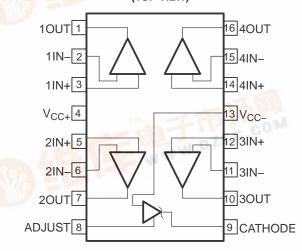


捷多邦,专业PCB打样工厂**TSM10AW**出**TS**M104WA QUAD OPERATIONAL AMPLIFIER AND PROGRAMMABLE VOLTAGE REFERENCE

SLOS478D-JULY 2005-REVISED AUGUST 2006

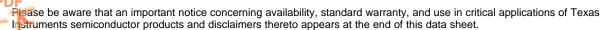

FEATURES

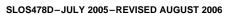
- OPERATIONAL AMPLIFIER
 - Low Offset Voltage, Max of:
 - TSM104WA...3 mV (25°C) and 4 mV (Full Temperature)
 - TSM104W...5 mV (25°C) and 6 mV (Full Temperature)
 - Low Supply Current...375 μA/Channel Typ at V_{CC} = 5 V
 - Unity Gain Bandwidth...0.9 MHz Typ
 - Input Common-Mode Range Includes GND
 - Large Output-Voltage Swing...0 V to V_{CC} - 2 V
 - Wide Supply-Voltage Range...3 V to 30 V
 - 2-kV ESD Protection (HBM)
- VOLTAGE REFERENCE
 - Adjustable Output Voltage...V_{RFF} to 36 V
 - V_{REF} = 2.5 V With Tight Tolerance, Max of:
 - TSM104WA...0.4% (25°C) and 0.8% (Full Temperature)
 - TSM104W...1% (25°C) and 2% (Full Temperature)
 - Low Temperature Drift...7 mV Typ Over Operating Temperature Range
 - Wide Sink-Current Range...0.5 mA Typ to 100 mA
 - Output Impedance...0.2 Ω Typ

TYPICAL APPLICATIONS

- Battery Chargers
- Switch-Mode Power Supplies
- Linear Voltage Regulation
- Data-Acquisition Systems

D (SOIC), N (PDIP), OR PW (TSSOP) PACKAGE (TOP VIEW)




DESCRIPTION/ORDERING INFORMATION

The TSM104W combines the building blocks of a quad operational amplifier and an adjustable voltage reference, both of which often are used in the control circuitry of switch-mode power supplies.

For the A grade, especially tight voltage regulation can be achieved through the low offset voltage for each operational amplifier (typically 0.5 mV) and tight tolerance for the voltage reference (0.4% at 25°C and over operating temperature range).

The TSM104W and TSM104WA are characterized for operation from -40°C to 105°C.

ORDERING INFORMATION

T _A	MAX V _{IO} AND V _{REF} TOLERANCE (25°C)	PACK	(AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
		PDIP – N	Tube of 25	TSM104WAIN	PREVIEW
		SOIC - D	Tube of 75	TSM104WAID	TSM104WAI
	A grade 3 mV, 0.4% Standard grade 5 mV, 1%	SOIC - D	Reel of 2500	TSM104WAIDR	1 SW 104WAI
		TSSOP – PW	Tube of 75	TSM104WAIPW	SM104AI
–40°C to 105°C			Reel of 2000	TSM104WAIPWR	SIVITU4AI
-40°C to 105°C		PDIP – N	Tube of 25	TSM104WIN	PREVIEW
		SOIC - D	Tube of 75	TSM104WID	TSM104WI
		30IC - D	Reel of 2500	TSM104WIDR	15101104001
	5 7, 170	TSSOP – PW	Tube of 75	TSM104WIPW	SM104I
		1330P - PW	Reel of 2000	TSM104WIPWR	SIVI 1041

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Absolute Maximum Ratings⁽¹⁾

over free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage			36	V
V_{ID}	Operational amplifier input differential voltage			36	V
V_{I}	Operational amplifier input voltage range	-0.3	36	V	
I _{KA}	Voltage reference cathode current			100	mA
		D package		73	
θ_{JA}	Package thermal impedance (2)(3)	N package		67	°C/W
		PW package		108	
TJ	Maximum junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating

Recommended Operating Conditions

		MIN	MAX	UNIT
$V_{CC+} - V_{CC-}$	Supply voltage	3	30	V
I _K	Cathode current	1	100	mA
T _A	Operating free-air temperature	-40	105	°C

conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) - T_A)/θ_{JA}. Selecting the maximum of 150°C can affect reliability.
 The package thermal impedance is calculated in accordance with JESD 51-7.

