捷多邦,专业PCB打样工厂,24小时加急出货

TEXAS INSTRUMENTS

TSC2008

www.ti.com

SBAS406-JUNE 2008

1.2V to 3.6V, 12-Bit, Nanopower, 4-Wire Micro TOUCH SCREEN CONTROLLER with SPI™

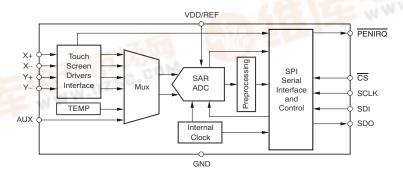
FEATURES

- 4-Wire Touch Screen Interface
- Single 1.2V to 3.6V Supply/Reference
- Ratiometric Conversion
- Effective Throughput Rate:
- Up to 20kHz (8 Bit) or 10kHz (12 Bit)
- Preprocessing to Reduce Bus Activity
- SPI Interface
- Simple, Command-Based User Interface:
 - TSC2046 Compatible
 - 8- or 12-Bit Resolution
- On-Chip Temperature Measurement
- Touch Pressure Measurement
- Digital Buffered PENIRQ
- On-Chip, Programmable PENIRQ Pullup
- Auto Power-Down Control
- Low Power:
 - 32.4µA at 1.2V, Fast Mode, 8.2kHz Eq Rate
 - 43.8µA at 1.8V, Fast Mode, 8.2kHz Eq Rate
 - 58.4μA at 2.7V, Fast Mode, 8.2kHz Eq Rate
- Software Reset
- Enhanced ESD Protection:
 - ±8kV HBM
 - ±1kV CDM
 - Target ±25kV Air Gap Discharge
 - Target ±15kV Contact Discharge
- 1.5 x 2 WCSP-12 and 4 x 4 QFN-16 Packages

U.S. Patent No. 6246394; other patents pending.

APPLICATIONS

- Cellular Phones
- PDA, GPS, and Media Players
- Portable Instruments
- Point-of-Sale Terminals
- Multiscreen Touch Control


DESCRIPTION

The TSC2008 is a very low-power touch screen controller designed to work with power-sensitive, handheld applications that are based on advanced low-voltage processors. It works with a supply voltage as low as 1.2V, which can be supplied by a single-cell battery. It contains a complete, ultra-low power, 12-bit, analog-to-digital (A/D) resistive touch screen converter, including drivers and the control logic to measure touch pressure.

In addition to these standard features, the TSC2008 offers preprocessing of the touch screen measurements to reduce bus loading, thus reducing the consumption of host processor resources that can then be redirected to more critical functions.

The TSC2008 supports an SPI serial bus and data transmission protocol in all three defined modes: standard, fast, and high-speed. It offers programmable resolution of 8 or 12 bits to accommodate different screen sizes and performance needs.

The TSC2008 is available in a 12-lead, (1,555 \pm 0,055mm) x (2,055 \pm 0,055mm) 3 x 4 array, wafer chip-scale package (WCSP), and a 16-pin, 4 x 4 QFN package. The TSC2008 is characterized for the -40°C to +85°C industrial temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Plastruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SP is a trademark of Motorola Inc.

All other trademarks are the property of their respective owners.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and

SBAS406-JUNE 2008

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION⁽¹⁾

PRODUCT	TYPICAL INTEGRAL LINEARITY (LSB)	TYPICAL GAIN ERROR (LSB)	NO MISSING CODES RESOLUTION (BITS)	PACKAGE TYPE	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
TSC2008I	±1.5	-0.2/+4.4	11	16-Pin, 4 x 4 QFN	RGV	-40°C to +85°C	TSC2008I	TSC2008RGVT	Small Tape and Reel, 250
								TSC2008RGVR	Tape and Reel, 25000
				12-Pin, 3 x 4 Matrix, 1.5 x 2 WCSP	YZG	-40°C to +85°C	TSC2008I	TSC2008IYZGT	Small Tape and Reel, 250
								TSC2008IYZGR	Tape and Reel, 3000

(1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating free-air temperature range (unless otherwise noted).

