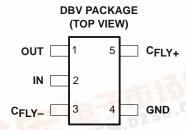
UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER

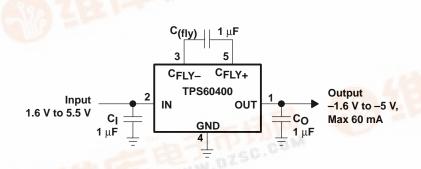

SLVS324 - JULY 2001

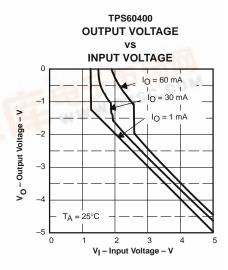
features

- Inverts Input Supply Voltage
- Up to 60-mA Output Current
- Only Three Small 1-μF Ceramic Capacitors Needed
- Input Voltage Range From 1.6 V to 5.5 V
- PowerSave-Mode for Improved Efficiency at Low Output Currents (TPS60400)
- Device Quiescent Current Typical 100 μA
- Integrated Active Schottky-Diode for Start-Up Into Load
- Small 5-Pin SOT23 Package
- Evaluation Module Available TPS60400EVM-178

applications

- LCD Bias
- GaAs Bias for RF Power Amps
- Sensor Supply in Portable Instruments
- Bipolar Amplifier Supply
- Medical Instruments
- Battery-Operated Equipment


description


The TPS6040x is a family of devices that generate an unregulated negative output voltage from an input voltage ranging from 1.6 V to 5.5 V. The devices are typically supplied by a preregulated supply rail of 5 V or 3.3 V. Due to its wide input voltage range, two or three NiCd, NiMH, or alkaline battery cells, as well as one Li-lon cell can also power them.

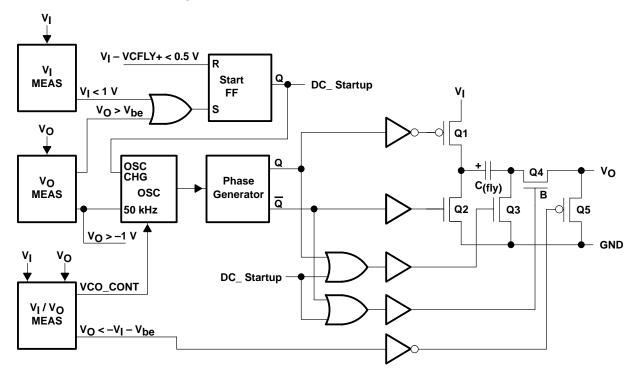
Only three external 1-µF capacitors are required to build a complete dc/dc charge pump inverter. Assembled in a 5-pin SOT23 package, the complete converter can be built on a 50 mm² board area. Additional board area and component count reduction is achieved by replacing the Schottky diode that is typically needed for start-up into load by integrated circuitry.

The TPS6040x can deliver a maximum output current of 60 mA with a typical conversion efficiency of greater than 90% over a wide output current range. Three device options with 20-kHz, 50-kHz, and 250-kHz fixed frequency operation are available. One device comes with a variable switching frequency to reduce operating current in applications with a wide load range and enables the design with low-value capacitors.

typical application circuit

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPS60400, TPS60401, TPS60402, TPS60403 UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER


SLVS324 - JULY 2001

AVAILABLE OPTIONS

PART NUMBER†	MARKING DBV PACKAGE	TYPICAL FLYING CAPACITOR [μF]	FEATURE
TPS60400DBV	PFKI	1	Variable switching frequency 50 kHz-250 kHz
TPS60401DBV	PFLI	10	Fixed frequency 20 kHz
TPS60402DBV	PFMI	3.3	Fixed frequency 50 kHz
TPS60403DBV	PFNI	1	Fixed frequency 250 kHz

[†] The DBV package is available taped and reeled. Add R suffix to device type (e.g. TPS60400DBVR) to order quantities of 3000 devices per reel. Add T suffix to device type (e.g. TPS60400DBVT) to order quantities of 250 devices per reel.

TPS60400 functional block diagram

Terminal Functions

TERM	INAL		
NAME	NO.	1/0	DESCRIPTION
C _{FLY+}	5		Positive terminal of the flying capacitor C _(fly)
C _{FLY} _	3		Negative terminal of the flying capacitor C _(fly)
GND	4		Ground
IN	2	I	Supply input. Connect to an input supply in the 1.6-V to 5.5-V range. Bypass IN to GND with a capacitor that has the same value as the flying capacitor.
OUT	1	0	Power output with $V_O = -V_I$ Bypass OUT to GND with the output filter capacitor C_O .

detailed description

operating principle

The TPS60400, TPS60401 charge pumps invert the voltage applied to their input. For the highest performance, use low equivalent series resistance (ESR) capacitors (e.g., ceramic). During the first half-cycle, switches S2 and S4 open, switches S1 and S3 close, and capacitor ($C_{(fly)}$) charges to the voltage at V_I . During the second half-cycle, S1 and S3 open, S2 and S4 close. This connects the positive terminal of $C_{(fly)}$ to GND and the negative to V_O . By connecting $C_{(fly)}$ in parallel, C_O is charged negative. The actual voltage at the output is more positive than $-V_I$, since switches S1–S4 have resistance and the load drains charge from C_O .