SLOS478D-JULY 2005-REVISED AUGUST 2006

Total Device Electrical Characteristics

PARAMETER		TEST CONDITIONS	T_A	MIN	TYP	MAX	UNIT
	Total supply current,	V _{CC+} = 5 V, No load	Full rooms		1.4	1.4 2.4	m ^
	excluding cathode-current reference	V _{CC+} = 30 V, No load	Full range			4	mA

Operational Amplifier Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = GND, V_{O} = 1.4 V, T_{A} = 25°C (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		TSM104W		25°C		1	5	
\/	Input offset voltage	1510110400		Full range			6	m)/
V _{IO}		TCM404\\\		25°C		0.5	3	mV
		TSM104WA		Full range			4	
αV_{IO}	Input offset voltage drift			25°C		7		μV/°C
	Innut offeet ourrent			25°C		2	30	
I _{IO}	Input offset current			Full range			50	nA
	Innut high ourrent			25°C		30	150	~ ^
I _{IB}	Input bias current			Full range			200	nA
^	Laura simal valtana	:_	$V_{CC+} = 15 \text{ V}, R_{L} = 2 \text{ k}\Omega,$	25°C	50	100		\//m\/
A_{VD}	Large-signal voltage	gain	V _O = 1.4 V to 11.4 V	Full range	25			V/mV
k _{SVR}	Supply-voltage reject	on ratio	V _{CC+} = 5 V to 30 V	25°C	65	100		dB
			V 00 V(1)	25°C	0		V _{CC+} – 1.5	V
V _{ICR} Input	Input common-mode	voitage range	$V_{CC+} = 30 V^{(1)}$	Full range	0		V _{CC+} – 2	V
OMPD	0	in ation matic		25°C	70	85		dB
CMRR Common-mode reject		tion ratio		Full range	60			uБ
I _{source}	Output source current		V _{CC+} = 15 V, V _O = 2 V, V _{id} = 1 V	25°C	20	40		mA
I _{SC}	Short circuit to GND		V _{CC+} = 15 V	25°C		40	60	mA
I _{sink}	Output sink current		$V_{CC+} = 15 \text{ V}, V_{O} = 2 \text{ V}, V_{id} = -1 \text{ V}$	25°C	10	20		mA
V	High lovel autout valt	togo	$V_{CC+} = 30 \text{ V}, R_1 = 10 \text{ k}\Omega$	25°C	27	28		V
V _{OH}	High-level output volt	aye	$V_{CC+} = 30 \text{ V}, R_L = 10 \text{ K}22$	Full range	27			V
V	Low-level output volta	utput voltage $R_L = 10 \text{ k}\Omega$	B = 10 kO	25°C		5	20	mV
V _{OL}	Low-level output volta	ige	KL = 10 KS2	Full range			20	IIIV
SR	Slew rate at unity gain		$ \begin{array}{l} V_{CC+} = 15 \text{ V, } C_L = 100 \text{ pF,} \\ R_L = 2 k\Omega, V_I = 0.5 \text{ V to } 3 \text{ V,} \\ \text{unity gain} \end{array} $	25°C	0.1	0.3		V/μs
GBW	Gain bandwidth product		$\begin{array}{l} V_{CC+} = 30 \text{ V, } V_{I} = 10 \text{ mV,} \\ C_{L} = 100 \text{ pF, } R_{L} = 2 \text{ k}\Omega, \\ f = 100 \text{ kHz} \end{array}$	25°C	0.5	0.9		MHz
THD	Total harmonic distortion		$V_{CC+} = 30 \text{ V}, V_O = 2 \text{ V}_{pp},$ $C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega,$ $f = 1 \text{ kHz}, A_V = 20 \text{ dB}$	25°C		0.01		%
V _n	Equivalent input noise voltage		V_{CC} = 30 V, R_S = 100 Ω , f = 1 kHz	25°C		25		nV/√ Hz
	Channel separation		1 kHz < f < 20 kHz	25°C		120		dB

