monitor 0:Undetect 1: Detect	Last received bit monitor 0: 0
SBI0CR2 when write	Serial bus interface control register2	,			Start/stop condition generation 0: Start condition 1: Stop condition		Serial bus operating r selection 00: Port mo 01: SIO mo 10: I ² C bus 11: (Reser	node ode s mode	Software regenerate wand "01", the internal resgenerated.	rrite "10" nen an set signal is
							SIOF/ SBIM1	SEF/ SBIM2	-	_
	Coriol bur							/W	,	W
SBI0SR	Serial bus interface						0	0	0	0
when read	status register	status register 1243H (SIO mode) (Prohibit					0: Stopped	Shift operation status monitor 0: Stopped 1: Terminated in progress		
SBI0CR2 when write	Serial bus interface control register2	`RMW) erial bus hterface control					Serial bus operating selection 00: Port m 01: SIO mo 10: I ² C bus 11: (Rese	mode node ode mode	Always write "0".	Always write "0".

I²C bus/Serial channel (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	I2SBI0						
		1244H	W	R/W						
		(I ² C mode)	0	0						
		(Prohibit	Always	IDLE2						
	SBI0	RMW)	write "0".	0: Abort						
SBI0BR0	baud rate			1: Operate						
	register 0	404411	-	-						
		1244H (SIO mode)	W	R/W						
		(Prohibit	0	0						
		RMW)	Always write "0".	Always write "0".						
			P4EN	_						
			R/W	W						
	SBI0		0	0						
SBI0BR1	baud rate register 1		Clock control	Always write "0".						
			0: Stop 1: Operate							

(10) AD converter (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
_			EOCF	ADBF	-	-	ITM0	REPEAT	SCAN	ADS
			F	₹		I	R	W	I	I.
			0	0	0	0	0	0	0	0
	AD mode		AD	AD	Always	Always	0: Every	Repeat	Scan	AD
ADMOD0	control	12B8H		conversion	write "0".	write "0".	1 time 1:Every	mode	mode	conversion
	register 0		end flag	busy flag			4 times	0: Single mode	0: Fixed channel	start
			0: Busy	0: End 1: Busy				1:Repeat	mode	1:Start
			1: End	1. Dusy				mode	1:Channel	Λίνκονο
									scan mode	Always read as "0".
			VREFON	I2AD	_	_	_	ADCH2	ADCH1	ADCH0
			VILLI OIL	12712		R/	/W	7.501.2	7.50111	7120110
			0	0	0	0	0	0	0	0
			Ladder	IDLE2	Always	Always	Always	Input chann	el	•
			resistance	0: Stop	write "0".	write "0".	write "0".	000: ANO A	NO	
			0: OFF 1: ON	1: Operate				001: AN1 A	N0→AN1	
	AD mode		1. ON					010: AN2 A	N0→AN1→A	N2
ADMOD1	control	12B9H						011: AN3 A	N0→AN1→A	N2→AN3
	register 1								AN0→AN1→A	AN2→AN3→
								AN4		
									AN0→AN1→A	AN2→AN3→
								AN4→.	ANO→AN1→A	ΔN2→ΔN3→
									AN5→AN6	AINZ /AINO /
									N0→AN1→A	
								AN4→	AN5→AN6→A	
				//						ADTRG
				//						R/W 0
	AD mode									AD
ADMOD2	control	12BAH								external
	register 2									trigger start
										control
										0: Disable
	AD result		ADR01	ADR00						1: Enable ADR0RF
ADREG0L	register 0	12A0H		₹						R
	low			fined						0
	AD result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
ADREG0H	register 0	12A1H				F	R			
	high					Unde	efined			
	AD result		ADR11	ADR10						ADR1RF
ADREG1L	register 1	12A2H	F F							R
	low		Unde		12215	12210	15515	12211	12212	0
ADDECALL	AD result	10.4011	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
ADREG1H	register 1 high	12A3H					R			
			ADP34	VDB30		Unde	efined			ADDODE
ADREG2L	AD result register 2	12A4H	ADR21	ADR20						ADR2RF R
, LDINLUZL	low	120711	Unde							0
	AD result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
ADREG2H	register 2			,			R		7.21120	,
	high						efined			
	AD result		ADR31	ADR30						ADR3RF
ADREG3L	register 3	12A6H	F	2						R
	low		Unde	fined						0
	AD result		ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
ADREG3H	register 3	12A7H				ſ	R			
	high					Unde	efined			

AD converter (2/2)