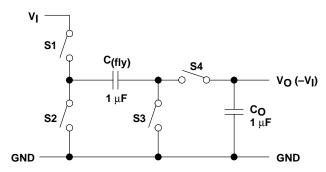


Figure 1. Operating Principle

charge-pump output resistance

The TPS6040x devices are not voltage regulators. The charge pumps output source resistance is approximately 15 Ω at room temperature (with V_I = 5 V), and V_O approaches –5 V when lightly loaded. V_O will droop toward GND as load current increases.

$$V_{O} = -(V_{I} - R_{O} \times I_{O})$$

$$R_{O} \approx \frac{1}{fosc \times C_{(fly)}} + 4(2R_{SWITCH} + ESR_{CFLY}) + ESR_{CO}$$

$$R_{O} = \text{output resistance of the converter}$$
(1)

efficiency considerations

The power efficiency of a switched-capacitor voltage converter is affected by three factors: the internal losses in the converter IC, the resistive losses of the capacitors, and the conversion losses during charge transfer between the capacitors. The internal losses are associated with the IC's internal functions, such as driving the switches, oscillator, etc. These losses are affected by operating conditions such as input voltage, temperature, and frequency. The next two losses are associated with the voltage converter circuit's output resistance. Switch losses occur because of the on-resistance of the MOSFET switches in the IC. Charge-pump capacitor losses occur because of their ESR. The relationship between these losses and the output resistance is as follows:

R_{SWITCH} = resistance of a single MOSFET-switch inside the converter f_{OSC} = oscillator frequency

The first term is the effective resistance from an ideal switched-capacitor circuit. Conversion losses occur during the charge transfer between $C_{(f|v)}$ and C_O when there is a voltage difference between them. The power loss is:

$$P_{\text{CONV.LOSS}} = \left[\frac{1}{2} \times C_{\text{(fly)}} \left(V_{\text{I}}^2 - V_{\text{O}}^2\right) + \frac{1}{2}C_{\text{O}}\left(V_{\text{RIPPLE}}^2 - 2V_{\text{O}}V_{\text{RIPPLE}}\right)\right] \times f_{\text{osc}}$$
(2)

TPS60400, TPS60401, TPS60402, TPS60403 UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER

SLVS324 - JULY 2001

efficiency considerations (continued)

The efficiency of the TPS6040x devices is dominated by their quiescent supply current at low output current and by their output impedance at higher current.

$$\eta \cong \frac{I_O}{I_O + I_Q} \left(1 - \frac{I_O \times R_O}{V_I} \right)$$

Where, I_Q = quiescent current.

capacitor selection

To maintain the lowest output resistance, use capacitors with low ESR (see Table 1). The charge-pump output resistance is a function of $C_{(fly)}$'s and C_O 's ESR. Therefore, minimizing the charge-pump capacitor's ESR minimizes the total output resistance. The capacitor values are closely linked to the required output current and the output noise and ripple requirements. It is possible to only use 1- μ F capacitors of the same type.

input capacitor (C_I)

Bypass the incoming supply to reduce its ac impedance and the impact of the TPS6040x switching noise. The recommended bypassing depends on the circuit configuration and where the load is connected. When the inverter is loaded from OUT to GND, current from the supply switches between 2 x I_O and zero. Therefore, use a large bypass capacitor (e.g., equal to the value of $C_{(fly)}$) if the supply has high ac impedance. When the inverter is loaded from IN to OUT, the circuit draws $2 \times I_O$ constantly, except for short switching spikes. A 0.1- μ F bypass capacitor is sufficient.

flying capacitor (C(fly))

Increasing the flying capacitor's size reduces the output resistance. Small values increases the output resistance. Above a certain point, increasing $C_{(fly)}$'s capacitance has a negligible effect, because the output resistance becomes dominated by the internal switch resistance and capacitor ESR.


output capacitor (CO)

Increasing the output capacitor's size reduces the output ripple voltage. Decreasing its ESR reduces both output resistance and ripple. Smaller capacitance values can be used with light loads if higher output ripple can be tolerated. Use the following equation to calculate the peak-to-peak ripple.

$$V_{O(ripple)} = \frac{I_{O}}{f_{OSC} \times C_{O}} + 2 \times I_{O} \times ESR_{CO}$$

Table 1. Recommended Capacitor Values

DEVICE	ν _Ι [۷]	I _O [mA]	C _I [μ F]	C _(fly) [μF]	C _O [μF]
TPS60400	1.85.5	60	1	1	1
TPS60401	1.85.5	60	10	10	10
TPS60402	1.85.5	60	3.3	3.3	3.3
TPS60403	1.85.5	60	1	1	1

TPS60400, TPS60401, TPS60402, TPS60403 UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER

SLVS324 - JULY 2001

detailed description (continued)

Table 2. Recommended Capacitors

MANUFACTURER	PART NUMBER	SIZE	CAPACITANCE	TYPE
Taiyo Yuden	EMK212BJ474MG	0805	0.47 µF	Ceramic
	LMK212BJ105KG	0805	1 µF	Ceramic
	LMK212BJ225MG	0805	2.2 µF	Ceramic
	EMK316BJ225KL	1206	2.2 µF	Ceramic
	LMK316BJ475KL	1206	4.7 µF	Ceramic
	JMK316BJ106KL	1206	10 µF	Ceramic
TDK	C2012X5R1C105M	0805	1 μF	Ceramic
	C2012X5R1A225M	0805	2.2 μF	Ceramic
	C2012X5R1A335M	0805	3.3 μF	Ceramic

Table 3 contains a list of manufacturers of the recommended capacitors. Ceramic capacitors will provide the lowest output voltage ripple because they typically have the lowest ESR-rating.

