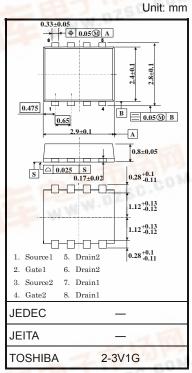
查询TPCP8201供应商 TOSHIBA

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS III)

TPCP8201

Portable Equipment Applications Motor Drive Applications **DC-DC Converter Applications**

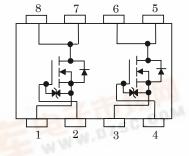

- Lead(Pb)-Free ٠
- Low drain-source ON resistance
- High forward transfer admittance 150 GO $|Y_{fs}| = 7.0 \text{ S (typ.)}$
- Low leakage current
- $: I_{DSS} = 10 \ \mu A \ (V_{DS} = 30 \ V)$
- Enhancement mode : V_{th} = 1.3 to 2.5 V (V_{DS} = 10 V, I_D = 1mA)

Maximum Ratings (Ta = 25°C)

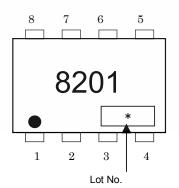
CI	naracteristics	Symbol	Rating	Unit	
Drain-source voltage		V _{DSS}	30	V	
Dra <mark>in-gate v</mark> olt <mark>age (R_{GS} =</mark> 20 kΩ)		V _{DGR}	30	V	
Gate-source v	oltage	V _{GSS}	±20	V	
Drain current	DC (Note 1)	Ι _D	4.2	Α	
Diamourient	ource voltage V_{DSS} 30ate voltage (R_{GS} = 20 kΩ) V_{DGR} 30purce voltage V_{GSS} ± 20 urrent DC (Note 1) I_D 4.2Pulse (Note 1) I_DP 16.8ower tionSingle-device operation (Note 3a) $P_D (1)$ 1.48Single-device value at dual operation (Note 3a) $P_D (2)$ 1.23ower tionSingle-device operation (Note 3b) $P_D (2)$ 0.58Single-device value at dual operation (Note 3a) $P_D (2)$ 0.36ower tionSingle-device value at dual operation (Note 3b) $P_D (2)$ 0.36ower tionSingle-device value at dual operation (Note 3b) $P_D (2)$ 0.36ould operation (Note 3b) E_{AS} 2.86che current I_{AR} 2.1	A			
Drain power		P _{D (1)}	1.48	w	
dissipation (t = 5 s) (Note 2a)	dual operation	P _{D (2)}	1.23		
Drain power		P _{D (1)}	0.58		
dissipation (t = 5 s) (Note 2b)	dual operation	P _{D (2)}	0.36		
Single pulse a (Note 4)	valanche energy	E _{AS}	2.86	mJ	
Avalanche current		I _{AR}	2.1	А	
Repetitive avalanche energy Single-device value at dual operation (Note 2a, 3b, 5)		E _{AR}	0.12	mJ	
Channel temperature		T _{ch}	150	°C	
Storage tempe	erature range	T _{stg}	-55~150	°C	

Note: For Notes 1 to 6, refer to the next page.

This transistor is an electrostatic-sensitive device. Handle with caution.



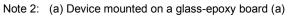
TPCP8201


捷多邦,专业PCB打样工厂,24小时加急出货

Weight: 0.017 g (typ.)

Circuit Configuration

Marking (Note 6)



Thermal Characteristics

Characteristics		Symbol	Max	Unit	
Thermal resistance, channel to ambient (t = 5 s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	84.5	°C/W	
	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	101.6	0,00	
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	215.5	°C/W	
(t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	347.2		

Note 1: The channel temperature should not exceed 150°C during use.

(b) Device mounted on a glass-epoxy board (b)

Note 3: a) The power dissipation and thermal resistance values shown are for a single device. (During single-device operation, power is only applied to one device.)

b) The power dissipation and thermal resistance values shown are for a single device. (During dual operation, power is evenly applied to both devices.)

Note 4: $V_{DD} = 24 \text{ V}, \text{ T}_{ch} = 25^{\circ}\text{C}$ (initial), L = 0.5 mH, R_G = 25 Ω , I_{AR} = 2.1 A

Note 5: Repetitive rating: pulse width limited by maximum channel temperature.

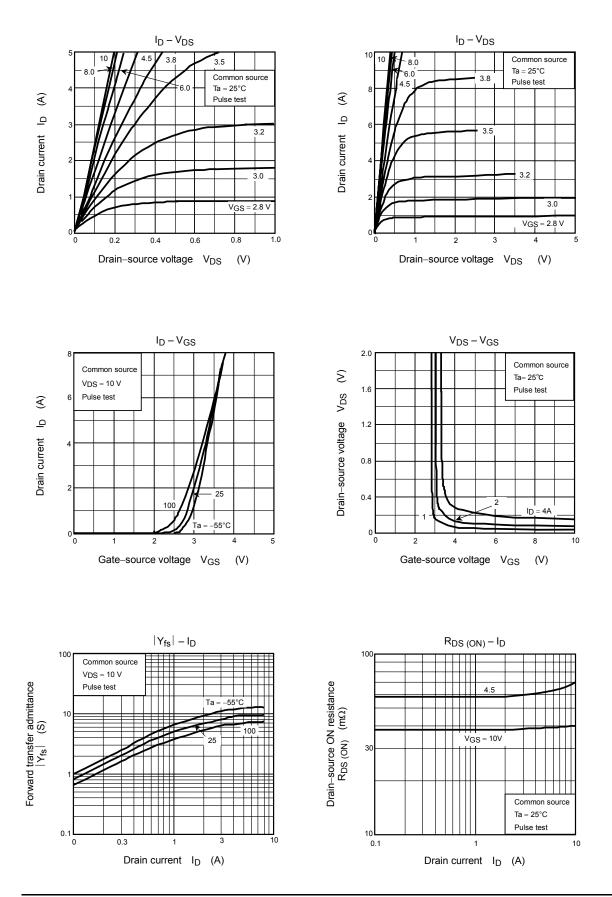
Note 6: • on the lower left of the marking indicates Pin 1.