⁽¹⁾ The input common-mode voltage of either input should not be allowed to go below -0.3 V. The upper end of the common-mode voltage range is $V_{CC+} - 1.5$ V, but either input can go to $V_{CC+} + 0.3$ V without damage (absolute maximum ratings still must be observed).

SLOS478D-JULY 2005-REVISED AUGUST 2006

Voltage Reference Electrical Characteristics

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT	
		TSM104W	1 - 10 mΛ	25°C	2.475	2.5	2.525	
\/	Deference voltage	131/11/104/	I _K = 10 mA	Full range	2.45		2.55	V
V_{REF}	Reference voltage	TSM104WA	1 - 10 mΛ	25°C	2.49	2.5	2.51	V
		13W104WA	IK = 10 IIIA	Full range	2.48		2.52	
ΔV_{REF}	Reference input voltage deviation over temperature range		$V_{KA} = V_{REF}$, $I_K = 10 \text{ mA}$	Full range		7	30	mV
$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	Ratio of change in reference voltage to change in cathode voltage		$V_{KA} = 3 \text{ V to } 36 \text{ V}, I_{K} = 10 \text{ mA}$	25°C	-2	-1.1		mV/V
	Defended input summer	B. ()		25°C		1.5	2.5	^
I _{REF}	Reference input current		I _K = 10 mA	Full range			3	μΑ
ΔI_{REF}	Reference input current deviation over temperature range			Full range		0.8	1.2	μΑ
I _{min}	Minimum cathode current for regulation		$V_{KA} = V_{REF}$	25°C		0.5	1	mA
I _{K,OFF}	Off-state cathode current			25°C		180	500	nA
z _{ka}	Dynamic impedance ⁽¹⁾		$V_{KA} = V_{REF}, f < 1 \text{ kHz},$ $\Delta I_{K} = 1 \text{ mA to } 100 \text{ mA}$	25°C		0.2	0.5	Ω

$$\left|z_{KA}\right| \, = \frac{\Delta V_{KA}}{\Delta I_{K}}$$
 (1) The dynamic impedance is defined as

SLOS478D-JULY 2005-REVISED AUGUST 2006

TYPICAL OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$ (unless otherwise noted)

TOTAL HARMONIC DISTORTION (THD) vs FREQUENCY

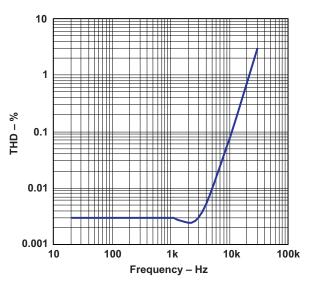


Figure 1.

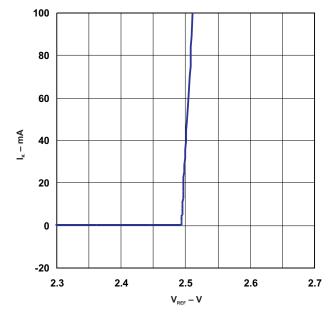


Figure 3.