Table 3. Recommended Capacitor Manufacturers

MANUFACTURER	CAPACITOR TYPE	INTERNET
Taiyo Yuden	X7R/X5R ceramic	www.t-yuden.com
TDK	X7R/X5R ceramic	www.component.tdk.com
Vishay	X7R/X5R ceramic	www.vishay.com
Kemet	X7R/X5R ceramic	www.kemet.com

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Voltage range:	IN to GND	0.3 V to 5.5 V
	OUT to GND	5.0 V to 0.3 V
	C _{FLY} _ to GND	0.3 V to $(V_O - 0.3 \text{ V})$
	C _{FLY+} to GND	$-0.3 \text{ V to } (V_1 + 0.3 \text{ V})$
Continuous pow	er dissipation	See Dissipation Rating Table
Continuous outp	out current	80 mA
Storage tempera	ature range, T _{sta}	–55°C to 150°C
Maximum junction	on temperature, T」	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

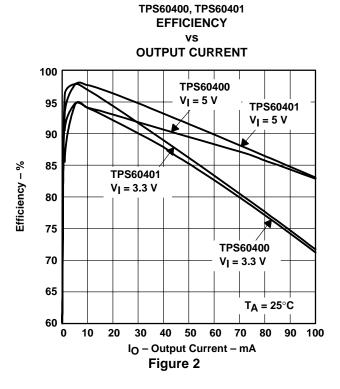
PACKAGE	T _A < 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C	
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING	
DBV	437 mW	3.5 mW/°C	280 mW	227 mW	

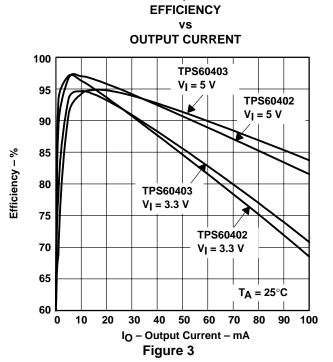
TPS60400, TPS60401, TPS60402, TPS60403 UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER

SLVS324 - JULY 2001

recommended operating conditions

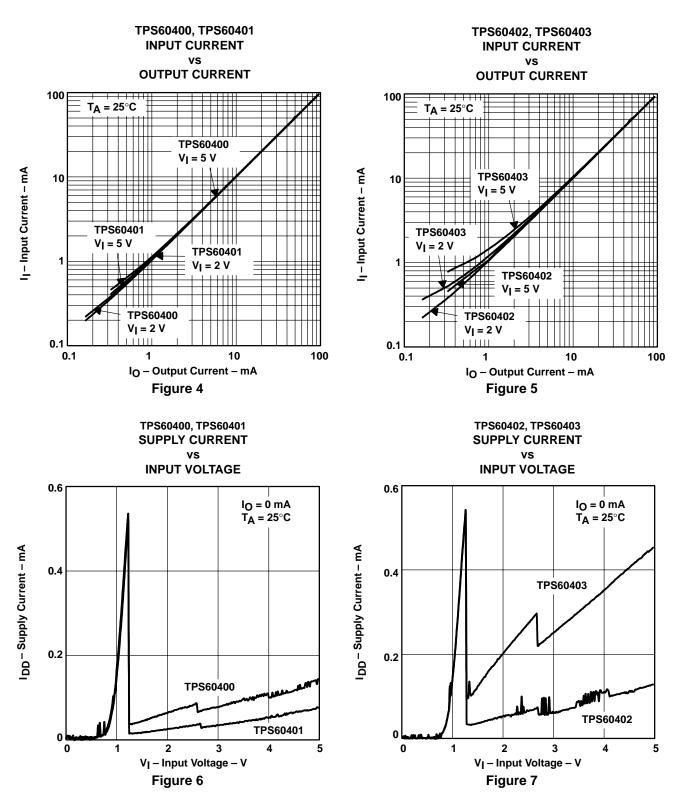
	MIN	NOM	MAX	UNIT
Input voltage range, V _I	1.8		5.25	V
Output current range at OUT, IO			60	mA
Input capacitor, C _I	0	C _(fly)		μF
Flying capacitor, C _(fly)		1		μF
Output capacitor, CO		1	100	μF
Operating junction temperature, T _J	-40		125	°C

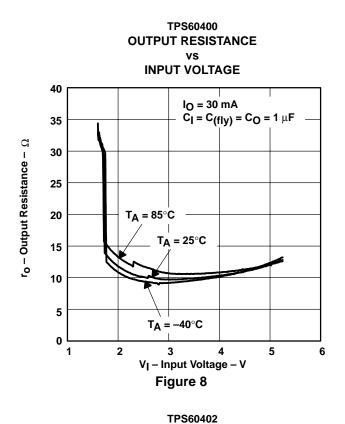

electrical characteristics at $C_I = C_{(fly)} = C_O$ (according to Table 1), $T_C = -40^{\circ}C$ to $85^{\circ}C$, $V_I = 5$ V over recommended operating free-air temperature range (unless otherwise noted)

