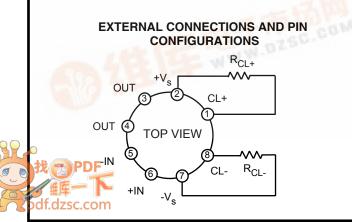
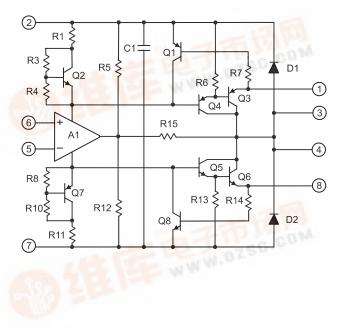

查询TPA02A供应商

捷多邦,专业PCB打样工厂,24小时加急出货

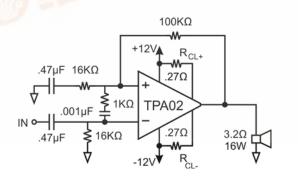

THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000

FEATURES


- COMMON COLLECTOR OUTPUT STAGE
- CLOSE TO RAIL OUTPUT ±1.2V TO RAIL
- HIGH SLEW RATE 20V/µsec.
- · FAST SETTLING TIME 600ns
- HIGH POWER BANDWIDTH 350kHz
- HIGH OUTPUT CURRENT ±5A PEAK
- · LOW CROSSOVER DISTORTION CLASS A/B
- · LOW INPUT CURRENT FET INPUT

DESCRIPTION

The TPA02 and TPA02A are fast, high output current operational amplifiers designed to drive resistive or reactive loads. The common collector output stage swings close to the supply rails and is protected against inductive kickback by diodes to the rails. The safe operating area (SOA) can be selected by external current limiting resistors. The output stage is biased for class A/B operation to achieve low distortion. The amplifiers are internally compensated but are not suitable for use as unity gain followers.



EQUIVALENT SCHEMATIC

POWER DELIVERY EFFICIENCY AND LOW DISTORTION

Due to the common collector output stage, these amplifiers can deliver power with high efficiency particularly for low voltage applications. In the example application below the TPA02 delivers power with high efficiency and due to the high power bandwidth also low distortion.

TPA02/TPA02A

TPA02A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	38V
Output Current, within SOA	5A
Power Dissipation, internal ¹	48W
Input Voltage, differential	±V _S -5V
Input Voltage, common mode	±V _S -2V

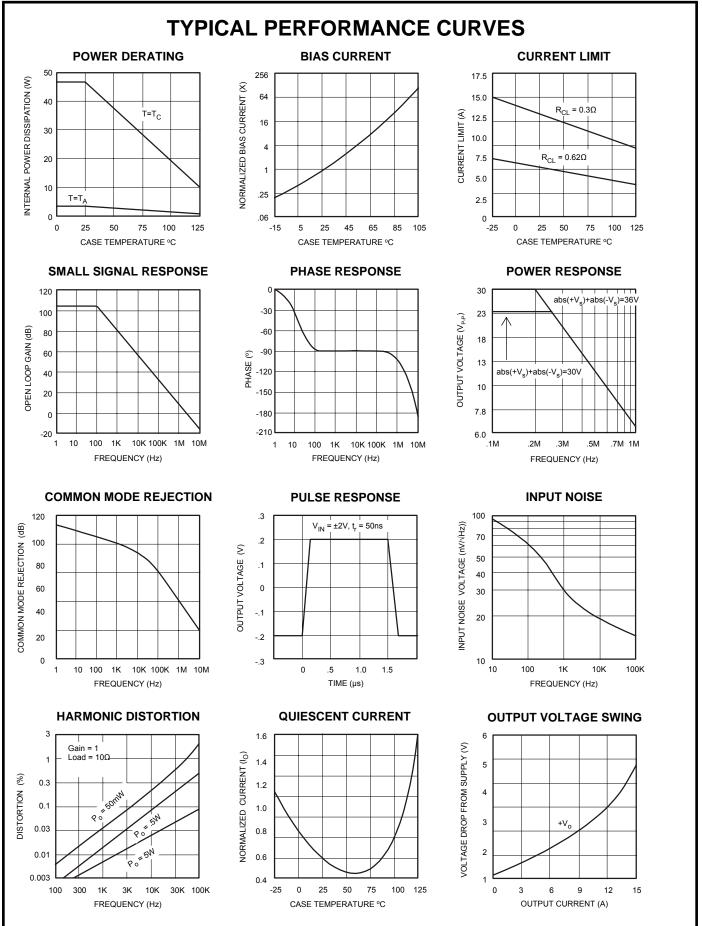
Temperature, pin solder – 10s	300°C
Temperature, junction ¹	150°C
Temperature range, storage	-65 to +150°C
Operating temperature range, case	-55 to +125°C