* Weekly code (3 digits):

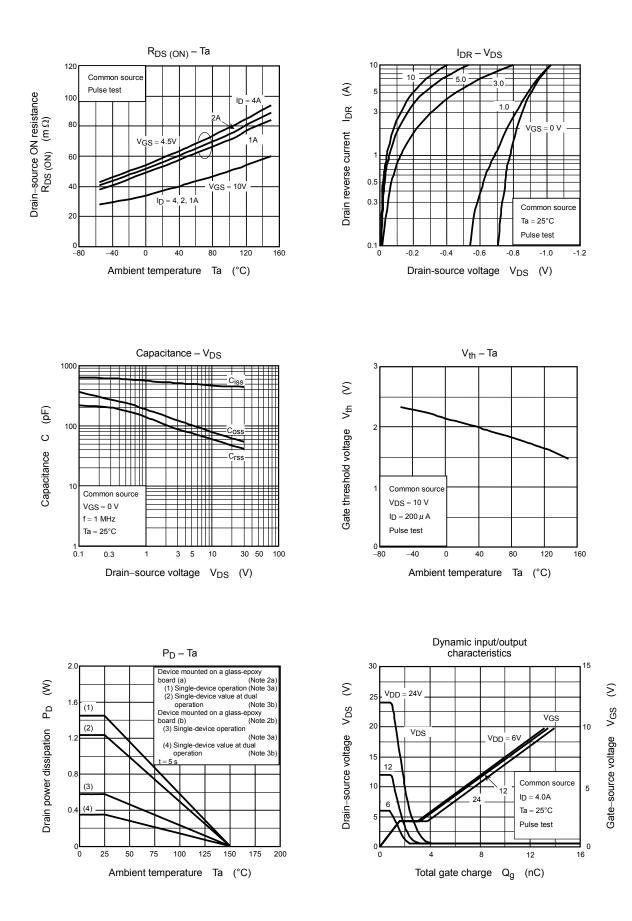
Week of manufacture

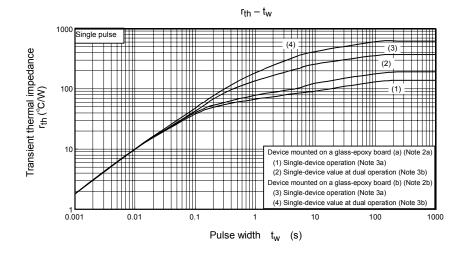
(01 for the first week of the year, continuing up to 52 or 53)

Year of manufacture

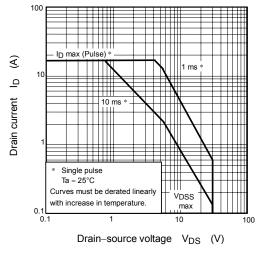

(The last digit of the calendar year)

Electrical Characteristics (Ta = 25°C)


Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	V_{GS} = ±16 V, V_{DS} = 0 V	±10		μA	
Drain cut-off curre	ent	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V	— — 10		μA	
Drain-source breakdown voltage		V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	30	—		v
voltage	tage		I _D = 10 mA, V _{GS} = −20 V	15			
Gate threshold vo	bltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA			2.5	V
			V _{GS} = 4.5 V, I _D = 2.1 A	_	58	77	mΩ
Drain-source ON resistance		R _{DS (ON)}	V _{GS} = 10 V, I _D = 2.1 A	_	38	50	
Forward transfer admittance		Y _{fs}	V _{DS} = 10 V, I _D = 2.1 A	3.5	7.0	_	S
Input capacitance		C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	470	_	pF
Reverse transfer capacitance		C _{rss}		_	60	_	
Output capacitance		C _{oss}		_	80	_	
Switching time	Rise time	tr	$V_{GS} \begin{array}{c} 10 \text{ V} \\ 0 \text{ V} \\ 0 \text{ V} \end{array} \begin{array}{c} I_{D} = 2.1 \text{ A} \\ 0 \text{ V} \\ 0 V$		5.2		- ns
	Turn-on time	t _{on}			8.3		
	Fall time	t _f			4.0		
	Turn-off time	t _{off}			22		
Total gate charge (gate-source plus gate-drain)		Qg		_	10	_	
Gate-source charge 1		Q _{gs1}	V _{DD} ≈ 24 V, V _{GS} = 10 V, I _D = 6 A	_	1.7	_	nC
Gate-drain ("miller") charge		Q _{gd}		_	2.4	_	


Source-Drain Ratings and Characteristics (Ta = 25°C)

Characterist	ics	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	_	_	16.8	А
Forward voltage (diode)		V _{DSF}	I _{DR} = 4.2 A, V _{GS} = 0 V	_	_	-1.2	V



2004-07-06

Safe operating area

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and

set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.