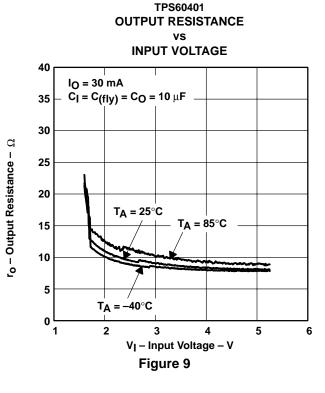

PARAMETER		TES	MIN	TYP	MAX	UNIT		
O. and Land Harman		At $T_C = -40^{\circ}C$ to $85^{\circ}C$, $R_L = 5 \text{ k}\Omega$		1.8		5.25	V	
Supply voltage range		At $T_C \ge 0^{\circ}C$,	$R_L = 5 \text{ k}\Omega$	1.6			V	
Maximum output current at VO				60			mA	
Output voltage					-V _I		V	
	TPS60400		$C_{(fly)} = 1 \mu F, C_O = 2.2 \mu F$		35			
Output valtage ripple	TPS60401		$C_{(fly)} = C_O = 10 \mu F$		20		m\/	
P_P Output voltage ripple	TPS60402	IO = 2 IIIA	$C_{(fly)} = C_O = 3.3 \mu\text{F}$		20		mV _P _P	
	TPS60403		$C_{(fly)} = C_O = 1 \mu F$		15			
	TPS60400				125	270		
	TPS60401	A.M. 5M			65	190	μΑ	
	TPS60402	At $V_1 = 5 V$		120	270			
Quiescent current (no-load input current)	TPS60403			425	700			
	TPS60400					210		
	TPS60401	A. T. < 0000				135		
	TPS60402	At $1 \le 60^{\circ}$ C, $V_{\parallel} = 5 \text{ V}$			210	μΑ		
	TPS60403]				640		
	TPS60400	VCO version		30	50-250	350		
Internal cultable of the succession	TPS60401			13	20	28	1.11-	
internal switching frequency	TPS60402			30	50	70	kHz	
	TPS60403			150	250	300		
	TPS60400	$C_I = C_{(fly)} = C_C$	₎ = 1 μF		12	15		
Impodence at 25°C V	TPS60401				12	15		
impedance at 25° C, $V_{\parallel} = 5^{\circ}$ V	TPS60402	$C_I = C_{(fly)} = C_C$) = 3.3 μF		12	15	Ω	
	TPS60403	$C_I = C_{(fly)} = C_C$) = 1 μF		12	15		
	Supply voltage range Maximum output current at VO Output voltage Output voltage ripple Quiescent current (no-load input	Supply voltage range	$Supply \ voltage \ range \\ \hline Supply \ voltage \ range \\ \hline Maximum \ output \ current \ at \ V_O \\ \hline Output \ voltage \\ \hline Output \ voltage \ ripple \\ \hline \\ Output \ voltage \ ripple \\ \hline \\ \hline PS60400 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60400 \\ \hline TPS60400 \\ \hline TPS60400 \\ \hline TPS60401 \\ \hline TPS60400 \\ \hline TPS60400 \\ \hline TPS60400 \\ \hline TPS60400 \\ \hline TPS60401 \\ \hline TPS60400 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60400 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60400 \\ \hline TPS60400 \\ \hline TPS60401 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60402 \\ \hline TPS60402 \\ \hline TPS60402 \\ \hline TPS60400 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60401 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60401 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60402 \\ \hline TPS60401 \\ \hline TPS60402 \\ \hline TPS60403 \\ \hline TPS60402 \\ \hline$	$Supply \ voltage \ range \\ \ \ \frac{At \ T_C = -40 ^{\circ}\text{C} \ to \ 85 ^{\circ}\text{C}, R_L = 5 \ k\Omega}{At \ T_C \ge 0 ^{\circ}\text{C}, R_L = 5 \ k\Omega} \\ \ \ At \ T_C \ge 0 ^{\circ}\text{C}, R_L = 5 \ k\Omega \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$Supply \ voltage \ range \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$Supply voltage range \\ Supply voltage range \\ \hline Supply voltage range \\ \hline Maximum output current at VO \\ \hline Output voltage \\ \hline Output voltage \\ \hline Output voltage ripple \\ \hline Output voltage ripple \\ \hline PPS60401 \\ TPS60402 \\ TPS60402 \\ \hline PPS60403 \\ \hline PPS60400 \\ TPS60400 \\ \hline PPS60400 \\ \hline PPS60400$		