	TSC2008	UNIT		
	Analog input X+	, Y+, AUX to GND	-0.4 to VDD + 0.1	V
Voltage	Analog input X-	, Y– to GND	-0.4 to VDD + 0.1	V
Voltage range	VDD to GND		-0.3 to +5	V
Digital input voltage to GND	-0.3 to VDD + 0.3	V		
Digital output voltage to GND	-0.3 to VDD + 0.3	V		
Power dissipation	(T _J Max - T _A)/θ _{JA}			
	QFN package		47	°C/W
Thermal impedance, θ_{JA}	14/005	Low-K	113	°C/W
	WCSP	High-K	62	°C/W
Operating free-air temperature range	e, T _A	L.	-40 to +85	°C
Storage temperature range, T _{STG}	-65 to +150	°C		
Junction temperature, T _J Max	+150	°C		
	Vapor phase (6	0 sec)	+215	°C
Lead temperature	Infrared (15 sec)	+220	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.

2

www.ti.com

ELECTRICAL CHARACTERISTICS

At $T_A = -40^{\circ}$ C to +85°C, $V_{DD} = +1.2$ V to +3.6V, unless otherwise noted.

					TSC2008			
PARAMETER			TEST CONDITIONS	MIN TYP MAX			UNIT	
AUXILIARY ANA	ALOG INPUT					·		
Input voltage ran	nge			0		V _{DD}	V	
Input capacitance	e				12		pF	
Input leakage cu	irrent			-1		+1	μΑ	
A/D CONVERTE	ER							
Resolution		Programmable	: 8 or 12 bits			12	Bits	
No missing code	es	12-bit resolution	n	11			Bits	
Integral linearity					±1.5		LSB ⁽¹⁾	
Offset error		$V_{DD} = 1.8V$		-0.8 to +0.3			LSB	
Oliset elloi		$V_{DD} = 3.0 V$		+3.2 to +8.9			LSB	
		$V_{DD} = 1.8V$			-0.2 to 0		LSB	
Gain error		$V_{DD} = 3.0 V$		+	-3.8 to +4.4		LSB	
TOUCH SENSO	RS							
PENIRQ pull-up	register P	$T_A = +25^{\circ}C, V_D$	_D = 1.8V, command '1011' set '0000'		51		kΩ	
	Tesision, R _{IRQ}	$T_A = +25^{\circ}C, V_D$	_D = 1.8V, command '1011' set '0001'		90		kΩ	
Switch	Y+, X+				6		Ω	
on-resistance Y-, X-					5		Ω	
Switch drivers drive current ⁽²⁾		100ms duration	1			50	mA	
INTERNAL TEM	IPERATURE SEN	SOR				·		
Temperature ran	nge			-40		+85	°C	
		Differential	$V_{DD} = 3V$			°C/LSE		
Pagalution		method ⁽³⁾	V _{DD} = 1.6V		1.6		°C/LSE	
Resolution		TEMP1 ⁽⁴⁾	$V_{DD} = 3V$		0.3		°C/LSE	
			V _{DD} = 1.6V		0.3		°C/LSE	
		Differential	$V_{DD} = 3V$	±2			°C/LSE	
A		method ⁽³⁾	V _{DD} = 1.6V	±2			°C/LSE	
Accuracy		TEMP1 ⁽⁴⁾	$V_{DD} = 3V$		±3		°C/LSE	
		TEMPT	V _{DD} = 1.6V			°C/LSE		
INTERNAL OSC	ILLATOR					·		
			V _{DD} = 1.2V		3.19		MHz	
		0.04	V _{DD} = 1.8V		3.66		MHz	
Internal clock frequency, f _{CCLK}		8-Bit	V _{DD} = 2.7V		3.78		MHz	
			V _{DD} = 3.6V	3			MHz	
			V _{DD} = 1.2V		1.6		MHz	
		10 D ²⁴	V _{DD} = 1.8V		1.83		MHz	
		12-Bit	V _{DD} = 2.7V	1.88			MHz	
			V _{DD} = 3.6V	1.91			MHz	
-		V _{DD} = 1.6V	·		0.0056		%/°C	
Frequency drift		$V_{DD} = 3.0V$			0.012		%/°C	