TPA02

SPECIFICATIONS

PARAMETER	CONDITIONS ^{2,6}	MIN	TYP	МАХ	MIN	TYP	МАХ	UNIT S
INPUT Offset Voltage, initial Offset Voltage, vs. temp. Offset Voltage, vs. supply Offset Voltage, vs. power Bias Current, initial Bias Current, vs. temp. Bias Current, vs. supply Offset Current, vs. temp. Input Impedance, DC Input Capacitance Common Mode Volt. Range ⁵ , Pos Common Mode Volt. Range ⁵ , Neg Common Mode Rejection, DC	T $_{c}$ = 25°C full temperature range T $_{c}$ = 25°C T $_{c}$ = 25°C T $_{c}$ = 25°C T $_{c}$ = 85°C T $_{c}$ = 25°C T $_{c}$ = 25°C T $_{c}$ = 85°C T $_{c}$ = 25°C T $_{c}$ = 25°C full temperature range full temperature range full temperature range	+V _s -6 -V _s +6 70	± 5 ± 10 ± 10 ± 6 50 .01 25 1000 3 $+V_s-3$ $+V_s+5$ 100	±10 ±50 200 200 100	* *	±1 * 25 * 15 * *	±3 ±25 100 * 50	mV μV/°C μV/V pA pA/°C pA/V pA pA/°C GΩ pF V V db
GAIN Open Loop Gain at 10Hz Open Loop Gain at 10Hz Gain Bandwidth Product (1MHz) Power Bandwidth Phase Margin	$T_c = 25^{\circ}C$, 1kΩ load Full temp range, 10kΩ load $T_c = 25^{\circ}C$, 10Ω load $T_c = 25^{\circ}C$, 10Ω load Full temp range, 10Ω load	86	103 100 4.5 350 30		*	* * * *		db db MHz kHz o
OUTPUT Voltage Swing ³ Voltage Swing ³ Current, peak Settling Time to .1%, Slew Rate Capacitive Load Harmonic Distortion Small Signal, rise/fall time Small Signal, overshoot	$T_{c} = 25^{\circ}C, I_{o} = 5A, R_{CL} = .08\Omega$ full temp range, $I_{o} = 2A$ $T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C, 2V$ step $T_{c} = 25^{\circ}C$ full temp range, Av > 10 Po = .5W, F = 1kHz, R _L =10Ω $R_{L} = 10\Omega, A_{v} = 1$ $R_{L} = 10\Omega, A_{v} = 1$	±V₅-4 ±V₅-2 5	±Vs-3 ±√s-1.2 .6 20 SOA .004 100 10		* * *	* * * * * *		V V A V/µs V/µs % ns %
POWER SUPPLY Voltage Current, quiescent	full temp range T _c = 25°C	± 7	± 15 27	± 19 40	*	*	*	V mA
THERMAL Resistance, AC junction to case ⁴ Resistance, DC junction to case Resistance, junction to air Temperature Range, case	F > 60Hz F > 60Hz Meets full range specs	-25	1.9 2.4 30	2.1 2.6 +85	-55	* *	* * +125	°C/W °C/W °C/W °C

Notes: *Same as previous Model.

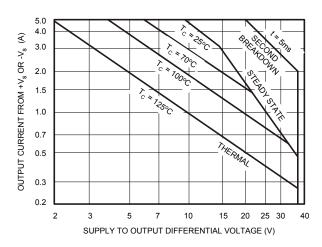

3. +V_s and -V_s denote the positive and negative supply rail respectively. Total V_s is measured from +V_s to -V_s.