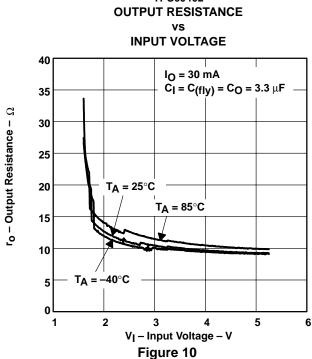
TYPICAL CHARACTERISTICS

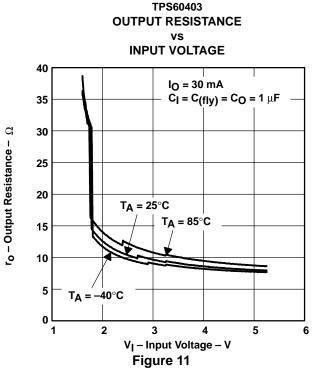
Table of Graphs

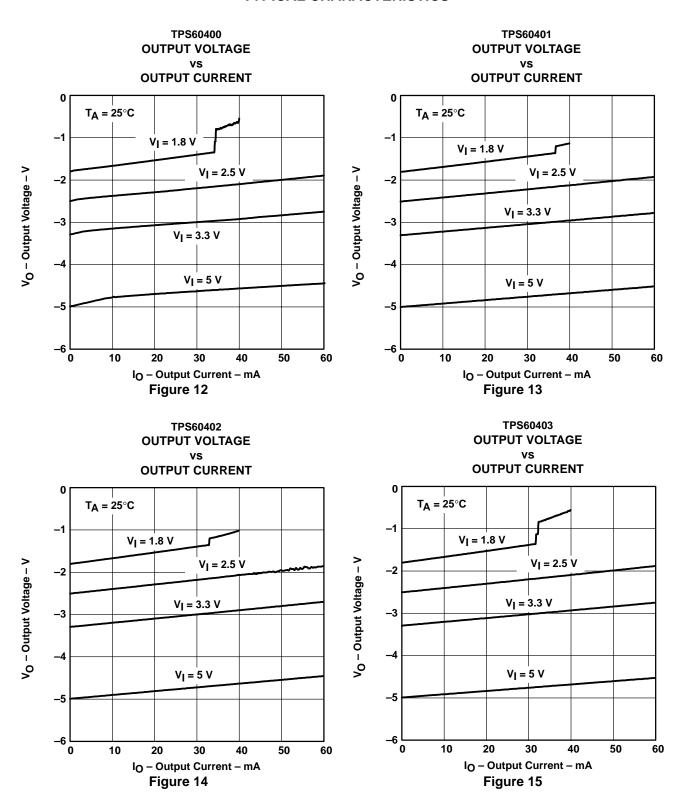

			FIGURE
η	Efficiency	vs Output current at 3.3 V, 5 V TPS60400, TPS60401, TPS60402, TPS60403	2, 3
lį	Input current	vs Output current TPS60400, TPS60401, TPS60402, TPS60403	4, 5
IS	Supply current	vs Input voltage TPS60400, TPS60401, TPS60402, TPS60403	6, 7
	Output resistance	vs Input voltage at -40° C, 0° C, 25° C, 85° C TPS60400, $C_I = C_{(fly)} = C_O = 1 \mu\text{F}$ TPS60401, $C_I = C_{(fly)} = C_O = 10 \mu\text{F}$ TPS60402, $C_I = C_{(fly)} = C_O = 3.3 \mu\text{F}$ TPS60403, $C_I = C_{(fly)} = C_O = 1 \mu\text{F}$	8, 9, 10, 11
VO	Output voltage	vs Output current at 25°C, V_{IN} =1.8 V, 2.5 V, 3.3 V, 5 V TPS60400, C_I = $C_{(fly)}$ = C_O = 1 μ F TPS60401, C_I = $C_{(fly)}$ = C_O = 10 μ F TPS60402, C_I = $C_{(fly)}$ = C_O = 3.3 μ F TPS60403, C_I = $C_{(fly)}$ = C_O = 1 μ F	12, 13, 14, 15
fosc	Oscillator frequency	vs Temperature at V _I = 1.8 V, 2.5 V, 3.3 V, 5 V TPS60400, TPS60401, TPS60402, TPS60403	16, 17, 18, 19
fosc	Oscillator frequency	vs Output current TPS60400 at 2 V, 3.3 V, 5.0 V	20
	Output ripple and noise	$\begin{array}{c} V_I = 5 \text{ V, } I_O = 30 \text{ mA, } C_I = C_{(fly)} = C_O = 1 \mu\text{F (TPS60400)} \\ V_I = 5 \text{ V, } I_O = 30 \text{ mA, } C_I = C_{(fly)} = C_O = 10 \mu\text{F (TPS60401)} \\ V_I = 5 \text{ V, } I_O = 30 \text{ mA, } C_I = C_{(fly)} = C_O = 3.3 \mu\text{F (TPS60402)} \\ V_I = 5 \text{ V, } I_O = 30 \text{ mA, } C_I = C_{(fly)} = C_O = 1 \mu\text{F (TPS60403)} \end{array}$	21, 22