 LSB means *least significant bit.* With V_{DD} (REF) = +2.5V, 1LSB is 610μV.
Assured by design, but not production tested. Exceeding 50mA source current may result in device degradation.
Difference between TEMP1 and TEMP2 measurement; no calibration necessary. (2) (3) (4)

Temperature drift is -2.1mV/°C.

SBAS406-JUNE 2008

www.ti.com

SBAS406-JUNE 2008

ELECTRICAL CHARACTERISTICS (continued)

At $T_A = -40^{\circ}$ C to +85°C, $V_{DD} = +1.2$ V to +3.6V, unless otherwise noted.

						TSC2008			
PARAMETER			TEST CONDITIO	ONS	MIN	TYP	MAX	UNIT	
DIGITAL INP	JT/OUTPUT								
Logic family					CMOS				
		$1.2 \text{V} \leq \text{V}_{\text{DD}} < 1.6$	V		$0.7 \times V_{DD}$		V _{DD} + 0.3	V	
	V _{IH}	$1.6V \le V_{DD} \le 3.6$	V		$0.7 \times V_{DD}$		V _{DD} + 0.3	V	
		$1.2 \text{V} \leq \text{V}_{\text{DD}} < 1.6$	V		-0.3		$0.2 \times V_{DD}$	V	
	VIL	$1.6V \le V_{DD} \le 3.6$	V		-0.3		$0.3 \times V_{DD}$	V	
	IIL	CS, SCLK, and S	SDI pins		-1		1	μΑ	
Logic level	C _{IN}	CS, SCLK, and S	SDI pins				10	pF	
	V _{OH}	I _{OH} = 2 TTL load	s		V _{DD} - 0.2		V _{DD}	V	
	V _{OL}	I _{OL} = 2 TTL loads	6		0		0.2	V	
	I _{LEAK}	Floating output			-1		1	μΑ	
	C _{OUT}	Floating output					10	pF	
Data format					Straight Binary				
POWER SUP	PLY REQUIREMEN	NTS							
Power-supply	voltage								
V _{DD}		Specified perform	Specified performance		1.2		3.6	V	
			1 2)/	36.4k eq rate		128	190	μΑ	
Quiescent supply current $(V_{DD}$ with sensor off)		12-bit	$V_{DD} = 1.2V$	8.2k eq rate		32.4	48	μΑ	
		f _{SCLK} = 10MHz,	N/ 4 0V/	36.4k eq rate		165	240	μΑ	
		$f_{ADC} = 1MHz,$ PD[1:0] = 0,0	V _{DD} = 1.8V	8.2k eq rate		43.8	60	μΑ	
		FD[1.0] = 0,0	V 0.7V	36.4k eq rate		226.2	335	μΑ	
			$V_{DD} = 2.7V$	8.2k eq rate		63.4	84	μA	
Power-down s	supply current	CS = 1, SDI = S	CLK = 1, PD[1:0] =	= 0,0		0	0.8	μΑ	

4

23-Jun-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TSC2008IRGVR	PREVIEW	QFN	RGV	16	2500	TBD	Call TI	Call TI
TSC2008IRGVT	PREVIEW	QFN	RGV	16	250	TBD	Call TI	Call TI
TSC2008IYZGR	PREVIEW	DSBGA	YZG	12	3000	TBD	Call TI	Call TI
TSC2008IYZGT	PREVIEW	DSBGA	YZG	12	250	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