4. Rating applies if the output current alternates between both

1. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.

- 2. The power supply voltage for all specifications is the typical rating unless otherwise noted as a test condition.
- output transistors at a rate faster than 60Hz. 5. Exceeding CMV range can cause the output to latch.
- 6. Full temperature specifications are guaranteed but not 100% tested.

Caution: The internal substrate contains beryllia (BeO). Do not crush, break, machine or subject the substrate to temperatures in excess of 850C.


TPA02/02A Rev. A Sept. 2006

DISCUSSION OF PERFORMANCE

SAFE OPERATING AREA (SOA)

SOA

The SOA curves combine the effect of all limits for this Power Op Amp. For a given application, the direction and magnitude of the output current should be calculated or measured and checked against the SOA curves. This is simple for resistive loads but more complex for reactive and EMF generating loads. The following guidelines may save extensive analytical efforts:

1) Under transient conditions, capacitive and dynamic* loads up to the following maximums are safe:

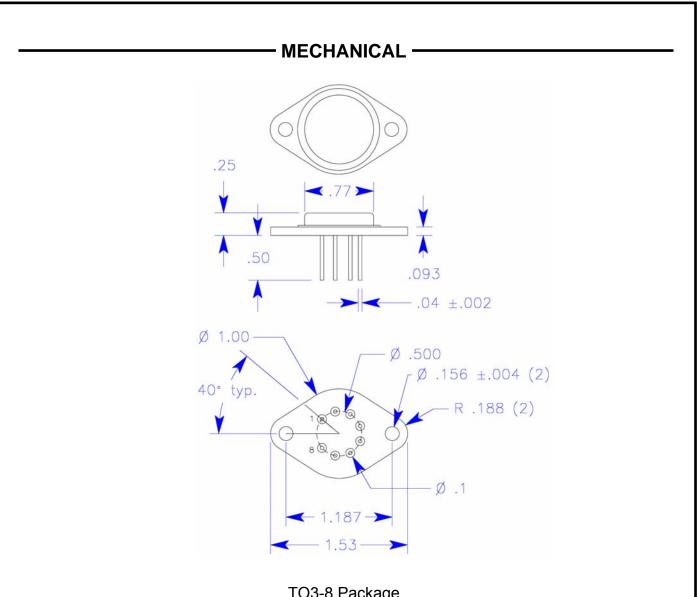
	Capacitive Load		Inductive Load	
$\pm V_s$	I _{LIM} = 2A	I _{LIM} = 5A	I _{LIM} = 2A	I _{LIM} = 5A
18V	2mF	0.7mF	0.2H	10mH
15V	10mF	2.2mF	0.7H	25mH
10V	25mF	10mF	5H	50mH

•If the inductive load is driven near steady state conditions, allowing the output voltage to drop more than 8V below the supply rail with $I_{LIM} = 5A$, or 17V below the supply rail with $I_{LIM} = 2A$ while the amplifier is current limiting, the inductor should be capacitively coupled or the current limit must be lowered to meet SOA criteria.

These simplified limits may be exceed with further analysis using the operating conditions for a specific application.

2. The amplifier can handle any EMF generating or reactive load and short circuits to the supply rails or shorts to common if the current limits are set as follows at $Tc = 85^{\circ}C$.

	Short to ±V _s	Short to
$\pm V_s$	C,L or EMF Load	Common
18V	0.5A	1.7A
15V	0.7A	2.8A
10V	1.6A	4.2A


CURRENT LIMIT

Proper operation requires the use of two current limit resistors, connected as shown in the external connections diagram. The minimum value for R_{CL} is 0.12 ohm, however for optimum reliability it should be set as high as possible.

DEVICE MOUNTING

The case (mounting flange) is electrically isolated and should be mounted directly to a heatsink with thermal compound. Screws with Belville spring washers are recommended to maintain positive clamping pressure on heatsink mounting surfaces. Long periods of thermal cycling can loosen mounting screws and increase thermal resistance.

Since the case is electrically isolated (floating) with respect to the internal circuits, it is recommended to connect it to common or other convenient AC ground potential.

TO3-8 Package