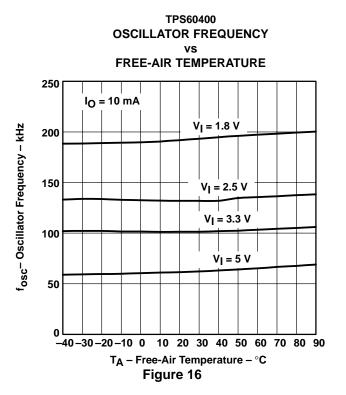


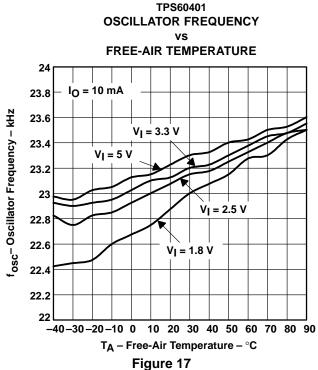

TPS60402, TPS60403

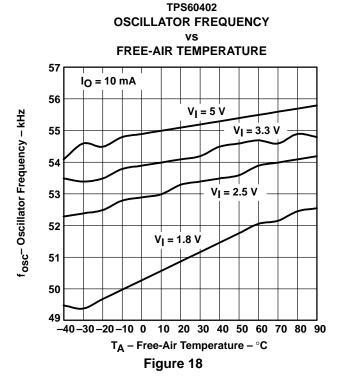


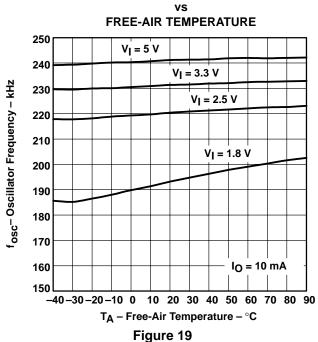




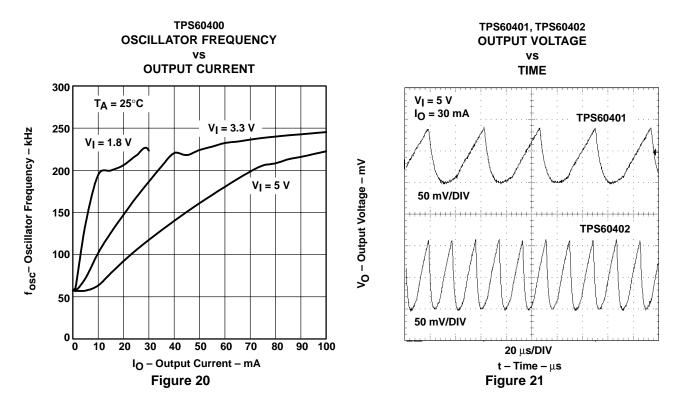








TYPICAL CHARACTERISTICS



TPS60403
OSCILLATOR FREQUENCY

TPS60400, TPS60403 OUTPUT VOLTAGE VS TIME

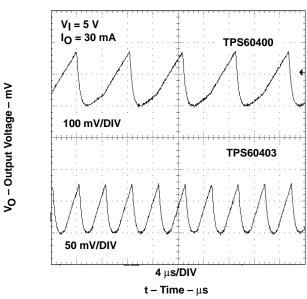


Figure 22

APPLICATION INFORMATION

voltage inverter

The most common application for these devices is a charge-pump voltage inverter (see Figure 23). This application requires only two external components; capacitors $C_{(fly)}$ and C_{O} , plus a bypass capacitor, if necessary. Refer to the capacitor selection section for suggested capacitor types.

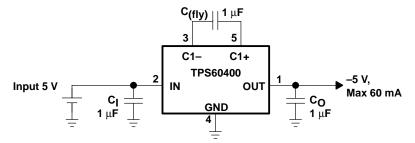


Figure 23. Typical Operating Circuit

For the maximum output current and best performance, three ceramic capacitors of 1 μ F (TPS60400, TPS60403) are recommended. For lower currents or higher allowed output voltage ripple, other capacitors can also be used. It is recommended that the output capacitors has a minimum value of 1 μ F. With flying capacitors lower than 1 μ F, the maximum output power will decrease.

RC-post filter

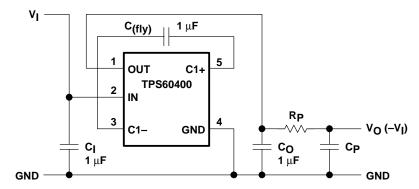


Figure 24. TPS60400 and TPS60401 With RC-Post Filter

An output filter can easily be formed with a resistor (R_P) and a capacitor (C_P). Cutoff frequency is given by:

$$f_{\rm C} = \frac{1}{2\pi R_{\rm P} C_{\rm P}} \quad (1)$$

and ratio V_O/V_{OUT} is:

$$\left| \frac{V_{O}}{V_{OUT}} \right| = \frac{1}{\sqrt{1 + \left(2\pi f R_{P} C_{P}\right)^{2}}}$$
 (2)

with R_P = 50
$$\Omega$$
, C_P = 0.1 μ F and f = 250 kHz: $\left|\frac{V_O}{V_{OUT}}\right|$ = 0.125

The formula refers only to the relation between output and input of the ac ripple voltages of the filter.

LC-post filter

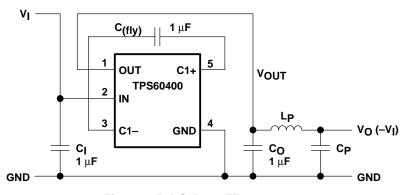


Figure 25. LC-Post Filter

Figure 25 shows a configuration with a LC-post filter to further reduce output ripple and noise.

APPLICATION INFORMATION

Table 4. Measurement Results on the TPS60400 (Typical)

ν _Ι [ν]	^I O(2) [mA]	C _I [μF]	C _(fly) [μF] CERAMIC	C _O [μF]	L _P [μ H]	Cp [μF] CERAMIC	BW = 500 MHz VPOUT VP_P[mV]	BW = 20 MHz VPOUT VP_P[mV]	V _{POUT} VACeff [mV]
5	60	1	1	1			320	240	65
5	60	1	1	2.2			120	240	32
5	60	1	1	1		0.1 (X7R)	260	200	58
5	60	1	1	1	0.1	0.1 (X7R)	220	200	60
5	60	1	1	2.2	0.1	0.1 (X7R)	120	100	30
5	60	1	1	10	0.1	0.1 (X7R)	50	28	8

rail splitter

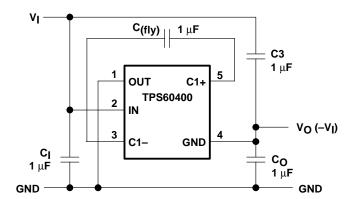


Figure 26. TPS60400 as a High-Efficiency Rail Splitter

A switched-capacitor voltage inverter can be configured as a high efficiency rail-splitter. This circuit provides a bipolar power supply that is useful in battery powered systems to supply dual-rail ICs, like operational amplifiers. Moreover, the SOT23-5 package and associated components require very little board space.

After power is applied, the flying capacitor ($C_{(fly)}$) connects alternately across the output capacitors C_3 and C_O . This equalizes the voltage on those capacitors and draws current from V_I to V_O as required to maintain the output at 1/2 V_I .

The maximum input voltage between V_I and GND in the schematic (or between IN and OUT at the device itself) must not exceed 6.5 V.

combined doubler/inverter

In the circuit of Figure 27, capacitors C_I , $C_{(fly)}$, and C_O form the inverter, while C1 and C2 form the doubler. C1 and $C_{(fly)}$ are the flying capacitors; C_O and C2 are the output capacitors. Because both the inverter and doubler use part of the charge-pump circuit, loading either output causes both outputs to decline toward GND. Make sure the sum of the currents drawn from the two outputs does not exceed 60 mA. The maximum output current at $V_{(DOS)}$ must not exceed 30 mA. If the negative output is loaded, this current must be further reduced.