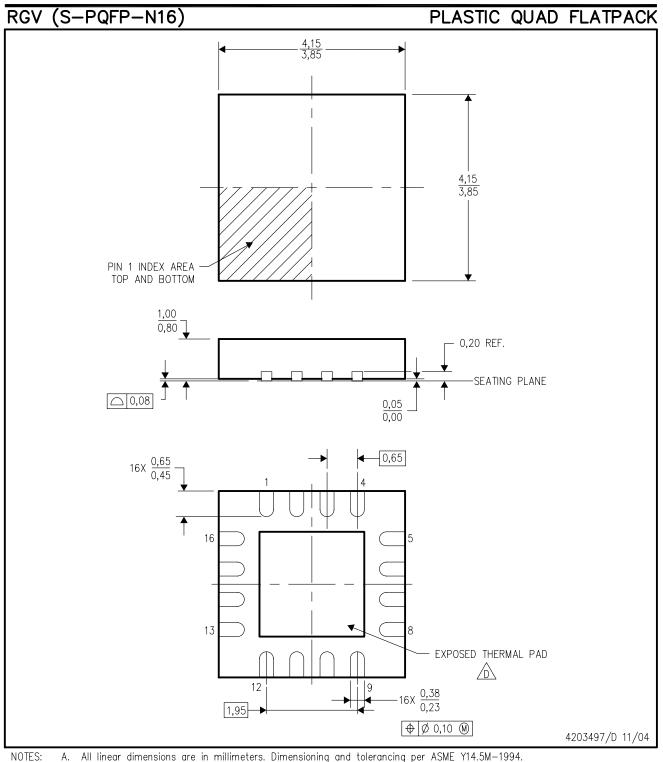
OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

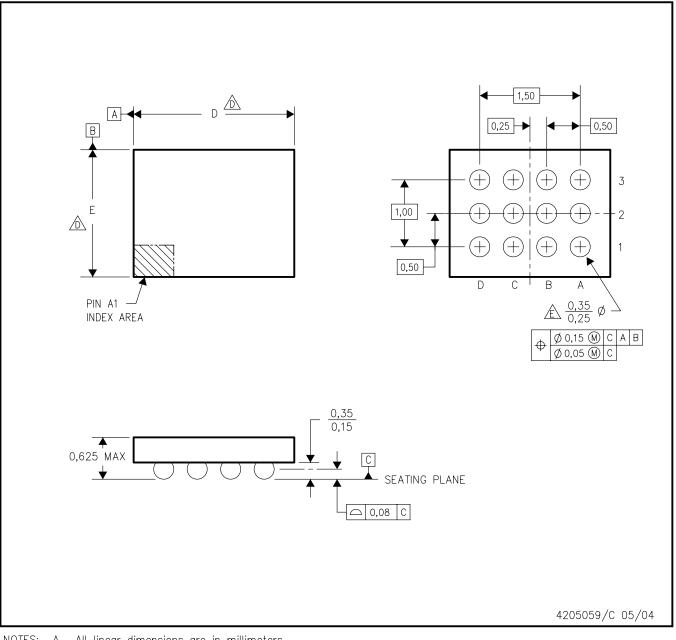

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA


All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- ⚠ The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-220.

YZG (R-XBGA-N12)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- Devices in YZG package can have dimension D ranging from 1.85 to 2.65 mm and dimension E ranging from 1.35 to 2.15 mm. To determine the exact package size of a particular device, refer to the device datasheet or contact a local TI representative.

TEXAS INSTRUMENTS

- Reference Product Data Sheet for array population. 4 x 3 matrix pattern is shown for illustration only.
- F. This package contains lead-free balls. Refer to YEG (Drawing #4204182) for tin-lead (SnPb) balls.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	amp
Data Converters	data
DSP	dsp
Clocks and Timers	WW
Interface	inte
Logic	logi
Power Mgmt	pow
Microcontrollers	mic
RFID	<u>ww</u>
RF/IF and ZigBee® Solutions	<u>ww</u>

mplifier.ti.com ataconverter.ti.com sp.ti.com www.ti.com/clocks nterface.ti.com ogic.ti.com ower.ti.com nicrocontroller.ti.com www.ti-fid.com www.ti.com/lprf

Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/security www.ti.com/video www.ti.com/video www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

Wireless