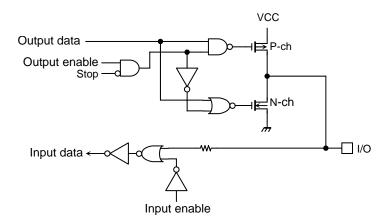
Symbol	Name	Address	7	6	5	4	3	2	1	0
	AD result		ADR41	ADR40						ADR4RF
ADREG4L	register 4	12A8H	F	₹						R
	low		Unde	fined						0
	AD result		ADR49	ADR48	ADR47	ADR46	ADR45	ADR44	ADR43	ADR42
ADREG4H	register 4	12A9H				F	₹			
	high					Unde	fined			
	AD result		ADR51	ADR50						ADR5RF
ADREG5L	register 5	12AAH	F	₹						R
	Low		Unde	fined						0
	AD result		ADR59	ADR58	ADR57	ADR56	ADR55	ADR54	ADR53	ADR52
ADREG5H	register 5			R						
	high Undefined									
	AD result		ADR61	ADR60						ADR6RF
ADREG6L	register 6	•	R							R
	low		Unde	efined						0
	AD result		ADR69	ADR68	ADR67	ADR66	ADR65	ADR64	ADR63	ADR62
ADREG6H	register 6	12ADH				F	₹			
	high					Unde	fined			
	AD result		ADR71	ADR70						ADR7RF
ADREG7L	register 7	12AEH	F	₹						R
	low		Unde	fined						0
	AD result		ADR79	ADR78	ADR77	ADR76	ADR75	ADR74	ADR73	ADR72
ADREG7H	register 7	12AFH				F	₹			
	high					Unde	fined		-	

(11) Watchdog timer

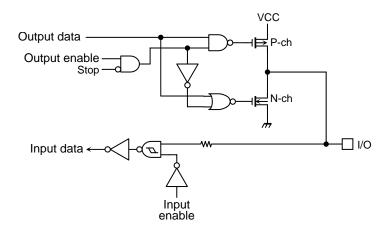
Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0		-	I2WDT	RESCR	-
				R/W				R	W	
	WDT		1	0	0		0	0	0	0
WDMOD	mode register	1300H	WDT control 1: Enable	Select dete 00: 2 ¹⁵ /f _{IO} 01: 2 ¹⁷ /f _{IO} 10: 2 ¹⁹ /f _{IO} 11: 2 ²¹ /f _{IO}	cting time		Always write "0".	IDLE2 0: Stop 1: Operate	1: Internally connects WDT out to the reset pin.	Always write "0".
WDCR	WDT control register	1301H (Prohibit RMW)			B1H: WDT	-	- V - e 4E: WDT	clear code		

6. Port Section Equivalent Circuit Diagram

■ Reading the circuit diagram

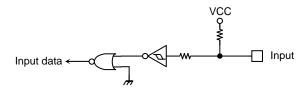

Basically, the gate symbols written are the same as those used for the standard CMOS logic IC [74HCXX] series.

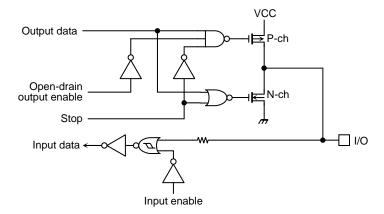
The dedicated signal is described below.

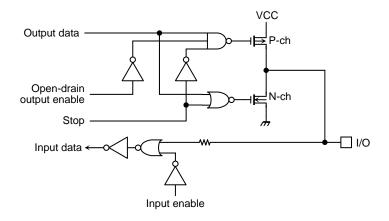

STOP: This signal becomes active "1" when the halt mode setting register is set to the STOP mode and the CPU executes the HALT instruction. When the drive enable bit <DRVE> is set to "1", however, STOP remains at "0".

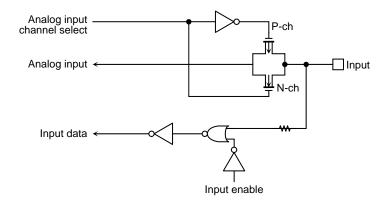
The input protection resistance ranges from several tens of ohms to several hundreds of ohms.

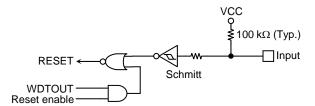

Data bus (D0 to D7), P1 (D8 to D15), P4 (A0 to A7), P5 (A8 to A15), P6 (A16 to A23), P76 (WAIT), PD2 (TB1OUT0), PD3 (TB1OUT1), PF6, and PF7

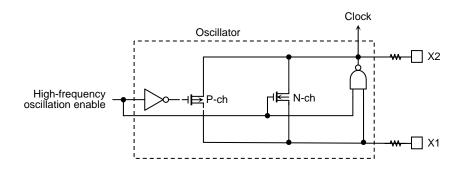

■ P90 (SCK), PC0 (TA0IN), PC1 (TA1OUT/INT1), PC3 (INT0), PC5 (TA3OUT/INT2), PC6 (TB0OUT/INT3), PD0 (INT4/TB1IN0), PD1 (INT5/TB1IN1), PF1 (RXD0), PF2 (SCLK0/CTS0), PF4 (RXD1), and PF5 (SCLK1/CTS1)