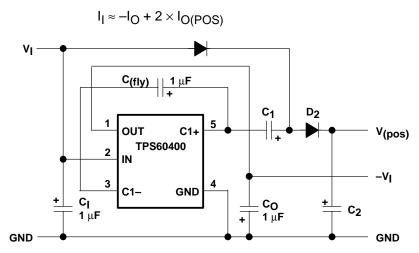


Figure 27. TPS60400 as Doubler/Inverter

cascading devices

Two devices can be cascaded to produce an even larger negative voltage (see Figure 28). The unloaded output voltage is normally $-2 \times V_l$, but this is reduced slightly by the output resistance of the first device multiplied by the quiescent current of the second. When cascading more than two devices, the output resistance rises dramatically.

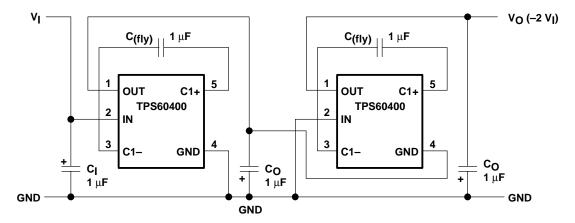


Figure 28. Doubling Inverter

paralleling devices

Paralleling multiple TPS6040xs reduces the output resistance. Each device requires its own flying capacitor $(C_{(fly)})$, but the output capacitor (C_O) serves all devices (see Figure 29). Increase C_O 's value by a factor of n, where n is the number of parallel devices. Equation 1 shows the equation for calculating output resistance.

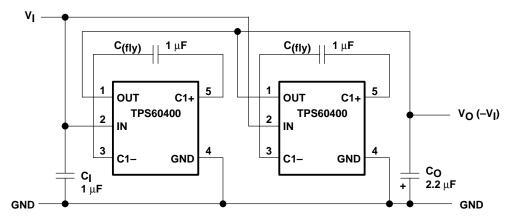


Figure 29. Paralleling Devices

active-Schottky diode

For a short period of time, when the input voltage is applied, but the inverter is not yet working, the output capacitor is charged positive by the load. To prevent the output being pulled above GND, a Schottky diode must be added in parallel to the output. The function of this diode is integrated into the TPS6040x devices, which gives a defined startup performance and saves board space.

A current sink and a diode in series can approximate the behavior of a typical, modern operational amplifier. Figure 30 shows the current into this typical load at a given voltage. The TPS6040x devices are optimized to start into these loads.

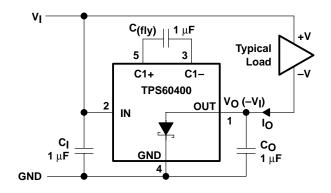


Figure 30. Typical Load

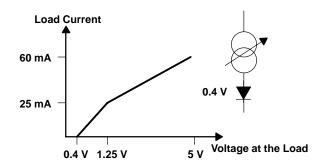


Figure 31. Maximum Start-Up Current

shutting down the TPS6040x

If shutdown is necessary, use the circuit in Figure 32. The output resistance of the TPS6040x will typically be 15 Ω plus two times the output resistance of the buffer.

Connecting multiple buffers in parallel can reduce the output resistance of the buffer driving the IN pin.

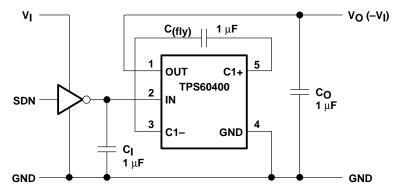


Figure 32. Shutdown Control

GaAs supply

A solution for a -2.7-V/3-mA GaAs bias supply is proposed in Figure 33. The input voltage of 3.3 V is first inverted with a TPS60403 and stabilized using a TLV431 low-voltage shunt regulator. Resistor R_P with capacitor C_P is used for filtering the output voltage.

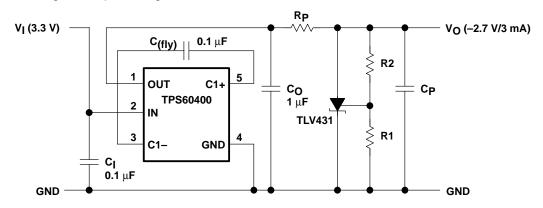


Figure 33. GaAs Supply

$$V_{O} = -\left(1 + \frac{R1}{R2}\right) \times V_{ref} - R1 \times I_{l(ref)}$$

A 0.1- μ F capacitor was selected for C_(flv). By this, the output resistance of the inverter is about 52 Ω .

GaAs supply (continued)

R_{PMAX} can be calculated using the following equation:

$$R_{PMAX} = \left(\frac{V_{CO} - V_{O}}{I_{O}} - R_{O}\right)$$

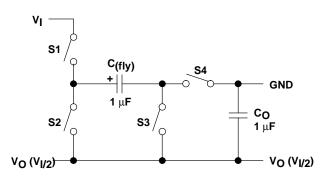
With:
$$V_{CO} = -3.3 \text{ V}$$
; $V_{O} = -2.7 \text{ V}$; $I_{O} = -3 \text{ mA}$

$$R_{PMAX} = 200 \Omega - 52 \Omega = 148 \Omega$$

A 100- Ω resistor was selected for R_P.

