TOSHIBA

TPCF8301

TOSHIBA FIELD EFFECT TRANSISTOR SILICON P CHANNEL MOS TYPE(U - MOS

TPCF8301

Tentative

UNIT:mm

NOTE BOOK PC APPLICATIONS

PORTABLE EQUIPMENTS APPLICATIONS

- Low Drain Source ON Resistance : R DS(ON) = 72m (Typ.)
- High Forward Transfer Admittance: $|Y_{fs}| = 6 S(Typ.)$
- Low Leakage Current : I $_{DSS}$ = -10 μ A (Max.) (V_{DS} = -20 V)
- Enhancement Mode : $V_{th} = -0.5 \sim -1.2 \text{ V} (V_{DS} = -10 \text{ V}, I_D = -200 \mu \text{ A})$

Maximum Ratings (T_a=25)

Cha	Symbol	Rating	Unit			
Drain-source voltage			V _{DSS}	-20	V	
Drain <mark>-gate voltage(R_{cs}=20k</mark>)			V_{DGR}	-20	V	
Gate-source vol	tage		V_{GSS}	±8	V	
Drain ourrent	DC	(Note 1)	Ι _D	-2.7	۸	
Drain current	Pulse	(Note 1)	Ι _{DR}	-10.8 1.35	Α	
Drain power dissipation	Single-device	e operation (Note 3a)	P _{D (1)}	1.35) ZE	
(t=5s)(Note 2a)	Single-device dual operation		P _{D (2)}	1.12	14/	
Drain power dissipation	Single-device	e operation (Note 3a)	P _{D (1)}	0.53	W	
(t=5s)(Note 2b)	Single-device dual operation		P _{D (2)}	0.33		
Single pulse avalanche energy (Note 4)			E _{AS}	1.2	m J	
Avalanche current			I _{AR}	-1.35	Α	
Repetitive avalanche energy			77.	//	9 -	
Single-device value at dual operation			EAR	0.11	m J	
	(No	te 2a,3b,5)	50.V			
Channel temperature			T_{ch}	150		
Stora <mark>ge temperature range</mark>			T_{stg}	-55 ~ 150		

UNTT.IIIII
2.9 ± 0.1
8 0.3 +0.1 / -0.05
1.5 ± 0.1 1.9 ± 0.1
1 1 1 1 1 1 4
).24 + 0.10 — - 0.09
0.8 ± 0.05
1:SOURCE1 5:DRAIN 2
2 : GATE 1 6 : DRAIN2 3 : SOURCE2 7 : DRAIN1
4: GATE2 8: DRAIN1
JEDEC
JEITA
TOSHIBA

THERMAL CHARACTERISTICS

Chara	Symbol	Max	Unit	
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th(ch-a)(1)} 92.6		/W
(t=5s) (Note 2a)	Single-device value at dual operation (Note 3b)	R _{th(ch-a)(2)}	111.6	
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th(ch-a)(1)}	235.8	/W
(t=5s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th(ch-a)(2)}	378.8	

Circuit Configuration

8 7 6 5

1 2 3 4

Note1, Note2 Note3, Note4, Note5 Please see next page.

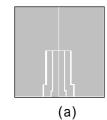
THIS TRANSISTOR IS AN ELECTROSTATIC SENSITIVE DEVICE.

PLEASE HANDLE WITH CAUTION.

TOSHIBA TPCF8301

ELECTRICAL CHARACTERISTICS (Ta = 25)

Tentative


ELECTRICAL OF	IARACTERTSTICS (Ta:	- 25)					
CHARA	CTERISTICS	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	Current	I _{GSS}	$V_{GS} = \pm 8V$, $V_{DS} = 0V$	-	1	± 10	μΑ
Drain Cut-of	f Current	I _{DSS}	$V_{DS} = -20V$, $V_{GS} = 0V$	-	ı	-10	μΑ
Drain-Source	Breakdown	$V_{(BR)DSS}$	$I_D = -10 \text{m A}$, $V_{GS} = 0 \text{ V}$	-20	-	-	V
Voltage		$V_{(BR)DSX}$	$I_D = -10 \text{m A} , V_{GS} = 8 \text{ V}$	-8	-	-	V
Gate Thresho	ld Voltage	V_{th}	$V_{DS} = -10 V$, $I_D = -200 \mu A$	-0.5	-	-1.2	V
			$V_{GS} = -1.8V$, $I_D = -1.4A$	-	215	300	
Drain-Source	ON Resistance	$R_{DS(ON)}$	$V_{GS} = -2.5V$, $I_D = -2.8A$	-	110	160	m
			$V_{GS} = -4.5V$, $I_D = -2.8A$	-	72	110	
Forward Tran	sfer Admittance	Y _{f s}	$V_{DS} = -10V$, $I_D = -2.8A$	3.0	6.0	-	S
Input Capacitance		C _{iss}	$V_{DS} = -10V$, $V_{GS} = 0V$	-	470	-	рF
Reverse Transfer Capacitance		Crss		-	70	-	
Output Capac	itance	Coss	1 1111112	-	80	-	
	Rise Time	t _r	I _D =-1.4A VOUT	-	5	-	
Switching	Turn-on Time	t _{o n}	V _{GS} -5V R _L =7.14	-	9	-	
Time	Fall Time	t _f	4.7	-	8	-	ns
	Turn-off Time	t off	Duty 1%, tw=10us /// /// V _{DD} -10V	-	26	-	
Total Gate Ch Plus Gate-Dr	narge (Gate-Source ain)	Q _g	V _{DD} -16V , V _{GS} = -5V	-	- 6 -		n C
Gate-Source	Charge	Q _{gs}	$I_{D} = -2.7 A$	-	4.5	-	n C
Gate-Drain("	Miller")Charge	Q_{gd}		-	1.5	-	

SOURCE - DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25)

CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Pulse Drain Reverse Current	I_{DRP}	-	-	-	-10.8	Α
(Note1)						
Diode Forward Voltage	V _{DSF}	$I_{DR} = -2.7 A$, $V_{GS} = 0 V$	1	1	1.2	V

Note1: Please use devices on condition that the channel temperature is below 150 $\,$. Note2:

(a) Device mounted on glass-epoxy board (a)

FR-4 $25.4 \times 25.4 \times 0.8$ (Unit in mm)

(b) Device mounted on glass-epoxy board (b)

FR-4 25.4 × 25.4 × 0.8 (Unit in mm)

Note3:

- (a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.).
- (b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.).

Note4: V_{DD} =-16V, Tch=25 (initial), L=0.5mH, R_G =25 , I_{AR} =-1.35A

Note5: Repetitive rating ; Pulse Width Limited by Max. Channel Temperature.

TOSHIBA TPCF8301

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.