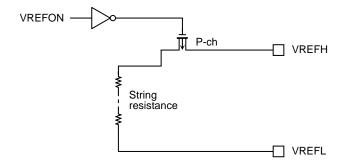

■ P70 (\overline{RD}), P71 (\overline{WRLL}), P72 (\overline{WRLU}), P73, P74 (CLKOUT), P75 (R/\overline{W}), P80 (\overline{CSO}), P81 ($\overline{CS1}$), P82 ($\overline{CS2}$), and P83 ($\overline{CS3}$)


■ PA0, PA1, PA2, and PA7

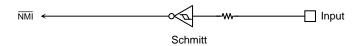

■ P91 (SO/SDA) and P92 (SI/SCL)


■ PF0 (TXD0) and PF3 (TXD1)


■ PG0 (AN0), PG1 (AN1), PG2 (AN2), PG3 (AN3/ADTRG), PG4 (AN4), PG5 (AN5), PG6 (AN6), and PG7 (AN7)


■ RESET

■ X1 and X2


■ VREFH and VREFL

■ AM0 and AM1

■ NMI

7. Points to Note and Restrictions

(1) Notation

1. The notation for built-in I/O registers is as follows register symbol <Bit symbol>.

Example: TA01RUN<TA0RUN> denotes bit TA0RUN of register TA01RUN.

2. Read-modify-write instructions (RMW)

An instruction in that the CPU reads data from memory and writes the data to the same memory location by using one instruction.

Example 1: SET 3, (TA01RUN) ... Set bit3 of TA01RUN.

Example 2: INC 1, (100H) ... Increment the data at 100H.

• Examples of read-modify-write instructions on the TLCS-900

Exchange instruction

EX (mem), R

Arithmetic operations

ADD	(mem), R/#	ADC	(mem), R/#
SUB	(mem), R/#	SBC	(mem), R/#
INC	#3. (mem)	DEC	#3. (mem)

Logic operations

AND	(mem), R/#	OR	(mem), R/#
XOR	(mem), R/#		

Bit manipulation operations

STCF	#3/A, (mem)	RES	#3, (mem)
SET	#3, (mem)	CHG	#3, (mem)
TSET	#3, (mem)		

Rotate and shift operations

RLC	(mem)	RRC	(mem)
RL	(mem)	RR	(mem)
SLA	(mem)	SRA	(mem)
SLL	(mem)	SRL	(mem)
RLD	(mem)	RRD	(mem)

3. fosch, fc, ffph, fsys, and one state

The clock frequency that is inputted from X1 and X2 is called "fosch". The clock that is selected by PLLCR<FCSEL> register is called "fc".

The clock that selected by SYSCR1<SYSCK> is called "fFPH". The clock frequency that is give by "fFPH" divided by 2 is called "fSYS".

One cycle of "fsys" is referred to as one state.

(2) Points to note

a) AM0 and AM1 pins

This pin is connected to the VCC (Power supply level) or VSS (Ground level) pins. Do not alter the level when the pin is active.

b) Reservation area of address area

TMP92CM22 don't include reservation area.

c) Warm-up counter

The warm-up counter operates when STOP mode is released, even if the system is using an external oscillator. As a result a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

d) Watchdog timer

The watchdog timer starts operation immediately after a reset is released. When the watchdog timer is not to be used, disable it.

e) AD converter

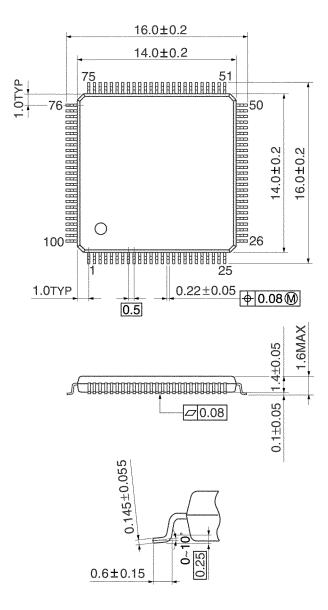
The string resistor between the VREFH and VREFL pins can be cut by a program so as to reduce power consumption. When STOP mode is used, disable the resistor using the program before the HALT instruction is executed.

f) CPU (micro DMA)

Only the LDC cr, r and LDC r, cr instructions can be used to access the control registers in the CPU (e.g., the transfer source address register (DMASn)).

g) Undefined SFR bit

The value of an undefined bit in an SFR (Special function register) is undefined when read.


h) POP SR instruction

Please execute the POP SR instruction during DI condition.

8. Package Dimensions

P-LQFP100-144-0.50F

Unit: mm