The reference voltage across R2 is 1.24 V typical. With 5-µA current for the voltage divider, R2 gets:

$$R2 = \frac{1.24 \text{ V}}{5 \mu A} \approx 250 \text{ k}\Omega$$


$$R1 = \frac{2.7 - 1.24 \text{ V}}{5 \,\mu\text{A}} \approx 300 \text{ k}\Omega$$

With $C_P = 1 \mu F$ the ratio V_O/V_I of the RC post filter is:

$$\left| \frac{V_{O}}{V_{I}} \right| = \frac{1}{\sqrt{1 + (2\pi 125000 \text{Hz} \times 100\Omega \times 1 \,\mu\text{F})^{2}}} \approx 0.01$$

step-down charge pump

By exchanging GND with OUT (connecting the GND pin with OUT and the OUT pin with GND), a step-down charge pump can easily be formed. In the first cycle S1 and S3 are closed, and $C_{(fly)}$ with C_O in series are charged. Assuming the same capacitance, the voltage across $C_{(fly)}$ and C_O is split equally between the capacitors. In the second cycle, S2 and S4 close and both capacitors with $V_1/2$ across are connected in parallel.

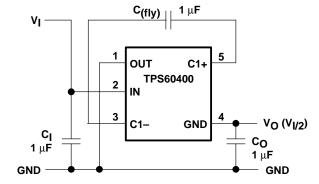


Figure 35. Step-Down Charge Pump Connection

The maximum input voltage between V_I and GND in the schematic (or between IN and OUT at the device itself) must not exceed 6.5 V. For input voltages in the range of 6.5 V to 11 V, an additional Zener-diode is recommended (see Figure 36).

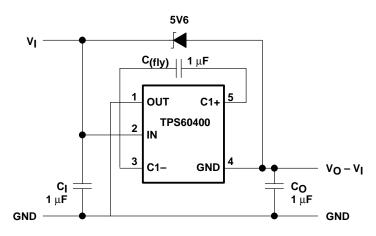


Figure 36.

power dissipation

As given in the data sheet, the thermal resistance of the unsoldered package is $R_{\theta JA} = 347^{\circ}$ C/W. Soldered on the EVM, a typical thermal resistance of $R_{\theta JA}(EVM) = 180^{\circ}$ C/W was measured.

The terminal resistance can be calculated using the following equation:

$$R_{\theta JA} = \frac{T_J - T_A}{P_D}$$

Where:

T_J is the junction temperature.

T_A is the ambient temperature.

P_D is the power that needs to be dissipated by the device.

$$R_{\theta JA} = \frac{T_J - T_A}{P_D}$$

The maximum power dissipation can be calculated using the following equation:

$$P_D = V_I \times I_I - V_O \times I_O = V_{I(max)} \times (I_O + I_{(SUPPLY)}) - V_O \times I_O$$

The maximum power dissipation happens with maximum input voltage and maximum output current.

At maximum load the supply current is 0.7 mA maximum.

$$P_D = 5 \text{ V} \times (60 \text{ mA} + 0.7 \text{ mA}) - 4.4 \text{ V} \times 60 \text{ mA} = 40 \text{ mW}$$

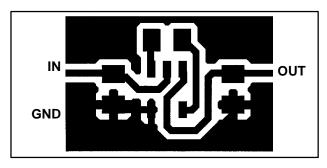
With this maximum rating and the thermal resistance of the device on the EVM, the maximum temperature rise above ambient temperature can be calculated using the following equation:

$$\Delta T_J = R_{\theta JA} \times P_D = 180^{\circ}C/W \times 40 \text{ mW} = 7.2^{\circ}C$$

This means that the internal dissipation increases T_J by <10°C.

The junction temperature of the device shall not exceed 125°C.

This means the IC can easily be used at ambient temperatures up to:


$$T_A = T_{J(max)} - \Delta T_J = 125^{\circ}C/W - 10^{\circ}C = 115^{\circ}C$$

APPLICATION INFORMATION

layout and board space

All capacitors should be soldered as close as possible to the IC. A PCB layout proposal for a single-layer board is shown in Figure 37. Care has been taken to connect all capacitors as close as possible to the circuit to achieve optimized output voltage ripple performance.

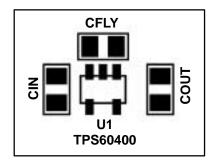


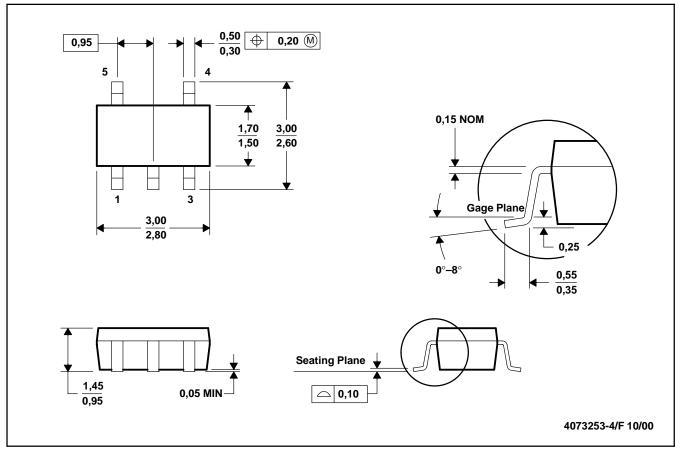
Figure 37. Recommended PCB Layout for TPS6040x (top layer)

device family products

Other inverting dc-dc converters from Texas Instruments are listed in Table 5.

Table 5. Product Identification

PART NUMBER	DESCRIPTION
TPS6735	Fixed negative 5-V, 200-mA inverting dc-dc converter
TPS6755	Adjustable 1-W inverting dc-dc converter


TPS60400, TPS60401, TPS60402, TPS60403 UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER

SLVS324 - JULY 2001

MECHANICAL DATA

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265