AMPLIFIER NOISE VOLTAGE vs FREQUENCY

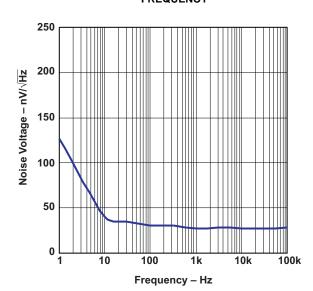
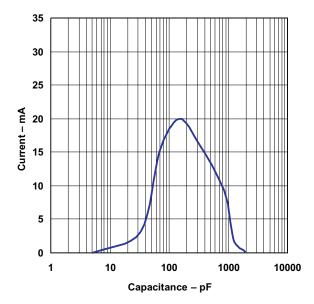
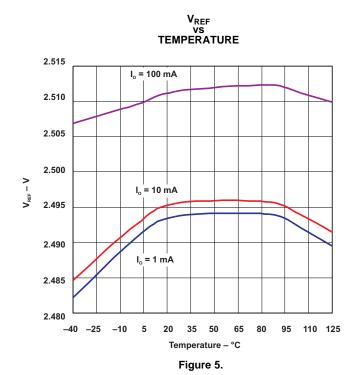


Figure 2.

V_{REF} STABILITY VS CAPACITANCE




Figure 4.

SLOS478D-JULY 2005-REVISED AUGUST 2006

TYPICAL OPERATING CHARACTERISTICS (continued)

 $T_A = 25^{\circ}C$ (unless otherwise noted)

PACKAGE OPTION ADDENDUM

5-Feb-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TSM104WAID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WAIDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WAIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WAIDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WAIPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WAIPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WAIPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WAIPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WIDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WIDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WIPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WIPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WIPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TSM104WIPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

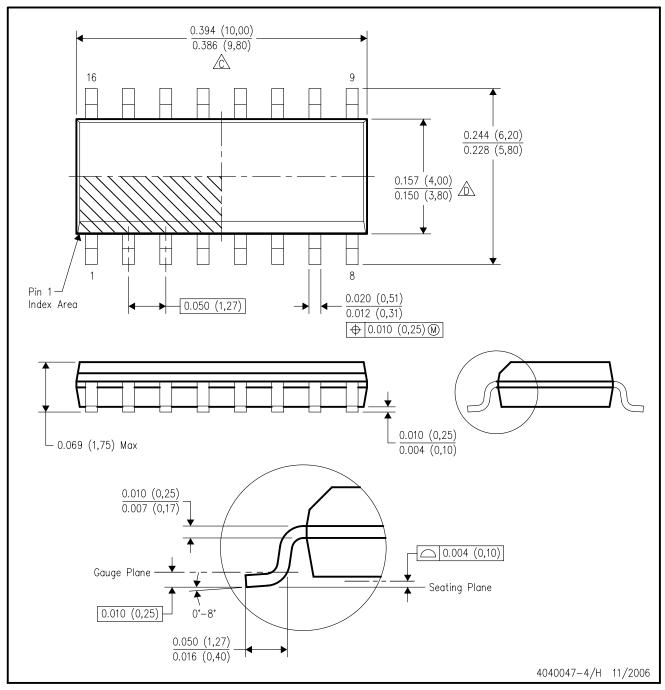
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

5-Feb-2007


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

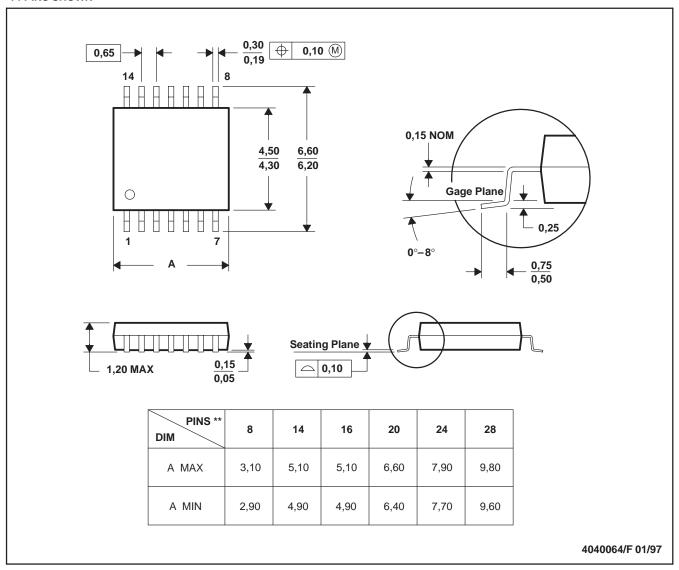
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- 放 Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265